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Abstract Büchi’s problem asked whether a surface of a specific type, defined over
the rationals, has integer points other than some known ones. A consequence of a
positive answer would be the following strengthening of the negative answer to Hilbert’s
Tenth Problem: the positive existential theory of the rational integers in the language
of addition and a predicate for the property ‘x is a square’ would be undecidable.
Despite some progress, including a conditional positive answer (pending on conjectures
of Lang), Büchi’s problem remains open.

In this article we prove

(A) An analogue of Büchi’s problem in rings of polynomials of characteristic either
0 or p ≥ 17 and for fields of rational functions of characteristic 0 and

(B) An analogue of Büchi ’s problem in fields of rational functions of characteristic
p ≥ 19, but only for sequences that satisfy a certain additional hypothesis.

As a consequence we prove the following result in Logic :

Let F be a field of characteristic either 0 or ≥ 17 and let t be a variable. Let Lt be
the first order language which contains symbols for 0 and 1, a symbol for addition, a
symbol for the property ‘x is a square’ and symbols for multiplication by each element
of the image of Z[t] in F [t]. Let R be a subring of F (t), containing the natural image
of Z[t] in F (t). Assume that one of the following is true :

• R ⊂ F [t].

• The characteristic of F is either 0 or p ≥ 19.

Then multiplication is positive-existentially definable over the ring R, in the language
Lt. Hence the positive-existential theory of R in Lt is decidable if and only if the
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positive-existential ring-theory of R in the language of rings, augmented by a constant-
symbol for t, is decidable.

AMS Subject Classification: 03C60; 12L05

1 Introduction

In unpublished work J. Richard Büchi asked the following problem :

Büchi’s problem (‘the M squares problem’) 1.1 Is it true that, for large enough
M , the only integer solutions of the system of equations

x2
n + x2

n−2 = 2x2
n−1 + 2 n = 2, . . . ,M − 1 (1)

satisfy ±xn = ±xn−1 + 1?

Büchi’s problem remains unsolved. In this paper :

1. We prove a positive answer to the analogous problem for a sequence of non-
constant rational functions xn, if the characteristic of F is 0, forM ≥ 18, or if each
xn is in F [t] and the characteristic of F is either 0 or p ≥ 17, forM ≥ 14. We prove
the similar result in the case of fields F (t) where the characteristic of F is p ≥ 19
but only for sequences satisfying an additional assumption, for M ≥ 19. This is
Theorem 1.4. All these results for p > 0 are new while that for characteristic 0
follows (for M ≥ 8) from results of Vojta. In contrast to the methods of Vojta,
which use results of modern Algebraic Geometry and Nevanlinna Theory, our
proofs are of an elementary nature.

2. As a consequence of (1) we prove a theorem in Logic (Theorem 1.7).

Büchi’s problem and its implications were publicized by Leonard Lipshitz in [14].
It was discussed publicly by Joseph Lipman and Barry Mazur (cf. [16]). In [30] Paul
Vojta gave two pieces of evidence that Büchi’s problem may have a positive answer :

(A) He proved that a conjecture of Serge Lang implies a positive answer to it for M ≥ 8.
In fact Vojta’s result gives the same kind of (conditional) answer over the field Q of
rational numbers.

(B) He showed (using Nevanlinna theory) that the analogous problem for holomorphic
functions has a positive answer. This may be regarded as evidence in favor of a positive
answer to Büchi’s problem in the light of the observation that algebraic varieties which
posses infinitely many points in some number field are often of a special geometric type
(Kobayashi hyperbolic) - conjectures have been made that this correspondence is an
equivalence (cf. [12] and [29]).
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In what follows XM is the projective subvariety of the projective M -space PM , over
C, cut out by the equations (in projective coordinates (x, x0, . . . , xM−1))

x2
n + x2

n−2 = 2x2
n−1 + 2x2 n = 2, . . .M − 1 .

Vojta observed :

Fact 1.2 For M ≥ 6 the variety XM is a surface of general type.

Then he showed :

Theorem 1.3 (i) ([30], Theorem 3.1) For M ≥ 8, the only curves on XM of geometric
genus 0 or 1 are the ‘trivial’ lines ±xn = ±x0 − nx, n = 0, . . . ,M − 1.

(ii) ([30], Theorem 6.1) Let M ≥ 8 be an integer and let f : C → XM be a non-
constant meromorphic curve. Then the image of f lies in one of the ‘trivial’ lines.

Statement (i) of the theorem has as a consequence that if a conjecture of Lang (or
a weaker ‘question’ of Bombieri) is true then Büchi’s problem has a positive answer.
Statement (ii) shows that the analogue of Büchi’s problem for holomorphic functions
has a positive answer.

Our main result in this article is a solution of an analogue of Büchi’s problem for
fields of rational functions.

Theorem 1.4 Let F be a field and t a variable. Assume that (xn)M−1
n=0 is a sequence

of rational functions xn ∈ F (t), not all constant, which satisfy the recurrence relation
(1). Assume that one of the following holds:

1. The terms xn of the sequence are polynomials (i.e. in F [t]), the characteristic of
F is either 0 or p ≥ 17 and M ≥ 14.

2. The characteristic of F is 0 and M ≥ 18.

3. The characteristic of F is p ≥ 19 and M ≥ 18 and the following statement is not
true:

‘For some sequence (ζn)M−1
n=0 with ζn ∈ F (t) we have ζ0 6∈ F (tp), there is an s ∈

{0, 1, . . . } such that xn = ζps

n (for n = 0, . . . ,M − 1) and there is a γ ∈ F (tp) \ F
such that

ζ2
2

γ + 2
− 2 =

ζ2
1

γ + 1
− 1 =

ζ2
0

γ
. ’

Then there are ε0, . . . , εM−1 with εn ∈ {−1, 1} such that for each n, εnxn = ε0x0 + n.

We prove it in Section 2. The case of zero characteristic follows also from any of
the two statements of Theorem 1.3, for M ≥ 8 (for a proof see [18]).

Theorem 1.4, and especially the case of positive characteristic, may be regarded as
evidence in favor of a positive answer to Büchi’s problem, independent of that provided
by Vojta.
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Büchi’s problem, besides being a testing ground for number theoretical techniques
and conjectures, has some interesting applications in Logic. Büchi had in mind to apply
the answer, if positive, in order to prove a negative answer to the following question.

Let L be the language (set of symbols) which contains a symbol for addition, a
symbol for the property ‘x is a square’, a symbol for equality and symbols for the
elements 0 and 1 (all symbols, operations and relations are interpreted in Z in the
usual manner).

Question 1.5 Is the positive-existential theory of L over Z decidable?

If answered negatively, Question 1.5 will be one of the strongest forms of negative
answer to Hilbert’s tenth problem (cf. [15] and [2]) known today - and optimal in many
ways (for example cf. the decidability results in [13] and [23] and the surveys in [24]
and [20]). A negative answer to Question 1.5 would imply that there is no algorithm
to answer the solvability of systems A · X = B over Z, where A is an n × m matrix
and B an m × 1 matrix with entries in Z and X is an m × 1 matrix whose i-th entry
is x2

i - each xi is an unknown. (But the solvability of one - only - quadratic equation is
decidable, cf. [6] and the more general result in [7]).

We define the languages (sets of symbols) Lt and LT , in which we will write state-
ments (formulas) which we will interpret in the field F (t) of rational functions.

The language Lt extends L by the following symbols

• Constant-symbols for the elements of the natural image of Z[t] in F [t];

• For each element c of the natural image of Z[t] in F [t], a unary function-symbol
for the function fc : x 7→ cx.

The language LT extends L by the following symbol

• A one-place predicate symbol T which will be interpreted as ‘T (x) if and only if
x 6∈ F ’.

A sentence of Lt (resp. LT ) is positive-existential if it is of the form ∃xψ(x) where
x = (x1, . . . , xn) is a tuple of variables and ψ(x) is a disjunction of conjunctions of
formulas of the form g(x) = 0 and ‘xi is a square’ (resp. and T (xi)), where

g(x) = a1x1 + · · ·+ anxn − b

with the ai, b ∈ Z[t] (resp. ∈ Z). The positive-existential theory of a subring R of F (t)
in the language Lt (resp. LT ) is the set of positive-existential sentences of Lt (resp. LT )
which are true in R. We ask :

Question 1.6 Let R be a ring of functions of the independent variable t.
(a) Is the positive-existential theory of R in Lt decidable?
(b) Is the positive-existential theory of R in LT decidable?
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Büchi’s problem is crucial in answering Question 1.6(a) in the following way: Let
Lring

t (resp. Lring
T ) be the extension of Lt (resp. LT ) by a symbol for multiplication

in F (t). Consider a ring R satisfying the hypothesis of Theorem 1.4. The conclusion
of Theorem 1.4 implies that multiplication in R is positive-existentially definable in Lt

(we will show this in the last section). Hence, if the analogue of Hilbert’s tenth problem
over R, in the language Lring

t has a negative answer, then the positive-existential theory
of R in Lt is undecidable. We prove a similar result in the language LT , but only for
polynomials (in characteristic 0 or p ≥ 17) and function fields of characteristic 0.

Theorem 1.7 Let F be a field of characteristic either 0 or p ≥ 17. Let t be transcen-
dental over F (a variable) and let R be a subring of F (t), containing the natural image
of Z[t] in F [t]. Then :

(i) If R ⊂ F [t] then multiplication over R is positive-existential in the language Lt.
Consequently the positive-existential theory of R in Lt is undecidable.

(ii) Assume that the characteristic of F is either 0 or p ≥ 19. Then multiplication
over R is positive-existential in the language Lt. Consequently the positive-existential
theory of R in Lt is decidable if and only if the positive-existential theory of R in the
language Lring

t is decidable.

(iii) Assume that R ⊂ F [t]. Then multiplication over R is positive-existential in the
language LT . Consequently the positive-existential theory of R in LT is undecidable.

(iv) Assume that the characteristic of F is 0. Then multiplication over R is positive-
existential in the language LT . Consequently the positive-existential theory of R in LT

is decidable if and only if the positive-existential theory of R in the language Lring
T is

decidable.

Statement (i) of the Theorem follows from the results of [3] and [4], where it is
proved that the positive-existential Lring

t -theory of a ring of polynomials F [t], and any
subring R as in (i) of the Theorem, is undecidable. Statement (iii) follows from the
similar result (for polynomial rings) in Lring

T of [19]. The general problem of whether
the positive-existential Lring

t -theory of an arbitrary field of rational functions F (t) is
decidable or undecidable is open (for example, for C(t)). The existing results are all of
a negative nature (undecidable). The similar problems for the language LT are open.
We list as a corollary some of the known cases. Some more cases can be found in
the results of the bibliography. For the status of problems regarding decidability of
Diophantine problems over rings of functions, see [20].

Corollary 1.8 Let F be a field of characteristic either 0 or p ≥ 19. Let t be a variable
and let R be a subring of F (t) containing the natural image of Z[t]. Then the following
hold :

(i) The positive-existential Lt-theory of R is undecidable if F is any of the following
fields :

(a) A real field (cf. [3]).
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(b) A finite field Fq(t) (cf. [17] and [28]) or an extension of a finite field, satisfying
the assumptions of [24].

(c) A p-adic field [10].

(ii) Assume F = K(s) where K is a field and s is a variable (algebraically independent
of t over K). Assume that s ∈ R. Let Lt,s be the extension of the language Lt by
symbols of constants for the elements of the natural image of Z[s, t] in K(s, t)) and by
unary symbols of function, one for each of the functions fc : x 7→ cx, where c ∈ R.
Then the positive-existential Lt,s-theory of R is undecidable (cf.[9]).

The proof that Theorem 1.4 implies Theorem 1.7 is given in Section 3 and is an
easy adaptation of the analogous argument for Z, which is due to Büchi (made public
by Lipshitz). The same, essentially, proof shows the similar result for the field of
meromorphic functions on the complex plane, using Vojta’s Theorem 1.3(ii). We state
it :

Theorem 1.9 (Vojta) Let R be a subring of the field of meromorphic functions of
the variable t, on the complex plane, containing the ring Z[t]. Then multiplication in
R is positive-existentially definable in the languages Lt. Consequently, if the positive-
existential theory of R in the language Lring

t is undecidable, then the positive-existential
theory of R in Lt is undecidable as well.

Further problems : Four directions of possible generalizations of the present re-
sults are obvious :

• Prove the similar result for sequences of non-constant elements of F (t), in the
case of positive characteristic, without the additional hypothesis of Theorem 1.4.

• Treat the cases of characteristic p = 3, . . . , 17. Also study the sequences which
satisfy Relation (1) but have a smaller number of terms than that assumed in the
hypothesis of Theorem 1.4.

• Generalize to algebraic function fields (perhaps, as a first step, to integral exten-
sions of the polynomial rings). Besides the independent interest of the problem
in those domains, the results would provide evidence for the analogous problem
in number fields (or rings of integers in number fields). Note that there exist
undecidability results for rings of algebraic functions : [5], [24], [26], [31] but the
general problem (for algebraic functions of a fixed degree) remains open.

• Replace the property ‘x is a square’ by ‘x is a k-th power’, where k is an arbitrary
integer with k ≥ 3. In [18] a problem for k-th powers is presented, similar to
that of Büchi’s (that paper contains also a positive-existential definition of the
rational integers or a quadratic extension in an arbitrary field of rational functions
of characteristic zero for k = 3, and various conditional undecidability results).
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2 Büchi’s problem for rational functions

In this section we prove Theorem 1.4.
We suppose that the characteristic of the field F is either 0 or p ≥ M . We can

suppose without loss of generality that the base field F is algebraically closed. Also
observe that if the characteristic of F is p > 0 and all the xn are p-th powers, that is,
xn ∈ F (tp), then if the sequence (xn)n satisfies (1), so does the sequence

(x
1
p
n )n

hence it suffices to consider only the case in which not all the xn are p-th powers. So
from now on we assume :

Assumption 2.1 (a) The field F is algebraically closed.
(b) One of the following holds :

1. The characteristic of F is 0 and at least one of the xn is not in F .

2. The characteristic of F is p ≥ 3, p ≥M ≥ 3 and not all xn are elements of F (tp).

Definition 2.2 A prime is either a prime ideal of the ring F [t], which we will affine
prime or the ‘prime at infinity. We will identify an affine prime P with the monic
monomial t− ρ that generates it. For any x ∈ F (t) \ {0} we will write ordP (x) for the
order of x at the affine prime P and ord∞(x) for the order of x at the prime at infinity
(ord∞(x) = (the degree of the denominator of x minus the degree of the numerator of
x).

Lemma 2.3 There is an automorphism σ of F (t) over F such that some σ(xn) has
negative order at infinity.

Proof : If some xn has negative order at infinity then we are done. So assume that all
xn have non-negative order at infinity. By Assumption 2.1, some xn is non-constant,
hence has a pole P which is not the prime at infinity and is therefore of the form t− ρ
for some ρ ∈ F . Let σ be the automorphism of F (t) over F which sends t to 1

t
+ ρ. It

is obvious that σ(xn) has negative order at infinity. 3

We apply a suitable automorphism σ to the sequence (xn)n to obtain the sequence
(σ(xn))M−1

n=0 with the property that some σ(xn) has negative order at infinity. Observe
that the sequence (σ(xn))M−1

n=0 satisfies relation (1). Hence we consider the latter se-
quence instead of the given one, that is, we may assume, without loss of generality, the
following :

Assumption 2.4 Some xn has negative order at infinity.
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Lemma 2.5 (i) The system of equations (1) is equivalent to the following system :

x2
n = (1− n)x2

0 + nx2
1 + n(n− 1), n = 0, . . . ,M − 1. (2)

(ii) For any two indices n and m we have

mx2
n = (m− n)x2

0 + nx2
m −mn(m− n) (3)

Proof : (i) The proof, done by induction on n, is easy and left to the reader.
(ii) From Equation (2)

x2
m = (1−m)x2

0 +mx2
1 +m(m− 1)

we can express x2
1 in terms of x0 and xm

mx2
1 = x2

m − (1−m)x2
0 −m(m− 1)

and plug it in
x2

n = (1− n)x2
0 + nx2

1 + n(n− 1)

where n 6= 0,m. Observe that m may take the value 1. We obtain

mx2
n = m(1− n)x2

0 + n[x2
m − (1−m)x2

0 −m(m− 1)] +mn(n− 1)

after multiplication by m, hence

mx2
n = [m(1− n)− n(1−m)]x2

0 + nx2
m −mn(m− 1) +mn(n− 1)

hence
mx2

n = (m− n)x2
0 + nx2

m −mn(m− n)

after obvious simplifications. 3

From Equation (3) we observe :

Corollary 2.6 (i) Assume that the characteristic of F is 0. Then all but possibly one
of the xn are non-constant rational functions.

(ii) Assume that the characteristic of F is p > 0. Then all but possibly one of the
xn are in F (t) \ F (tp).

The next lemma gives us an invariant of the sequence (xn) which will be used often
from now on.

Lemma 2.7 For any two integers n 6= m the expression

x2
m − x2

n

m− n
−m− n

does not depend on n and m.
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Proof : The proof follows from Equation (3) and is left to the reader. 3

Definition 2.8 (i) For any n,m = 0, . . . ,M − 1 with n 6= m we will be writing

ν =
x2

m − x2
n

m− n
−m− n (4)

(and we will be recalling that it does not depend on n and m).
(ii) For any k = 0, . . . ,M − 1 we will be writing

νk = ν + 2k

that is,

νk =
x2

m − x2
n

m− n
−m− n+ 2k .

Definition 2.9 We will be writing

ν =
f

g

where f and g are co-prime polynomials, and for each index n,

xn =
fn

gn

where fn and gn are co-prime polynomials. We will write

VP = min{ordP (xn) | n = 0, . . . ,M − 1}

for each prime P of F (t) (including the prime at infinity).

Definition 2.10 Denote by y the least common multiple of the gn and write xn = yn

y
,

for some polynomials yn ∈ F [t]. We denote by dn the degree of yn, by d+ the maximum
of the dn (for n = 0, . . . ,M − 1) and by d the degree of y.

Lemma 2.11 Let m, n, k be pairwise different integers. Then the greatest common
divisor of {fm, fn, fk} is (1) (the unit ideal).

Proof : ¿From Lemma 2.7, we have :

x2
n − x2

m

n−m
− n−m =

x2
m − x2

k

m− k
−m− k =

x2
k − x2

n

k − n
− k − n

for all m, n and k. Suppose there is a non-constant polynomial P dividing fm, fn and
fk. This polynomial has a zero in F , since F is by assumption algebraically closed.
Therefore, computing the expressions of the last equation at this zero, we would have

n+m = m+ k = k + n

hence m = n = k which contradicts our hypothesis. 3
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Lemma 2.12 Let P be a prime pole of some xr. Then one of the following holds :
(a) For each index n, ordP (xn) = VP and ordP (ν) ≥ 2VP .
(b) There is an index ` = `(P ) such that : (1) ordP (x`) > VP , (2) For all n 6= ` we

have ordP (xn) = VP and (3) ordP (ν) = 2VP .

Proof : In case that for each index n, ordP (xn) = VP , from Equation (4) we obtain
ordP (ν) ≥ 2VP . So assume that there is an index ` such that ordP (x`) > VP . Let m be
an index for which ordP (xm) = VP . From Lemma 2.7 we can write

ν =
x2

m − x2
`

m− `
−m− `

hence ordP (ν) = 2VP . And since for any index n 6= ` we have also

ν =
x2

n − x2
`

n− `
− n− `

we obtain
2ordP (xn) = ordP (ν) = 2VP

hence ordP (xn) = VP . 3

By Assumption 2.4 the prime at infinity is a pole of some xn. Hence we obtain :

Corollary 2.13 There is an index `(∞) such that for each n 6= `(∞) we have

ord∞(xn) = V∞ .

Hence, for any m,n 6= `(∞), we have

deg(ym) = deg(yn) .

Moreover ord∞(ν) ≥ 2V∞.

Definition 2.14 We fix the notation of Corollary 2.13, so we let `(∞) be an index
such that for each index n we have ord∞(x`(∞)) ≥ ord∞(xn).

Definition 2.15 We define

∆n = 2νnν
′x′n − ν ′2xn − 4xnx

′2
n

for each index n.

Lemma 2.16 Assume that one of the following is true :

• The characteristic of F is either 0 or p ≥ 17, for each index n = 0, . . . ,M − 1 we
have xn ∈ F [t], and M ≥ 14 or
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• The characteristic of F is either 0 or p ≥ 19 and M ≥ 19.

Then we have
∆n = 0 (5)

for each index n.

Proof : We will split the proof into a sequence of claims.

Claim 1 : We have
xm∆m = xn∆n

for each two indices m and n.
Proof : Substitute

x2
m = x2

n + (m− n)(ν +m+ n)

(resulting from Equation (4)) and

2xmx
′
m = 2xnx

′
n + (m− n)ν ′

(obtained by differentiating the two sides of Equation (4)) in xm∆m and recall that
νm = ν + 2m and νn = ν + 2n. 3

Recall that xn = yn

y
where yn and y are polynomials with deg(yn) ≤ d+ and

deg(y) = d.

Claim 2 : We may write

ν =
u

y2

where u ∈ F [t] and deg(u) ≤ 2d+.
Proof : By Equation (4) we obtain that for m 6= n we have u = 1

m−n
(y2

m − y2
n) −

(m+ n)y2. 3

For each index n we write Gn = y7∆n.

Claim 3 : (i) The function Gn is a polynomial in F [t] of degree at most 7d+ − 4.
(ii) If all the xn are polynomials in F [t] then ∆n is a polynomial of degree less than

or equal to 5d+ − 2.
Proof : (i) By the definition of ∆n we obtain

Gn = y7[2νnν
′x′n − ν ′2xn − 4xnx

′2
n ] =

y7

[
2
u+ 2ny2

y2

u′y − 2uy′

y3

y′ny − yny
′

y2
−
(
u′y − 2uy′

y3

)2
yn

y
− 4

yn

y

(
y′ny − yny

′

y2

)2
]

=

2(u+ 2ny2)(u′y − 2uy′)(y′ny − yny
′)− (u′y − 2uy′)2yn − 4y2yn(y′ny − yny

′)2 .
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It follows that Gn ∈ F [t]. To find an upper bound for deg(Gn) recall that we have

deg(u) ≤ 2d+ deg(yn) ≤ d+ deg(y) = d d+ 1 ≤ d+

and observe that if z ∈ F [t] then deg(z′) ≤ deg(z)− 1. It follows that

deg(u+2ny2) ≤ 2d+ deg(u′y−2uy′) ≤ 2d++d−1 deg(y′ny−yny
′) ≤ d++d−1 .

Therefore we have

deg(Gn) ≤ max{5d+ + 2d− 2, 5d+ + 2d− 2, 3d+ + 4d− 2} =

max{5d+ + 2d− 2, 3d+ + 4d− 2} ≤ max{7d+ − 4, 7d+ − 6} = 7d+ − 4 .

(ii) In the case that each xn is in F [t] we may take y = 1. Going through the proof
of (i) with this adjustment we obtain the result. 3

We want to prove that for each index n, ∆n = 0. For the sake of contradiction we
assume that for some index r, ∆r 6= 0. Throughout the rest of the proof we fix an
arbitrary index r for which ∆r 6= 0. By the definition of ∆r it follows that xr 6= 0, so
xr∆r 6= 0

Claim 4 : For each index n, ynGn = yrGr.
Proof : Substitute xn = yn

y
, xr = yr

y
and ν = u

y2 in the terms of the relation
xn∆n = xr∆r of Claim 1. 3

We write β for the least common multiple of the elements of the set {yn | n 6= r}.

Claim 5 : (i) deg(β) ≤ 8d+ − 4.
(ii) If all xn are polynomials in F [t] then deg(β) ≤ 6d+ − 2.
Proof : (i) By Claim 4 we obtain that each yn divides yrGr in F [t]. It follows that

β divides yrGr in F [t]. Hence, since yrGr 6= 0, deg(β) ≤ deg(yr) + deg(Gr). By Claim
3 we have deg(yr) + deg(Gr) ≤ 8d+ − 4 and the result follows.

(ii) In the last sentence of the proof of (i) substitute the relation by deg(yr) +
deg(Gr) ≤ 6d+ − 2 (coming from Claim 3(ii)). 3

Claim 6 : We have∏
n6=r

yn|β2 and deg(β) ≥ M − 2

2
d+

where the symbol | means ‘divides in F [t]’.
Proof : We prove that we have ∏

n6=r

yn|β2 .
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Let P be an arbitrary affine prime of F (t). Assume that P divides some yn (otherwise
our assertion is trivially true). It suffices to show that

ordP

(∏
n6=r

yn

)
≤ 2 ordP (β) .

We distinguish two cases, according to whether P divides y or not.
Assume that P divides y. Then, by Lemma 2.12, P divides precisely one yn, say yk,

so

ordP

(∏
n6=r

yn

)
= ordP (yk) = ordP (β) .

Now assume that P does not divide y. Then, by Lemma 2.11, P divides either
precisely one yn, say yk, or precisely two, say yk and ym. In the first of these subcases
we have

ordP

(∏
n6=r

yn

)
= ordP (yk) = ordP (β) .

In the second subcase assume that ordP (yk) = e and ordP (ym) = h with e ≥ h. Then

ordP

(∏
n6=r

yn

)
= ordP (yk) + ordP (ym) = e+ h

while ordP (β) = e. Then e+ h ≤ 2e so

ordP

(∏
n6=r

yn

)
≤ 2 ordP (β) .

To prove the second statement of the Claim observe that we have∑
n6=r,`(∞)

deg(yn) ≤ 2 deg(β)

from the first statement. By Corollary 2.13 we know that for n 6= `(∞) we have
deg(yn) = d+. Hence we have∑

n6=r,`(∞)

deg(yn) = (M − 2)d+ .

3

The proof of the Lemma follows : by Claims 5 and 6 we obtain

M − 2

2
d+ ≤ deg(β) ≤ 8d+ − 4

13



hence
M − 2

2
d+ ≤ 8d+ − 4

which can not hold if M ≥ 19.
By the same argument, if each xn is a polynomial, we obtain

M − 2

2
d+ ≤ deg(β) ≤ 6d+ − 2

which can not hold if M ≥ 14.
The contradiction that we obtained proves the lemma. 3

Lemma 2.17 With the assumptions of Lemma 2.16 we have

ν ′ 6= 0 .

Proof : The conclusion of Lemma 2.16 gives ∆n = 0 for each index n. So if ν ′ = 0 then
ν ′n = 0 and

xnx
′2
n = 0

for each n. Hence all xn are either in F (in the case of characteristic 0) or in F (tp) (in
the case of positive characteristic), which contradicts Assumption 2.1. 3

Lemma 2.18 With the assumptions of Lemma 2.16, for each index n, one of the fol-
lowing two statements is true :
(a) There is a rational function γn ∈ F (t) \ {0} such that γ′n = 0 and

νn =
x2

n

γn

+ γn (6)

(b) There is a rational function δn such that δ′n = 0 and

νn = 2εnxn + δn (7)

where εn = ±1.

Proof : Let us rewrite the equations ∆n = 0 as

2νnν
′
nx

′
n = xn(ν ′2n + 4x′2n )

by reordering and factorizing by xn. Let us divide both sides of this equation by xnx
′2
n

and write
νn

xn

=
ζn
ρn

and
ν ′n
x′n

=
an

bn

14



where an, bn, ζn and ρn are polynomials such that an and bn, respectively ζn and ρn,
are co-prime. We obtain

2ζnanbn = ρn(a2
n + 4b2n)

after multiplication by ρnb
2
n. Since an and bn are co-prime as well as ζn and ρn, we

obtain that ζn = βn(a2
n + 4b2n) and ρn = 2βnanbn for some non-zero βn in the base field

F . Defining

µn = βn
νn

ζn

we can express νn and xn as

νn =
1

βn

ζnµn = (a2
n + 4b2n)µn (8)

xn =
ρn

ζn
νn =

2βnanbn
βn(a2

n + 4b2n)
(a2

n + 4b2n)µn = 2anbnµn (9)

in terms of these new variables. Next we compute the derivatives

ν ′n = (2ana
′
n + 8bnb

′
n)µn + (a2

n + 4b2n)µ′n

x′n = 2a′nbnµn + 2anb
′
nµi + 2anbnµ

′
n

of νn and xn. By the definition of an and bn we have bnν
′
n = anx

′
n, which gives

bn[(2ana
′
n + 8bnb

′
n)µn + (a2

n + 4b2n)µ′n] = an[2a′nbnµn + 2anb
′
nµn + 2anbnµ

′
n] .

after plugging our new expressions for ν ′n and x′n. Hence we obtain

[bn(2ana
′
n + 8bnb

′
n)− 2ana

′
nbn − 2a2

nb
′
n]µn = [−bn(a2

n + 4b2n) + 2a2
nbn]µ′n

which gives
2[4b2n − a2

n]b′nµn = [−4b2n + a2
n]bnµ

′
n

after obvious cancelation.
Suppose first that we have a2

n = 4b2n. By definition of an and bn, it implies ν ′2n = 4x′2n ,
hence ν ′n = ±2x′n. In this case we obtain :

νn = ±2xn + δn

for some δn which is in F if the characteristic of F is 0 and in F (tp) if the characteristic
of F is p > 0.

Suppose now that we have a2
n 6= 4b2n. In this case we obtain (recall that by Lemma

2.17 we have ν ′ 6= 0, hence νn 6= 0 and µn 6= 0)

µ′n
µn

= −2
b′n
bn

15



hence
µn =

αn

b2n

for some non-zero αn which is in F if the characteristic of F is 0 and in F (tp) if the
characteristic of F is p > 0. The latter relation and Equations (8) and (9) give the
following new expressions

xn = 2αn
an

bn

and

νn = αn
a2

n + 4b2n
b2n

=
x2

n

4αn

+ 4αn

which gives Equation 6 by writing γn = 4αn. 3

Lemma 2.19 With assumptions and notation as in Lemma 2.18 the following holds :
if Equation (7) holds for some index r then we have δr = 0.

Proof : Assume that for some index r Equation (7) holds and that xr does not have
zero derivative (cf. Corollary 2.6). Substituting νr = 2εrxr + δr in the equation

∆r = 2νrν
′
rx
′
r − ν ′2r xr − 4xrx

′2
r = 0

we get
2(2εrxr + δr)(2εrxr + δr)

′x′r − (2εrxr + δr)
′2xr − 4xrx

′2
r = 0

hence
4εr(2εrxr + δr)x

′2
r − 4x′2r xr − 4xrx

′2
r = 0

since δr has zero derivative. The equation simplifies into

δrx
′2
r = 0

and the lemma is proven since we supposed x′r 6= 0. 3

Corollary 2.20 With assumptions and notation as in Lemma 2.18 if for some r Equa-
tion (7) holds then it holds for all indices and the conclusion of Theorem 1.4 holds.

Proof : By Lemmas 2.16 and 2.18 we obtain that for each index n one of Equations (6)
and (7) holds. Assume that for some index r, Equation (7) holds. It then follows from
Lemma 2.19 that νr = 2εrxr for some εr ∈ {−1, 1}. Let us choose an index n distinct
to r. Then by Equation (4) we obtain

x2
n = (n− r)(ν + n+ r) + x2

r = (n− r)(νr + n− r) + x2
r =

(n− r)2 + 2(n− r)εrxr + x2
r = (εrxr + (n− r))2

which proves the corollary. 3
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Lemma 2.21 With assumptions and notation as in Lemma 2.18 we have :
(i) If Equation (6) holds for one index then it holds for each index and there is a

γ ∈ F (t) such that for each index n we have γn = γ + n.
(ii) With the additional assumption that either the characteristic of F is 0 or each

xn is a polynomial, the following holds : Equation (6) can not hold for any index.

Proof : By Corollary 2.20, it is clear that if Equation (6) holds for one index then it
holds for each index. Consider two distinct indices, m and h, for each of which Equation

(6) holds. So, for i = m,h we have νi =
x2

i

γi
+ γi. Substituting νi = ν + 2i we obtain

ν =
x2

i

γi

+ γi − 2i .

Differentiating both sides of Equation (4) and of the latter equation, for each of the
indices m and h, we obtain

2xmx
′
m − 2xhx

′
h

m− h
= ν ′ =

2xmx
′
m

γm

=
2xhx

′
h

γh

so

ν ′ =

2xmx′
m

2xhx′
h
− 1

m− h
2xhx

′
h =

γm

γh
− 1

m− h
2xhx

′
h =

γm − γh

m− h

2xhx
′
h

γh

=
γm − γh

m− h
ν ′

and (recall that by Lemma 2.17 ν ′ 6= 0) consequently γm−γh

m−h
= 1 so

γm − γh = m− h .

It then follows that there is a γ ∈ F (and, in the case of characteristic p > 0, γ ∈ F (tp))
such that for each index n for which Equation (6) holds, we have

γn = γ + n .

This proves (i).
Suppose that Equation (6) holds for some index, hence for every indices. Observe

that from Equation (6) it follows that

ν − γ =
x2

m

γ +m
−m

and
x2

m

γ +m
−m =

x2
h

γ + h
− h . (10)

First we consider the case that F has characteristic 0. Let k be an index other than
m,h. Then we obtain from Equation (6) that the elliptic curve

Y 2 = (X +m)(X + h)(X + k)

17



has as solutions

(X, Y ) =

(
ν − γ,

xm√
γ +m

xh√
γ + h

xk√
γ + k

)
which is impossible since an elliptic curve is of genus 1 and does not admit a non-
constant rational parametrization (by Hurwitz’s formula, see [8]).

Now we consider the case in which the characteristic of F is p ≥ 17 and each xn is
in F [t].

Observe that if for some index k Equation(6) holds and xk ∈ F (tp) then ν ∈ F (tp)
and then, from Equation (4), all xn are in F (tp), which contradicts Assumption 2.1.
Therefore we have xn 6∈ F (tp) for each index n.

Now observe that by Equation (4) we have ν ∈ F [t] and since from Equation (10)

x2
m = (ν − γ +m)(γ +m) = (ν + 2m− (γ +m))(γ +m)

we have (
γ +m− ν + 2m

2

)2

=
(ν + 2m)2

4
− x2

m

therefore γ ∈ F [tp]. Observe that γ +m and γ + h can not have any common zero; It
then follows by Equation (10) that γ + m divides x2

m in F [t] and γ + h divides x2
h in

F [t].
Write xm = up

mzm and xh = up
hzh where um, uh ∈ F [t] and each of zm and zh has

only zeros of multiplicities ≤ p− 1 and positive degree. Then

u2p
m

γ +m
,

u2p
h

γ + h
∈ F [t] .

Differentiating both sides of Equation (10) we obtain

u2p
m

γ +m
zmzm′ =

u2p
h

γ + h
zhz

′
h .

Observe that
x2

m

γ +m
and

x2
h

γ + h

can not have a common zero, because from Equation (10) it would follow that m = h

(and we have assumed that m,h < p). Therefore zm has no common zeros with
u2p

h

γ+h
zh,

hence zm divides z′h in F [t], therefore we obtain

deg(zm) ≤ deg(z′h) ≤ deg(zh)− 1 .

Similarly, zh divides z′m in F [t] hence deg(zh) ≤ deg(zm)−1. The last two relations can
not hold simultaneously. This contradiction proves the Lemma. 3
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Proof of Theorem 1.4. By Lemmas 2.18, 2.19 and 2.21 and Corollary 2.20 we
only have to consider the case in which the characteristic of F is p ≥ 19 and Equation
(6) holds for each index. Then, from Equation (6) and Lemma 2.21(i) applied for the
indices 0, 1 and 2 gives

x2
2

γ + 2
− 2 =

x2
1

γ + 1
− 1 =

x2
0

γ
,

which contradicts the hypothesis of the Theorem.

3 Consequences for Logic

Proof of Theorem 1.7 Our proof is an adjustment of the proof of Theorem 1.4 of
[18].

We write P2(x) to mean ‘x is a square in F (t)’. We consider a ring R as in the
hypothesis of the Theorem. Let N = 14 if R ⊂ F [t] and let N = 18 otherwise. Let
ψ(z, w, w0, . . . , wN−1) denote the formula

w = w0 ∧ 2z = w1 − w0 − 1
∧

i=2,...,N−1

wi + wi−2 = 2wi−1 + 2
∧

i=0,...,N−1

P2(wi)

and φ(z, w) denote the formula

∃w0, . . . , wN−1 ∈ R ψ(z, w, w0, . . . , wN−1) .

We claim :

Proposition 3.1 Assume that F and R satisfy the hypothesis of some of the cases of
Theorem 1.7. Then the following hold :

(I) Assume that z, w ∈ R and w = z2. Then φ(z, w) holds true.
(II) Assume that z, w, w0, . . . , wN−1 ∈ R and that ψ(z, w, w0, . . . , wN−1) holds true.

Assume that x0, . . . , xN−1 ∈ R are such that the sequence

(wn)N−1
n=0 = (x2

n)N−1
n=0

satisfies ψ(z, w, w0, . . . , wN−1). Then either w = z2 or one of the following Conditions
holds :
(A) The hypothesis of Case (i) of Theorem 1.7 holds, so each xi is in F [t], and z, w ∈ F .
(B) The hypothesis of Case (ii) of Theorem 1.7 holds and the characteristic of F is 0,
and z, w ∈ F .
(C) The hypothesis of Case (ii) of Theorem 1.7 holds and the characteristic of F is
p ≥ 19, and z, w ∈ F (tp).
(D) The hypothesis of Case (ii) of the Theorem holds and the characteristic of F is
p ≥ 19, and, in addition, not both of z and w are in F (tp), and there is a γ ∈ F (tp)
such that

x2
2

γ + 2
− 2 =

x2
1

γ + 1
− 1 =

x2
0

γ
.
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Proof :
(I) Take wi = (z + i)2.
(II) Assume that Conditions (A), (B), (C) and (D) do not hold. Then (wn)N−1

n=0

satisfies the hypothesis of Theorem 1.4 and consequently

w1 = x2
1 = (±x0 + 1)2

hence, since 2z = w1 − w0 − 1, we have

2z = x2
1 − x2

0 − 1 = (±x0 + 1)2 − x2
0 − 1 = ±2x0

and w = z2. 3

We continue with the proof of Theorem 1.7, proving separately each case :
(i) This is the case in which R ⊂ F [t].

Consider the formula

η(z, w) : φ(z, w) ∧ φ(tz, t2w) ∧ φ(z + t, w + 2tz + t2) .

We claim that it is equivalent to w = z2. By the above Proposition and Theorem 1.4,
if w 6= z2, we have that condition (A) holds, hence z, tz, z + t, w, t2w,w+ 2tz + t2 ∈ F ,
which is impossible.

Thus squaring and, consequently, multiplication over R is positive-existentially de-
finable in the language Lt. By [3] and [4] the positive-existential theory of R in Lring

t is
undecidable. Hence the positive-existential theory of R in Lt is undecidable.
[Note that in [3] (for polynomial rings) and [4] the undecidability results are stated only
for R = F [t]; one has to go through the statements of the Lemmas to see that actually
it holds for any subring R which contains the natural image of Z[t].]

(ii) This is the case in which R ⊂ F (t).
Subcase 1 : Assume that the characteristic of F is 0. Then the proof is exactly the

same as in Case (i) : The formula η (for N = 18) defines squaring. So one obtains :
Decidabilty of the existential theory of R in Lt is equivalent to decidability of R in Lring

t

but it is unknown whether the latter is decidable or undecidable for arbitrary F (cf.
the discussion in [20]).

Subcase 2 : Assume that the characteristic of F is p ≥ 19.
Consider the formula

θ(z, w) : φ(z, w) ∧ φ(z + t, w + 2tz + t2) ∧ φ(z − t, w − 2tz + t2) .

Obviously, if w = z2, then θ(z, w) holds. We claim :

Claim : If θ(z, w) holds and w 6= z2 then one of the following three conditions
holds :

(a) both z and w are in F (tp),
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(b) both z + t and w + 2tz + t2 are in F (tp),
(c) both z − t and w − 2tz + t2 are in F (tp). 3

We assume for the moment that the Claim is true and show that a consequence of
the Claim and Proposition 3.1 is that the formula

η1(z, w) : θ(z, w) ∧ θ(z + t2, w + 2t2z + t4)

is equivalent to w = z2. By Proposition 3.1 (I), if w = z2 then clearly η1(z, w) holds
true. Conversely, suppose that η1(z, w) holds true and w 6= z2. Then for each couple

X = (z, w) and Y = (z + t2, w + 2t2z + t4)

one of (a), (b) or (c) of the Claim is true. Suppose (a) is true for both X and Y .
Then in particular z, z + t2 ∈ F (T p) which is absurd. Suppose (a) is right for X and
(b) is right for Y . Then z, w, z + t2 + t, w + 2t2z + t4 + 2t(z + t2) + t2 ∈ F (T p) hence
t2 + t ∈ F (tp) and w + 2(t2 + t)z + t2 + 2t3 + t4 ∈ F (tp) which is absurd. All the other
cases are done similarly (the proof is left to the reader).

Then the proof of Theorem 1.7 follows as in the previous Case (i).
We continue with a proof of the Claim. Assume that θ(z, w) holds. For the sake

of contradiction assume that w 6= z2 and that none of the conditions (a), (b) and (c)
holds. Then, by Proposition 3.1, Condition (D) holds relative to each of the formulas

φ(z, w), φ(z + t, w + 2tz + t2) and φ(z − t, w − 2tz + t2) .

Hence we obtain :

• By the hypothesis that φ(z, w) is true, there is a γ ∈ F (tp) such that

x2
2

γ + 2
− 2 =

x2
1

γ + 1
− 1 =

x2
0

γ
.

Then, computing, we have x2
1 = (γ + 1)(

x2
0

γ
+ 1) and

2z = x2
1 − x2

0 − 1 = (γ + 1)(
x2

0

γ
+ 1)− x2

0 − 1 =
1

γ
w + γ . (11)

• By the similar argument for φ(z + t, w + 2tz + t2) instead of φ(z, w) we conclude
that there is a γ2 ∈ F (tp) such that

2(z + t) =
1

γ2

(w + 2tz + t2) + γ2 (12)

and
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• By the similar argument for φ(z − t, w − 2tz + t2) we conclude that there is a
γ3 ∈ F (tp) such that

2(z − t) =
1

γ3

(w − 2tz + t2) + γ3 . (13)

By Equation (11) we solve for w :

w = 2γz − γ2

and substitute in Equations (12) and (13) :

2γ2(z + t) = (γz − γ2) + 2tz + t2 + γ2
2 (14)

and
2γ3(z − t) = (γz − γ2)− 2tz + t2 + γ2

3 . (15)

Adding the corresponding sides of Equations (14) and (15) we obtain

2(γ2 + γ3 − γ)z = 2t2 − 2(γ2 − γ3)t+ (γ2
2 + γ2

3 − 2γ2) . (16)

Considering Equation (16) as a linear equation over the field F (tp) observe that the
coefficient of z, 2(γ2 + γ3 − γ), cannot be equal to 0, since the set {1, t, t2} is linearly
independent over F (tp). We conclude that z has the form

z = α0 + α1t+ α2t
2 (17)

where α0, α1 and α2 are in F (tp) (and can be computed easily as functions of γ, γ2 and
γ3). Substituting this expression for z in Equation (14) we find (recalling that the set
{1, t, t2, t3} is linearly independent over F (tp)) that α2 = 0; Substituting z = α0 + α1t
in Equation (16) we find a contradiction (since the set {1, t, t2} is linearly independent
over F (tp)).

(iii) and (iv) Work like in (i) but with η substituted by

η2(z, w) : φ(z, w) ∧ T (w) .

The result follows by [19] where it is proved that the positive-existential theory of a
ring R, satisfying our hypothesis, in Lring

T is undecidable.
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