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Abstract : Let F be a field of zero characteristic. We give the following answer
to a generalization of a problem of Büchi over F [t]: A sequence of 92 or more cubes
in F [t], not all constant, with third difference constant and equal to 6, is of the form
(x+ n)3, n = 0, . . . , 91, for some x ∈ F [t] (cubes of successive elements). We use this,
in conjunction to the negative answer to the analogue of Hilbert’s Tenth Problem for
F [t] in order to show that the solvability of systems of degree-one equations, where
some of the variables are assumed to be cubes and (or) non-constant, is an unsolvable
problem over F [t].
MSC: 03C60, 12L05, 11U05, 11C08

1 Introduction

Büchi asked the following question, known as the ‘n squares problem’:

Is there a positive integer M such that any sequence of at least M integer squares,
with second difference constant and equal to 2, is equal to a sequence of squares of
successive integers?

He had the intention to apply a possible positive answer in order to obtain a result
in Mathematical Logic (we discuss this below). The question was made public by L.
Lipshitz in [7]. In [19] P. Vojta proved that a positive answer - for rational numbers -
is implied by a conjecture of S. Lang (or by a positive answer to a weaker ‘question’
of E. Bombieri); he also proved that the similar question for non-constant meromor-
phic functions (defined on C), rather than integers, has a positive answer. A relevant
discussion can be found in a work of B. Mazur [9]. The n squares problem is still open.

In 1987 D. Buell [2] characterized all the non-trivial integer sequences of length
four (we call a sequence of squares of successive numbers trivial). In 1993, R. G.
E. Pinch [14] proved, under a certain condition on the size, that a family of four-
term sequences cannot be extended to five-term sequences. In 2006, J. Browkin and
J. Brzeziński [1] proved that there exist infinitely many non-trivial five- and six-term
sequences (originally, Büchi asked the question for five-term sequences). It is not known
whether or not there exist any non-trivial seven-term sequence of integers. Note that
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Vojta’s conditional result claims non-existence of eight-term non-trivial sequences of
integers.

In [10] we generalized Büchi’s question as follows :

Question 1.1 Let k be an integer, greater than 1. Is there a positive integer M so that
the following holds?

Assume that y = (y0, . . . , yM−1) is a sequence of k-th powers of integers. If the k-th
difference of y is constant and equal to k!, then y is the sequence of k-th powers of
successive integers, that is, there is an integer x so that, for each n ∈ {0, . . . ,M − 1},
we have yn = (x+ n)k.

Except for the above results of Vojta and those of [11] the question is open for any
k and for any global field (in place of the integers) - we note that in fields of functions
the Question should be interpreted so that by ‘solutions’ one means solutions which are
non-constant functions.

In the present paper we prove a positive answer to the analogue of the Question in
the case k = 3 and for a polynomial ring F [t] in place of the integers, where F is a field
of characteristic zero. We prove :

Theorem 1.2 Let F be a field of characteristic 0 and t a transcendental element over
F . Assume that x0, . . . , xM−1 ∈ F [t], at least one of the xn is non-constant and that
M is not less than 92. If the third difference of the sequence (x3

0, . . . , x
3
M−1) is constant

and equal to 6, or equivalently, if the following system of equations is satisfied

x3
n+3 − 3x3

n+2 + 3x3
n+1 − x3

n = 6, n = 0, . . . ,M − 4 (1)

then, for some x ∈ F [t] and for any n = 0, . . . ,M − 1, we have

x3
n = (x+ n)3 .

A consequence in Logic is the following :

Theorem 1.3 Let F be a field of zero characteristic and let t be a variable. Let L3,T

be the language {0, 1,+, P3, T}. Interpret the unary predicate P3 as ‘P3(y) if and only
if y is a cube (third power) in F [t]’, interpret the unary predicate T as ‘T (x) if and
only if x is a non-constant polynomial’ and interpret 0, 1 and + as usual. Let L3,t be
the language {0, 1,+, P3, R} where R is a constant-symbol for the function which sends
any x to tx (and the remaining symbols are interpreted as above).

1. Multiplication in F [t] is positive-existentially definable in each of the languages
L3,T and L3,t.

2. The positive-existential theory of F [t] in the language L3,T is undecidable.

3. The positive-existential theory of F [t] in the language L3,t is undecidable.
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This strengthens the result of J. Denef in [4] which is an analogue of Hilbert’s Tenth
Problem for rings of polynomials of the variable t, in the language {+, ·, 0, 1, t} (cf. Y.
Matiyasevic [8], the presentation of M. Davis in [3] and the surveys by the first author
and K. Zahidi in [13], by B. Poonen in [15] and by A. Shlapentokh in [17]). It also
strengthens the similar result of the first author and K. Zahidi in [12], but in the lan-
guage {+, ·, ‘x is non-constant’ , 0, 1}.

An immediate consequence of Theorem 1.3 is the following :

Corollary 1.4 (Undecidability of simultaneous representation by cubic forms)
There is no algorithm (i.e. Turing Machine) which solves the following Problem :
Let A and B be two matrices with integer entries and with dimensions m×n and m×1,
respectively. Assume that x1, . . . , xn are variables and X is the column matrix of the
x3
i . Assume that fj(Y1, . . . Yr) are polynomials of the variables Y1, . . . Yn of degree 1, for
j = 1, . . . , r. Determine whether the system of equations

A ·X = B

has a solution with x1, . . . xn ∈ F [t] with the property that for each j,fj(x
3
1, . . . , x

3
n) 6∈ F .

It would be desirable to be able to prove the similar statement having in place of the
conditions fj(x

3
1, . . . , x

3
n) 6∈ F conditions only of the form xi 6∈ F , or, even, ‘some of the

xi is non-constant’. But for the moment we can not prove any of these. The proofs of
1.3 and 1.4 (at the end of the paper) show also that the analogous statements (omitting
the conditions for ‘non-constancy’) are equivalent over domains such as Z and Q. It
follows that the analogues of Corollary 1.4 over Z and over Q are open problems.

Open problems : We consider it natural to ask about the truth of the statements of
Theorem 1.2 and 1.3 for domains other than polynomials. Some examples are :

1. The ring of holomorphic and the field of meromorphic functions (on the complex
plane or a p-adic plane);

2. A polynomial ring F [t] in any characteristic other than 3;

3. The ring of algebraic functions of the variable t, integral over F [t] (this would
strengthen the result of A. Shlapentokh [16]);

4. Fields of rational functions in any characteristic other than 3;

5. Fields of algebraic functions in any characteristic other than 3 (this would strengthen,
for example, the result of K. Zahidi [20]);

6. Z and Q (and, in general, global fields).
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Outline of the proof: We compute an invariant ν of the sequence which in the
end turns out to be an x as in Theorem 1.2. We observe that Equation (1) is equivalent
to x3

n = a + nb + (ν + n)3, where a and b are invariants. Differentiating the terms of
this equation, combining with the initial one and using an argument involving heights
(degrees) we show that a certain invariant of the sequence is equal to 0 (Lemmas 2.8
and 2.10). In this way we obtain a dependence of a on b and ν. Iterating the procedure
we obtain b as a function of ν. In consequence the pairs of non-trivial solutions (xm, xn)
are shown to be on certain curves over F , of genus greater than 0, which is impossible
for non-constant xn and xm. We obtain a number of ‘degenerate’ cases which we have
to rule out before we conclude with Theorem 1.2.

Our method can presumably be applied to the analogous problem for k > 3 (k is
as in Question 1.1) but the number and nature of ‘degenerate’ cases seems to increase
in a way that we have not been able to systematize to this point. Because of the fact
that we use derivatives our proof does not transfer to the analogous problem over the
integers or the rationals.

2 Büchi’s problem for cubes in polynomial rings

From now on we will fix a solution (x0, . . . , xM−1) of the system of Equations (1) and
write un = x3

n, so that we have

un+3 − 3un+2 + 3un+1 − un = 6 (2)

for n = 0, . . . ,M − 4.
We call the sequence (u0, . . . , uM−1) trivial if and only if it is a sequence of cubes of

successive elements, i.e. if there is an x ∈ F [t] such that for all n we have un = (x+n)3.
Without loss of generality we can suppose that the field F is algebraically closed.

Hence we suppose from now on :

Assumption 2.1
(a) The field F is algebraically closed.
(b) The characteristic of F is 0.
(c) At least one xn is not in F .

Lemma 2.2 The system of Equations (2) is equivalent to

2un = n(n− 1)u2 − 2n(n− 2)u1 + (n− 2)(n− 1)u0 + 2(n− 2)(n− 1)n (3)

for n = 0, . . . ,M − 1, and more generally,

2un = (k − n)(k − n− 1)uk+1 − 2(k − n− 1)(k − n+ 1)uk

+ (k − n)(k − n+ 1)uk−1 − 2(k − n− 1)(k − n)(k − n+ 1) (4)

for any k = 1, . . . ,M − 2.
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Proof : By induction on n. It is clearly true for n = 3. Suppose it is true up to n. By
Equation (1) we have

un+1 = 3un − 3un−1 + un−2 + 6

where we may replace un, un−1 and un−2 using the hypothesis of induction. We obtain

2un+1 = 6un − 6un−1 + 2un−2 + 12

= 3 [n(n− 1)u2 − 2n(n− 2)u1 + (n− 2)(n− 1)u0 + 2(n− 2)(n− 1)n]

−3 [(n− 1)(n− 2)u2 − 2(n− 1)(n− 3)u1 + (n− 3)(n− 2)u0 + 2(n− 3)(n− 2)(n− 1)]

+[(n− 2)(n− 3)u2 − 2(n− 2)(n− 4)u1 + (n− 4)(n− 3)u0 + 2(n− 4)(n− 3)(n− 2)]+12

hence the coefficient of u2 is

3n(n− 1)− 3(n− 1)(n− 2) + (n− 2)(n− 3) = n2 + n = n(n+ 1)

the coefficient of 2u1 is

−3n(n− 2) + 3(n− 1)(n− 3)− (n− 2)(n− 4) = −n2 + 1 = −(n+ 1)(n− 1)

the coefficient of u0 is

3(n− 2)(n− 1)− 3(n− 3)(n− 2) + (n− 4)(n− 3) = n2 − n = (n− 1)n

and the constant term is

6(n− 2)(n− 1)n− 6(n− 3)(n− 2)(n− 1) + 2(n− 4)(n− 3)(n− 2) + 12

= 2(n− 2)[3(n− 1)n− 3(n− 3)(n− 1) + (n− 4)(n− 3)] + 12

= 2(n− 2)[n2 + 2n+ 3] + 12 = 2[n3 − n− 6] + 12 = 2[n3 − n] = 2n(n− 1)(n+ 1) .

Hence Equation (3) is true up to n+ 1. The more general relation can be obtained by
brute computation, and is left to the reader. 3

Lemma 2.3 For any pairwise distinct indices m,n, q ∈ {0, . . . ,M − 1}, the expression

νm,n,q = −1

3

[
(q − n)um + (m− q)un + (n−m)uq

(q − n)(m− q)(n−m)
+m+ n+ q

]
(5)

does not depend on m, n and q.

Proof : Replace um, un and uq by the expressions given by (3). 3

For any m, n and q, we will be writing ν instead of νm,n,q. We will call ν the
ν-invariant of the sequence u. Observe that since we have

3ν =
1

2
[u2 − 2u1 + u0 − 6]
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the ν-invariant of the trivial solution of Büchi’s problem (when x2 = x0 + 2 and x1 =
x0 + 1) is x0. In order to measure how far a solution u of (2) is from being trivial, we
will introduce the new variables

a = u0 − ν3 and b = (u1 − u0)−
(
(ν + 1)3 − ν3

)
.

We find
un = a+ nb+ (ν + n)3 (6)

(using the expresion for ν0,n,1). Note that if (xn) is the trivial solution then a = b = 0.

Definition 2.4 For any x ∈ F [t] \ {0}, deg(x) will denote the degree of x. We adopt
the convention that deg(0) = −∞. We denote by e the maximum of the degrees of the
un for n = 0, . . . ,M − 1 (hence e > 0). If the degree e is divisible by 3 then we write
d = e

3
. In the case we consider un = x3

n, hence d = e
3

is the maximum of the degrees of
the xn.

Corollary 2.5 One of the following is true :

1. Each un has degree e.

2. There is an index ` such that for each n 6= ` we have deg(un) = e and deg(u`) < e.

3. There are indices `1 6= `2 such that for each n 6= `i, i = 1, 2, we have deg(un) = e
and deg(u`i) < e, i = 1, 2.

Proof : Assume we are not in cases 1 or 2. Let `1 6= `2 such that deg(u`i) < e and let k
be an index such that deg(uk) = e. By Lemma 2.3 we have

3ν = νk,`1,`2 = −(`2 − `1)uk + (k − `2)u`1 + (`1 − k)u`2
(`2 − `1)(k − `2)(`1 − k)

− k − `1 − `2

hence deg(ν) = deg(uk) = e. So for any index n 6= `1, `2 we have

3ν = −(`2 − `1)un + (n− `2)u`1 + (`1 − n)u`2
(`2 − `1)(n− `2)(`1 − n)

− n− `1 − `2 ,

which implies deg(un) = deg(ν) = e. 3

Corollary 2.6 If m, n, q and r are pairwise distinct indices of the sequence u, then
um, un, uq and ur are coprime (the four polynomials do not have any common divisor).

Proof : We have

3ν = 3νm,n,q = −(q − n)um + (m− q)un + (n−m)uq
(q − n)(m− q)(n−m)

−m− n− q =

3νm,n,r = −(r − n)um + (m− r)un + (n−m)ur
(r − n)(m− r)(n−m)

−m− n− r .
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Suppose that there is a non-constant polynomial P dividing um, un, uq and ur. P has
a zero in F . Computing the last two quantities of the latter relations at that zero we
obtain m+ n+ q = m+ n+ r, hence q = r, which contradicts our hypothesis. 3

Definition 2.7 Recalling Corollary 2.5, we let `i, i = 1, 2, be two indices such that for
each index n, other than `1 and `2, we have

deg(u`i) ≤ deg(un) = e

for i = 1, 2.

Lemma 2.8 Let {r1, . . . , rm} ⊆ {0, . . . ,M − 1}. If Q is a non-zero polynomial in F [t]
divisible by

∏m
k=1 xrk , then the degree of Q is at least m−2

3
d. In particular, if we choose

M ≥ 92 and m = M then the degree of Q is at least 30d.

Proof : Denote R = {r1, . . . , rm}. For all n ∈ R, let Pn ∈ F [t] be such that Q = xnPn.
Since Q is not the zero polynomial, for each n ∈ R, neither xn nor Pn is the zero
polynomial. We write µ for the least common multiple of the elements of the set
{xn | n ∈ R}. Hence µ divides Q and it is enough to show that the degree of µ is at
least m−2

3
d.

We claim that the product
∏

n∈R xn divides µ3. Let P be an arbitrary prime of F [t]
which divides µ. Write ordP (x) for the order of x (∈ F [t]) at P . It suffices to show
that we have

ordP

(∏
n∈R

xn

)
≤ 3ordP (µ) .

If P does not divide any xn, then the result is obvious. So assume that P divides xk1
for some index k1 that we choose so that ordP (xk1) is maximum, namely, so that

ordP (xk1) = ordP (µ) .

By Corollary 2.5, P divides either precisely one xn (Case 1), or precisely two (Case 2),
or precisely three (Case 3). Let xki

, i = 1, . . . , j, be the polynomials divisible by P in
case j. In order to treat the three cases simultanously, let xk2 and xk3 be such that P
does not divide any xn with n 6= k1, k2, k3. If we choose the indices so that

ordP (xk1) ≥ ordP (xk2) ≥ ordP (xk3)

then we have

ordP

(∏
n∈R

xn

)
= ordP (xk1) + ordP (xk2) + ordP (xk3) ≤ 3ordP (xk1) = 3ordP (µ) .

This proves the claim.
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Hence we have ∑
n∈R

deg(xn) ≤ 3 deg(µ)

and by Corollary 2.5 we obtain

(m− 2)d ≤
∑
n∈R

deg(xn)

where the −2 corresponds to the indices `1 and `2 from Definition 2.7. 3

Notation 2.9 We write

A = −ν ′′a′ + ν ′a′′ + 6ν ′3ν,

B = ν ′′b′ − ν ′b′′ − 6ν ′3,

and if B 6= 0

q =
A

B
.

Observe that if Bν ′ 6= 0 then we can write q as

q =

(
a′

ν′

)′
+ 6νν ′

−
(
b′

ν′

)′ − 6ν ′
. (7)

Lemma 2.10 Only the following mutually exclusive two cases can occur :
Case 1 : ν ′ = 0
Case 2 : B 6= 0, ν ′ 6= 0 and we have

a+ bq + (ν + q)3 = 0 (8)

and

a′ + b′q + 3ν ′(ν + q)2 = 0 . (9)

Proof : By differentiating twice the sides of Equation (6) we get

u′n = a′ + nb′ + 3ν ′(ν + n)2 (10)

and

u′′n = a′′ + nb′′ + 6ν ′2(ν + n) + 3ν ′′(ν + n)2 . (11)

By plugging the expresion for 3(ν + n)2 that results from Equation (11) into Equation
(10) we obtain

ν ′′u′n = ν ′′a′ + nν ′′b′ + ν ′(u′′n − a′′ − nb′′ − 6ν ′2(ν + n))
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that we can write in the form
nB = A+ Un (12)

where
Un = ν ′′u′n − ν ′u′′n.

Multiplying Equation (6) by B3 and Equation (10) by B2 we get

B3un = aB3 + nbB3 + (νB + nB)3

and
B2u′n = a′B2 + nb′B2 + 3ν ′(νB + nB)2

hence, replacing the expresion of nB from Equation (12),

B3un = aB3 + (A+ Un)bB2 + (νB + A+ Un)3

and
B2u′n = a′B2 + (A+ Un)b′B + 3ν ′(νB + A+ Un)2.

Separating the terms that depend on n from those that do not, in both equations, we
get

B3un − Un[bB2 + 3(νB + A)2 + 3(νB + A)Un + U2
n]

= aB3 + AbB2 + (νB + A)3 (13)

and

B2u′n − Un[b′B + 6ν ′(νB + A) + 3ν ′Un] = a′B2 + Ab′B + 3ν ′(νB + A)2 . (14)

Write
∆ = aB3 + AbB2 + (νB + A)3

and
Γ = a′B2 + Ab′B + 3ν ′(νB + A)2

(the right hand sides of the above equations).
We will now use Lemma 2.8 in order to prove that we have ∆ = Γ = 0. Note that

since un = x3
n, its first and second derivatives, u′n and u′′n, are each a multiple of xn,

hence Un = ν ′′u′n − ν ′u′′n is a multiple of xn. Therefore, ∆ and Γ are both multiples of
xn for each n ∈ {0, . . . ,M − 1}. Let us compute an upper bound for the degrees of ∆
and Γ. Recalling Definition 2.7 we see that the degree of un is not more than e, hence
that of ν is not more than e and we have deg(a) ≤ 3e, deg(b) ≤ 2e, and

deg(A) ≤ 4e− 3, deg(B) ≤ 3e− 3, deg(Un) ≤ 2e− 3 and deg(νB+A) ≤ 4e− 3.

Therefore, computing the degrees of the left hand sides of Equations (13) and (14), we
find

deg(∆) ≤ 10e− 9 = 30d− 9 < 30d
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and

deg(Γ) ≤ 7e− 7 = 21d− 7 < 30d .

We deduce from Lemma 2.8 that we have ∆ = 0 and Γ = 0.

If B is not zero then ν ′ is not zero and we have

∆

B3
= a+

A

B
b+

(
ν +

A

B

)3

= 0

and
Γ

B2
= a′ +

A

B
b′ + 3ν ′

(
ν +

A

B

)2

= 0 ,

namely Equations (8) and (9).

Let us prove that if B = 0 then ν ′ = 0. If B = 0 then from Equation (12) we have
A + Un = 0 for all n. Since Un is a multiple of xn, and degUn ≤ 2e − 3 = 6d − 3, we
deduce from Lemma 2.8 that Un is zero. From Corollary 2.5, we know that at most
two of the un may be constant, namely u`1 and u`2 . For all n ∈ {0, . . . ,M − 1} distinct
from `1 and `2, we may write

Un
u′2n

=
ν ′′u′n − ν ′u′′n

u′2n
=

(
ν ′

u′n

)′
and deduce that for those n, the quotient ν′

u′
n

must be a constant in F , say cn. So we

have cnu
′
n = ν ′ for at least M − 2 distinct values of n, so for at least 90 distinct values

of n. We conclude by Lemma 2.8 : since

deg(ν ′) ≤ e− 1 = 3d− 1 <
90− 2

3
d ,

we have ν ′ = 0. 3

We will need the following Proposition, whose proof comes from the theory of elliptic
curves (see, for example, Husemöller [5], Definition (6.2), page 17, or Silverman [18],
Hurwitz’s Theorem, Ch. II, par. 5) - the main observation that concerns us here is
that a non-singular cubic curve is of genus 1.

Proposition 2.11 Let µ, ξ ∈ F .

1. The curve with affine equation

Y 3 = µX3 + ξ

is of genus 1 provided that µξ 6= 0.
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2. The curve with affine equation

Y 2 + µY + ξ = X3

is of genus 1 provided that µ2 6= 4ξ.

Remark : The general strategy from now on will be the following : we will provide
relations among a, b and ν that will produce equations that will define curves as in
Proposition 2.11, where the coeficients µ and ξ will depend on one or various indices n.
These curves will have rational parametrization by polynomials made up of products of
various xn’s (and some other fixed polynomial, independent of n), hence they will define
curves of genus 0 (for all the indices considered). Proposition 2.11 will then tell us that
this can happen for very few values of n (as long as any of xn or x0 is non-constant,
and in particular, if n is different from `1 and `2). So we will have space to choose the
indices such that one of the curves considered is of genus 1, while it admits a rational
parametrization, and this will give us a contradiction. The only case that will survive
is that in which for all n we have x3

n = (ν + n)3, which will prove Theorem 1.2. 3

Lemma 2.12 Case 1 is impossible, that is, ν ′ can not be zero.

Proof : We will show first that if ν is constant then so is a, and then that ν and a can
not be both constant.

Assume that ν ′ = 0 and a′ 6= 0. So we have a′ = u′0 (from the definition of a),

u′n = a′ + nb′ and u′′n = a′′ + nb′′

(from Equation 6). Hence we have

u′nb
′′ = a′b′′ + nb′′b′ = a′b′′ + (u′′n − a′′)b′ ,

that is,
u′nb

′′ − u′′nb′ = a′b′′ − a′′b′ .
Since xn divides u′n and u′′n, and the degree of u′nb

′′ − u′′nb′ is no more than 3e− 3, then
by Lemma 2.8, we deduce

a′b′′ − a′′b′ = 0 .

Since a′ 6= 0, we can write (
b′

a′

)′
= 0 ,

and deduce that b = ra+ s for some constants r, s ∈ F . By Equation (6), we have

x3
n = un

= a+ nb+ (ν + n)3

= a+ n(ra+ s) + (ν + n)3

= (1 + nr)a+ ns+ (ν + n)3
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for each n, hence, recalling the definition of a,

x3
n = (1 + nr)x3

0 + ns+ (ν + n)3 − (1 + nr)ν3 .

Thus, for each n such that xn is non-constant (hence for at least 90 distinct values of
n), the curve

Y 3 = (1 + nr)X3 + ns+ (ν + n)3 − (1 + nr)ν3

is a curve over F that admits the parametrization (X, Y ) = (x0, xn) by non-constant
rational functions, hence is a curve of genus 0. According to Proposition 2.11 this
implies that (1 + nr)[ns + (ν + n)3 − (1 + nr)ν3] = 0, which can not happen for more
than four values of n. This gives us a contradiction.

Now we prove that ν and a can not be both constant. Recall that

x3
1 = a+ b+ (ν + 1)3 ,

hence
b = x3

1 − a− (ν + 1)3 .

Therefore, for each n, we have

x3
n = a+ n[x3

1 − a− (ν + 1)3] + (ν + n)3

= nx3
1 + (1− n)a− n(ν + 1)3 + (ν + n)3 .

If both ν and a are constant then the curve

Y 3 = nX3 + (1− n)a− n(ν + 1)3 + (ν + n)3

is a curve over F that admits the parametrization (X, Y ) = (x1, xn) by non-constant
rational functions, hence is a curve of genus 0. Similarly to the previous paragraph we
conclude that this can not happen for more than four values of n. 3

Lemma 2.13 In Case 2 of Lemma 2.10 there are two mutually exclusive subcases :
Case 2.1 : For all n we have x3

n = (ν + n)3 (that is, the trivial solution); or
Case 2.2 : q′ = 0.

Proof : According to Case 2, we assume that B 6= 0 and ν ′ 6= 0. Observe that if (xn) is
the trivial solution then a = b = 0 and q = ν, hence q′ = ν ′ 6= 0.

Suppose q′ is not zero. By differentiating Equation (8), we get

a′ + b′q + bq′ + 3(ν ′ + q′)(ν + q)2 = 0,

and subtracting (9), we obtain

bq′ + 3q′(ν + q)2 = 0.

We have
b = −3(ν + q)2 . (15)
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Recall that

q =

(
a′

ν′

)′
+ 6νν ′

−
(
b′

ν′

)′ − 6ν ′
.

We write α = a′

ν′ and β = b′

ν′ . We obtain

q = −α
′ + 6νν ′

β′ + 6ν ′

hence
−α′ = q(β′ + 6ν ′) + 6νν ′ . (16)

On the other hand, dividing by ν ′ in Equation (9) we obtain

α + βq + 3(ν + q)2 = 0

which, by differentiating, gives

−α′ = β′q + βq′ + 6(ν ′ + q′)(ν + q)

hence
−α′ = β′q + βq′ + 6(ν ′ν + ν ′q + q′ν + q′q) .

Substituting the expression for α′ from Equation (16) we obtain

q(β′ + 6ν ′) + 6νν ′ = β′q + βq′ + 6(ν ′ν + ν ′q + q′ν + q′q)

hence, simplifying the qβ′, νν ′, and qν ′,

0 = βq′ + 6(q′ν + q′q)

hence
β = −6(ν + q)

hence
b′ = −6ν ′(ν + q) .

From Equation (15) we obtain

b′ = −6(ν ′ + q′)(ν + q)

hence ν + q = 0. Therefore, Equation (15) implies b = 0, and Equation (8) implies
a = 0. By Equation (6), we get

un = (ν + n)3 .

This proves the Lemma. 3

Lemma 2.14 Case 2.2 of the previous lemma is impossible, that is, q′ 6= 0.

13



Proof : By Equations (6) and (8) we have

un = (n− q)b+ (ν + n)3 − (ν + q)3 ,

therefore
un = (n− q)b+ 3ν2(n− q) + 3ν(n2 − q2) + n3 − q3 ,

so, for all n distinct from q,

un
n− q

= b+ 3ν2 + 3ν(n+ q) + n2 + qn+ q2

hence
un
n− q

= b+ 3ν2 + 3qν + q2 + n(3ν + q) + n2 .

If we write

wn = y3
n =

un
n− q

, α = b+ 3ν2 + 3qν + q2 and β = 3ν + q ,

then we have
wn = α + βn+ n2 , (17)

and, taking derivatives of both sides :

w′n = α′ + β′n . (18)

Multipying the sides of Equation (17) by β′2 and then substituting β′n by the value
resulting from Equation (18) we get

β′2wn = β′2α + β′β(w′n − α′) + (w′n − α′)2

hence
β′2wn − β′βw′n − w′2n + 2α′w′n = β′2α− β′βα′ + α′2 . (19)

We intend to apply Lemma 2.8.
For the sake of contradiction, in the rest of the proof we assume that q is constant.

So, each yn is a polynomial of the same degree as xn, and by Corollary 2.6, any four
distinct yn are coprime. Also, we have deg(α) ≤ 2e, deg(β) ≤ e and deg(wn) ≤ e.
Hence, the degree of the left-hand side of Equation (19) has degree ≤ 3e− 2 = 9d− 2.
Observe that wn is a cube and is divisible by x3

n. Hence the left-hand side of (19) is
divisible by xn. So we can apply Lemma 2.8 and conclude that

β′2α− β′βα′ + α′2 = 0 . (20)

Recall that we have ν ′ 6= 0, so β′ 6= 0. So Equation (20) can be written as(
α′

β′

)2

− βα
′

β′
+ α = 0 .

14



Therefore, for some γ ∈ F (t), we have

β2 − 4α = γ2 (21)

and
α′

β′
=

1

2
(β + εγ) (22)

for some ε ∈ {−1, 1}.
Substituting the value of α from Equation (21) into Equation (22) we obtain

γ(β′ + εγ′) = 0 . (23)

So we have two cases, according to whether β′ = −εγ′ or γ = 0.

Case 2.2.1 : We assume β′ = −εγ′. From Equation (22) we obtain

α′ = cβ′

for some c ∈ F . Substituting α′

β′ by c in (20) we obtain

α = cβ − c2 .

Therefore, by (17),
y3
n = (n+ c)β + n2 − c2 .

So, for any indices m and n, we have

y3
my

3
n = [(m+ c)β +m2 − c2][(n+ c)β + n2 − c2] ,

hence
λ3
m,ny

3
my

3
n = β2 + µm,nβ + ξm,n (24)

where

λ3
m,n =

1

(m+ c)(n+ c)

µm,n =
(m+ c)(n2 − c2) + (n+ c)(m2 + c2)

(m+ c)(n+ c)

and

ξm,n =
(m2 − c2)(n2 − c2)

(m+ c)(n+ c)

provided that (m + c)(n + c) 6= 0. It is obvious that we can choose m,n ≤ M − 1 so
that (m+ c)(n+ c)(µ2

m,n − 4ξm,n) 6= 0. So, by Proposition 2.11, the curve

Y 3 = X2 + µm,nX + ξm,n (25)
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is of genus 1. But by Equation (24) the latter is a curve over F that admits the
parametrization (X, Y ) = (β, λm,nymyn) by non-constant rational functions (recall that
β 6∈ F ), hence is a curve of genus 0, a contradiction that proves that Case 2.2.1 is
impossible.

Case 2.2.2 : We assume that γ = 0. From Equation (21) we obtain

4α = β2

and Equation (17) becomes
4y3

n = (β + 2n)2

hence yn is a square, yn = z2
n for some zn ∈ F [t]. So we have

2z3
n = ε(β + 2n)

where ε = ±1. Hence, for each m and n distinct from q, `1 and `2, the curve

4X3 = Y 2 + 2(m+ n)Y + 4mn

admits the parametrization (X, Y ) = (zmzn, β) by non-constant rational functions,
hence is of genus 0. By Proposition 2.11, we have 4(m + n)2 = 16m2n2. As long as m
has been chosen, this can happen for at most two choices of n. So we get a contradiction
and conclude that Case 2.2.2 is impossible. 3

Proof of Theorem 1.2: By Lemmas 2.10, 2.12, 2.13 and 2.14, the only possible
case is Case 2.1 (Lemma 2.13), that is, x3

n = (ν + n)3 for each n. �

Proof of Theorem 1.3: Statement (1). By Theorem 1.2, the formula

φ(x, z, w) : ∃y0 . . . ∃y91 [x = y0 ∧ z = y1 ∧ w = y2 ∧
91∧
n=0

P3(yn)

∧
88∧
n=0

yn+3 − 3yn+2 + 3yn+1 − yn = 6]

is equivalent over F [t] to :

‘Either x, z, w are constant polynomials
or

x = ν3 and z = (ν + 1)3 and w = (ν + 2)3 for some ν ∈ F [z].’

Therefore, the formula

ψ(ν, u) : ∃x, z, w (ψ(x, z, w) ∧ 6ν + 6 = (w − z)− (z − x) ∧ z − x = 3u+ 3ν + 1)

is equivalent over F [t] to :
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‘Either ν, u ∈ F or u = ν2.

Note that both φ and ψ are formulas in the intersection of the languages L3,t and L3,T .

Let us prove that the formula

ψ1(ν, u) : ∃g∃h ψ(ν, u) ∧ ψ(ν + t, g) ∧ ψ(ν − t, h) ∧ g + h = 2u+ 2t2

is satisfied in F [t] if and only if

u = ν2 .

One the one hand, if u = ν2 then we can choose g = (ν + t)2 and h = (ν − t)2. On
the other hand, if ψ1(ν, u) is satisfied in F [t], then either u = ν2 and we are done, or
u, ν ∈ F , in which case ν + t, ν − t /∈ F , hence g = (ν + t)2 and h = (ν − t)2, hence
2u+ 2t2 = g + h = 2ν2 + 2t2 implies u = ν2.

Observe that ψ1 is equivalent to a positive-existential L3,t-formula. Similarly, the
formula

ψ2(ν, u) : ∃f∃g∃h∃z T (f)∧ψ(f, z)∧ψ(ν, u)∧ψ(ν+f, g)∧ψ(ν−f, h)∧g+h = 2u+2z

is equivalent to

u = ν2 .

Observe that ψ2 is equivalent to a positive-existential L3,T -formula.

Therefore squaring over F [t] is positive-existentially definable in each of the lan-
guages L3,t and L3,T , hence so is multiplication (for details see L. Lipshitz [7]).

Statements (2) and (3) follow from (1) and the fact that the positive-existential
theory of F [t] in the language {0, 1,+, ·, T} (resp. {0, 1,+, ·, t}) is undecidable (see the
first author and K. Zahidi [12], and J. Denef [4]). �

Proof of Corollary 1.4: Any positive-existential L3,T -sentence is equivalent to
a disjunction of sentences each of which claims the solvability of a system of linear
equations with integer coefficients, together with conditions stating that certain of the
variables are cubes plus conditions which state that certain linear polynomials of the
variables are non-constant ( 6∈ F ). Now observe that for any x we have

6x+ 6 = (x+ 2)3 − 2(x+ 1)3 + x3 .

Hence we can substitute each variable x, which is not assumed to be necessarily a cube,
by the expression 1

6
z3
1 − 1

3
z3
2 + 1

6
z3
3 − 1

6
, where the zj are new variables. Hence any

positive-existential L3,T -sentence is equivalent to a disjunction of sentences of form as
in the Corollary. Consequently, if the satisfiability problem for such sentences were
decidable, so would be the decidability problem for positive-existential sentences of
L3,T , which would contradict Theorem 1.3. �
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