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Abstract

We describe analog and mixed-signal primitives for im-
plementing adaptive signal-processing algorithms in VLSI
based on anti-Hebbian learning. Both on-chip calibration
techniques and the adaptive nature of the algorithms allow
us to compensate for the effects of device mismatch. We
use our primitives to implement a linear filter trained with
the Least-Mean Squares (LMS) algorithm and an adap-
tive decorrelation network that improves the convergence of
LMS. When applied to an adaptive Code-Division Multiple-
Access (CDMA) despreading application, our system, with-
out the need for power control, achieves more than 100x
improvement in the bit-error ratio in the presence of high
interference between users. Our 64-tap linear filter uses
0.25mm2 of die area and dissipates 200µW in a 0.35µm
CMOS process.

1 Introduction

A challenging aspect in the design of portable electronic
systems is their need to operate under unknown environ-
mental conditions such as interference, noise, and varying
input statistics. Adaptive signal-processing techniques, of-
ten in the form of adaptive filters and neural networks, ef-
fectively optimize system performance under these condi-
tions because they model the varying statistics of the envi-
ronment by adapting a set of internal weights to optimize a
goal function.

Portable systems also face severe restrictions in cost,
power dissipation, and die area. In such cases, implement-
ing adaptive signal-processing algorithms on an embedded
processor is often infeasible. The computationally-intensive
nature of these algorithms means that even custom digi-
tal VLSI solutions can be prohibitively large and power-
hungry. For problems that require moderate arithmetic res-
olution, analog and mixed-signal circuits provide an attrac-
tive tradeoff in die area and power dissipation; however,

Figure 1. Anti-Hebbian synapse.

these circuits are plagued by problems such as charge leak-
age, signal offsets, device mismatch, and noise sensitivity.

In this paper, we present a set of analog and mixed-signal
primitives that compensates for these problems through on-
chip calibration and dynamic adaptation. Using these prim-
itives, we implement adaptive LMS filters based on neu-
ral networks trained using anti-Hebbian learning [1] and we
show that the same primitives can form decorrelating net-
works to improve filter convergence in the presence of cor-
related inputs. Finally, we show an application of our sys-
tem to improve adaptive CDMA despreading without power
control.

2 Anti-Hebbian Learning

Adaptive signal-processing algorithms that update their
weights based on correlations between local signals are par-
ticularly amenable to hardware implementations because of
their local and regular communication structure. Particu-
larly, anti-Hebbian learning rules [1] minimize output en-
ergy by subtracting an update proportional to the correlation
between the input and output. Fig. 1 illustrates this concept
on a single-input neural network that computes the synaptic
function z(i) = w(i)x(i)+c(i). Using a stochastic gradient
descent to minimize the variance of the output, E[z 2], yields
the anti-Hebbian learning rule w(i+1) = w(i)−ηx(i)z(i),
where η is a constant learning rate. The independent input
c(i) prevents the trivial solution where w = 0. The function
generalizes naturally to multiple inputs xj(i).

Despite its simplicity, anti-Hebbian learning is widely
used in signal processing. In fact, the learning rule con-
verges when w(i)x(i) is the best approximation to −c(i) in
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(a) Multiplier output vs. input value.

(b) Multiplier output vs. weight value.

Figure 2. Multiplier output for 8 synapses.

the sense of the mean-squared value of the error z(i). This
is indeed the formulation of the well-known Least-Mean
Squares (LMS) algorithm, commonly found in adaptive fil-
tering applications. Another property of this algorithm is
that it converges when the output has extracted all the in-
formation of −c(i) available from the input x(i) such that
the correlation between x and z is minimal. Therefore, anti-
Hebbian learning is also used to adaptively decorrelate sig-
nals in applications such as dimensionality reduction and
blind source separation [2].

3 VLSI Primitives for Anti-Hebbian Learn-
ing

To build anti-Hebbian learning networks in VLSI, we
need multipliers and adders to implement the forward-
path synaptic computation

∑N
j=1 xjwj , distributed on-chip

memory to store the weights, and memory-update mecha-
nisms to implement the learning rule ∆wj = −ηzxj . This
section, based on previous analyses [3] and our own systems
simulations [4], describes how the design of these blocks al-
lows us to correct for the effects of device mismatch. Unless
otherwise noted, the data shown in this paper was measured
from an implementation of these primitives in a 0.35µm
CMOS process.

3.1 Forward-Path Multipliers

Multipliers impose the strongest requirements on die
area and power dissipation in VLSI signal-processing sys-

(a) Memory cell with linear updates.

(b) Updates in eight memory cells.

Figure 3. A simple PDM analog memory cell.

tems. To achieve compact and low-power systems, we use
analog multipliers with current outputs in the forward-path
computations and we sum the output currents from each
synapse on common wires to form the neuron output.

A systems analysis of our filter design shows that the
residual error is sensitive to multiplier linearity with respect
to the synaptic input x, but relatively robust to their linearity
with respect to the weight w, which is automatically com-
pensated by the adaptive algorithm; also, adaptation com-
pensates for weight offsets in the multipliers, provided the
weight range is large enough to absorb the offset.

Based on our analysis, we minimize the convergence
time and residual error of our filter by using a Gilbert-style
multiplier with differential current inputs for x and a differ-
ential voltage representation for w. We used long transistors
and above-threshold operation to maximize the linearity of
x, but favored larger range in w. Fig. 2 shows the transfer
function of eight different multipliers on a single chip.

3.2 Weight Storage and Updates

Using analog multipliers in the forward path requires we
provide on-chip analog weight storage. Because the per-
formance of the learning algorithm depends directly on the
accuracy of the stored weights and update rules, conven-
tional VLSI capacitors are inadequate: Charge leakage re-
quires continuous updates, preventing the open-loop opera-
tion common in applications such as adaptive filters. VLSI
capacitors are sensitive to charge injection, degrading per-
formance when used with digital pulse-based updates which
provide accurate and compact learning rules [5].



(a) Memory cell with on-chip calibration. (b) Symmetric updates in 8 memory cells. (c) Uniform updates in 8 memory cells.

Figure 4. PDM cell with on-chip calibration.

Instead, we use synapse transistors [6] to store and up-
date our analog weights. These devices use charge on a
floating gate to provide compact and accurate nonvolatile
analog storage. Fowler-Nordheim tunneling adds charge to
the floating gate and hot-electron injection removes charge
and both mechanisms accurately update the stored value
during normal device operation [6]; however, the dynamics
of injection and tunneling are highly nonlinear with respect
to their control variables (gate, drain and tunneling-junction
voltages), which leads to exponential learning rules that do
not enable anti-Hebbian learning. This section describes a
memory cell based on synapse transistors that supports ac-
curate, linear updates.

Fig. 3(a) shows a pulse-density modulated (PDM) mem-
ory cell with linear updates. A negative-feedback loop
around an operational amplifier pins the floating-gate volt-
age FG at Vbias. Fixed-width, fixed-amplitude pulses on
Pinc and Pdec trigger electron tunneling and injection, re-
spectively. Because all the control voltages are fixed, the
magnitude of the charge updates depends linearly on the
density of the update pulses. The charge is integrated on
the feedback capacitor Cw, causing a linear update in the
output voltage Vout. Fig. 3(b) shows the transfer function of
eight PDM memory cells on a chip. The integral nonlinear-
ity (INL) of most cells is less than 0.1%, corresponding to a
linearity of more than 10 bits.

Fig. 3(b) also highlights an important problem: device
mismatch makes it impossible to achieve symmetric up-
dates within a single synapse or equal updates across dif-
ferent synapses using only a single reference voltage V bias.
Without symmetric updates, the residual error increases sig-
nificantly, while unequal updates across synapses result in
slower convergence [4]. Fig. 4(a) shows an improved de-
sign which adds two local degrees of freedom to the cell.
First, we use an additional floating gate FGdec to locally set
the reference voltage at each memory cell. By tunneling and
injecting to this floating gate, we can vary the voltage at FG,
thus changing the relative strengths of tunneling and injec-

Figure 5. Anti-Hebbian update circuit.

tion at Pdec and Pinc (increasing the voltage at FG weakens
tunneling and strengthens injection and vice versa) until we
achieve local symmetry. Second, setting the voltage at the
floating gate FGinc controls the source current through M1,
limiting injection due to pulses on Pinc without affecting the
tunneling rate due to pulses on Pdec. This added control
allows us to achieve symmetric updates and equalize them
for different cells across the chip. Fig. 4(b) shows the sym-
metric updates achieved tuning only FGdec, while Fig. 4(c)
shows uniform symmetric updates using both floating gates.
The mismatch across cells is now less than 0.25% of their
dynamic range (better than 8-bit matching).

3.3 Anti-Hebbian Learning Rules

Fig. 5 shows a block diagram of the digital circuit that
implements the anti-Hebbian rules at each synapse. Pulse-
density modulators [7] (off-chip in our current implementa-
tion) transform the synaptic inputs and neuron outputs into
pairs of fixed-width digital pulses (Px

+, Px
−; Pz

+, Pz
−).

The value of the input is represented as the difference be-
tween the density (frequency) of the pulses. We use a single
modulator for each input or output in the system. We im-
plement the anti-Hebbian learning rules as:

P inc = (P x
+ & P z

−) | (P x
− & P z

+)
P dec = (P x

+ & P z
+) | (P x

− & P z
−)



(a) LMS filter.
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Figure 6. Filter with LMS adaptation.

If the pulse streams are asynchronous and sparse, then the
weight updates implemented by the expressions above con-
verge to the negative correlation between x and z, effec-
tively implementing an anti-Hebbian learning rule.

4 A Linear Filter with LMS Adaptation

Using the primitives described in Section 3, we imple-
mented a 10-input LMS adaptive filter in a 0.35µm CMOS
process. Fig. 6(a) shows the architecture of the filter as a
neural network adapting with anti-Hebbian learning rules.
If the inputs to the neuron are drawn from a tapped-delay
line (such as the barrel-shifter analog line described in [8]),
then the neuron implements an adaptive FIR filter. Because
input offsets in the forward-path multipliers translate into
nonzero-mean inputs and degrade the performance of the
filter [4], we use a bias synapse w0 with a constant input
to compensate for the aggregated value of all the input off-
sets in the neuron [1]. We train the bias synapse using the
same anti-Hebbian learning rule we use to train the other
the synapses in the neuron.

Fig. 6(b) shows the evolution of the RMS value of the
output error compared to an ideal mathematical implemen-
tation of the filter. We normalize the current output to its
full-scale value (20µA differential) to ease the comparison
to the ideal filter. We drew the inputs from a uniform ran-
dom distribution and trained our filter using a reference gen-
erated by a non-adaptive, mathematically ideal filter with
the same inputs. We added Gaussian noise to the refer-
ence, which resulted in a 60dB signal-to-noise ratio (SNR).
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Figure 7. Effect of input correlation.

Trained with this reference, the ideal LMS filter achieves a
normalized RMS error of 10−3. The output reference has
unity variance, therefore this RMS error is equivalent to a
digital resolution of 10 bits. Calibrating the memory cells
for symmetric and uniform updates as depicted in Fig. 4(c),
the residual error reaches a RMS value of 2 × 10−3, corre-
sponding to a 9-bit output resolution. The performance of
the circuit is mainly limited by the linearity of the forward-
path multipliers. Fig. 6(b) also shows the performance of
the filter with the memory cells calibrated for local sym-
metry only. In this case, the residual error is the same, but
the convergence time is about four times longer because the
learning rate η must be adjusted to stabilize the synapse with
the fastest updates [4] (we tune the learning rule globally
changing the gain of the pulse modulators). Without a bias
synapse, the multiplier offsets limit the performance of the
filter to a RMS error of 2 × 10−1 (2 bits).

In the experiment described above, the filter inputs were
uncorrelated. Unfortunately, many real-world signals are
generated by distributed sensors such as antenna arrays, and
show a significant correlation between them. This correla-
tion severely degrades the performance of the LMS algo-
rithm, as shown in Fig. 7 for both the hardware and ideal
filter. In this experiment, we mixed the inputs to achieve
an average cross-correlation of 0.75. Algorithms such as
Recursive Least Squares (RLS) keep an estimate of the in-
verse of the input correlation matrix and use it to improve
the performance of the adaptation, but their computational
structure is a poor match for custom VLSI implementations.
In the next section, we explore an alternative approach.

5 A Triangular Decorrelating Network

As described in Section 2, we can train an anti-Hebbian
synapse to decorrelate two signals. We can use this prop-
erty to build a decorrelation network and use it as a pre-
processing stage to the LMS filter. Fig. 8(a) shows the ar-
chitecture of the system, based on the direct form of the
triangular decorrelating filter described in [1]. Synapse a 21

decorrelates y2 from x1, which is equal to y1. Synapses a31

and a32 decorrelate y3 from x1 and x2. Because y1 and y2

are linear combinations of x1 and x2, y3 is decorrelated from



(a) LMS filter with adaptive decorrelation stage.
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(b) Normalized LMS performance with adaptive decorrelation stage.
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Figure 8. Filter with adaptive decorrelation.

them as well. As a result, the triangular network computes
a linear combination of its inputs that minimizes the corre-
lation between the outputs. The LMS filter can now operate
on these outputs and achieve better performance.

We tested a 10-input decorrelating filter using the archi-
tecture described above, training it with the same correlated
inputs discussed in Section 4. Fig. 8(b) compares its per-
formance to a filter trained with uncorrelated inputs. We
include a mathematically ideal implementation for compar-
ison purposes. Even though the decorrelation stage and the
LMS filter learn concurrently, the residual error reaches the
same value as the LMS filter with uncorrelated inputs after
less than 2000 iterations, which corresponds to about four
times the convergence time of the filter with uncorrelated
inputs. This is a substantial improvement over the results
shown in Fig. 7. In fact, the VLSI filter converges faster
than its mathematically-ideal counterpart. This is partly be-
cause the ideal filter converges to a smaller error, but also
because the discrete updates of the VLSI filter damp the
variance of the weights in the decorrelation network, allow-
ing better LMS performance.

Figs. 8(c) and Fig. 8(d) depict the evolution of selected
weights in the decorrelation network and the LMS filter.
We observe that the bias weights (a30 and w0) converge to
nonzero values to compensate for the multiplier offsets. We
also see that the weights converge to different values than
their ideal counterparts, to compensate for offsets in the
memory cells and analog multipliers. Fig. 8(c) shows that
it takes about 1500 iterations for the weights in the decorre-
lation network to approach their final value, at which point
the cross-correlation of the LMS filter inputs is low enough
to achieve good performance.

6 Application: Adaptive CDMA despreading

Direct Sequence Code Division Multiple Access (DS-
CDMA) is a spread-spectrum technique widely used in
wireless data communications. In this scheme, each bit
transmitted by a user is encoded using a sequence of shorter
binary values (chips), called the user signature. Ideally, the
cross-correlation between signatures is zero, which makes it
possible to detect a single user’s message by simply corre-
lating the received signal with the desired user’s signature,
thus canceling the contribution of other users and recover-
ing only the bit stream of interest. In practice, finite corre-
lation between signatures, unequal power among users and
multipath fading causes interference between users, which
lead to high error rates, low channel utilization and/or ex-
pensive power-control techniques.

An alternative to traditional CDMA detection is to use an
adaptive filter to compute an optimal user signature using
a training sequence. Because of multiple-user interference
and different signal power, the optimal signature is often
not the one used to encode the original bit stream (and it
is, in fact, not binary). In this section, we show an applica-
tion of the filters presented in Sections 4 and 5 to adaptively
recover user data in a CDMA system. Our filter supports
64 inputs and occupies a die area of 0.25mm2 in a 0.35µm
CMOS process, dissipating 200µW of total power.

We configured a CDMA system with 16 simultaneous
users and 64-chip signatures. The worst-case effective
cross-correlation between user signatures is 0.4 and the
worst power ratio between user signals is 10. Fig. 9(a)
shows the estimation errors as a result of decoding a 2048-
bit message with the traditional method for the user with the
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Figure 9. Application to CDMA despreading.

lowest power. The bit-error rate (BER) is 0.3 (30% of the
bits were incorrectly detected). We used our adaptive filter
to detect the same user’s message, using an off-chip com-
parator to discriminate between bits, and using only the first
700 bits as a training sequence. The performance is greatly
improved, reaching a BER of 0.05 including the incorrect
estimations during training. The BER after training is only
0.01. Experiments published in [4] show that the output
resolution of the 64-input filter is equivalent to 10 bits.

Fig. 9(c) shows the BER for all 16 users traditional
CDMA detection and our adaptive filter (including train-
ing). In the adaptive case, we obtain slightly better per-
formance if we initialize the weights to the original user
signature instead of zeros. Considering only the detection
after training, our filter improves the BER performance by
a factor between 25 and 114, depending on the user. Other
hardware implementations of CDMA detection [9] use less
power and area than our filter, but they rely fundamentally
on nonadaptive, strictly binary user signatures. Thus, these
implementations can only operate in open loop using a tra-
ditional detection scheme.

7 Conclusions

We have described analog and mixed-signal primitives
for adaptive signal processing in CMOS VLSI using anti-
Hebbian learning. Analog-weight storage using synapse
transistors enables the use of analog hardware while main-
taining accurate weight updates. The adaptive nature of the
algorithms compensates for some analog-hardware nonide-
alities such as gain and offset mismatches. We include on-
chip calibration circuitry to tune those features not compen-
sated by the adaptation, such as asymmetric and nonuni-
form learning rates. We demonstrated the effectiveness of
our approach building a 10-input filter that adapts with a
pulse-based implementation of the LMS algorithm, achiev-
ing an output resolution of 9 bits. We also used anti-
Hebbian learning to implement an adaptive decorrelating
stage for the LMS filter, greatly improving convergence
time and residual error (by more than an order of magni-

tude) in the presence of correlated inputs. Finally, we built
a 64-input LMS filter to perform adaptive DS-CDMA de-
spreading, improving the BER over traditional detection by
a factor of more than 100 in the presence of user inter-
ference and unequal signal power. The circuit die area is
0.25mm2 and its power dissipation is 200µW in a 0.35µm
CMOS process.
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