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Abstract. We generalize a question of Büchi : Let R be an integral
domain, C a subring and k ≥ 2 an integer. Is there an algorithm to decide
the solvability in R of any given system of polynomial equations, each of
which is linear in the k−th powers of the unknowns, with coefficients in C?

We state a number-theoretical problem, depending on k, a positive an-
swer to which would imply a negative answer to the question for R = C = Z.

We reduce a negative answer for k = 2 and for R = F (t), a field of
rational functions of zero characteristic, to the undecidability of the ring
theory of F (t).

We address the similar question, where we allow, along with the equa-
tions, also conditions of the form ‘x is a constant’ and ‘x takes the value 0
at t = 0’, for k = 3 and for function fields R = F (t) of zero characteristic,
with C = Z[t]. We prove that a negative answer to this question would
follow from a negative answer for a ring between Z and the extension of Z
by a primitive cube root of 1.
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1 Introduction

Given any k = 2, 3, . . . , we will call Büchi’s question for k (for short Bq(k))
the following

Question 1.1 (Bq(k)) Does there exist an algorithm to determine, given
m,n ∈ N, A = (ai,j)i,j ∈ Mm,n(Z) and B = (bi) ∈ Mm,1(Z), whether there
exist x1, ..., xn ∈ Z satisfying the equations

n∑
j=1

ai,jx
k
j = bi, i = 1, . . . ,m?

(where Mm,r(Z) is the set of n× r matrices with entries in Z)

J. Richard Büchi asked the question for k = 2 and this was made public
by L. Lipshitz in [9]. The problem was investigated by Joseph Lipman and
Barry Mazur (cf. [11]). Paul Vojta in [19] proved that a conjecture of Serge
Lang implies a negative answer to it (we discuss this in Section 2).

It is obvious that, for any k, a negative answer to Bq(k) would be a
strong form of a negative answer to Hilbert’s Tenth Problem (cf. [10] and
[1]). In this paper,:

• We show that for each odd k ≥ 3 a negative answer to Bq(k) would
follow from a positive answer to a number theoretical problem (Prob-
lem 2.2) - the similar problem for k = 2 was asked by Büchi. This is
Theorem 2.4.

• We generalize Question Bq(k) to any commutative ring R and for any
subring C of allowed coefficients of equations (in this Section, below).

• We show, using results of Vojta, that for k = 2 the generalized prob-
lem for R = F (t), a field of rational functions in the variable t with
coefficients in a field F of zero characteristic, and for C = Z[t] has a
negative answer if the existential ring-theory of F (t) in the language
of rings augmented by t is undecidable. These results are stated in
Theorem 1.4 and Corollary 1.5 and their proofs are given in Section
3.

• We show that a question similar to 1.1 for k = 3, for fields of rational
functions of zero characteristic, will have a negative answer if Bq(3)
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has a negative answer. The results are stated in Theorem 1.6. and
Corollary 1.7 and proved in Sections 4 and 5.

We generalize Bq(k) to arbitrary integral domains as follows : Assume
that R is a commutative ring with a multiplicative identity, C is a finitely
generated subring of R, k ∈ Z and k ≥ 2.

Question 1.2 (Bq(k,R, C)) Does there exist an algorithm to determine,
given m,n ∈ N, A = (ai,j)i,j ∈Mm,n(C), B = (bi) ∈Mm,1(C) and a subset
J ⊂ {1, . . . , n}, whether there exist x1, . . . , xn ∈ R satisfying the equations

n∑
j=1

ai,jxj = bi, i = 1, . . . ,m

and subject to the conditions: for j ∈ J , xj ∈ {yk : y ∈ R}? (Mm,r(C) is
the set of n× r matrices with entries in C)

If R = Z, it is trivial to see, using linear elimination, that Bq(k, Z, Z) is
equivalent to Bq(k).

We state Question 1.2 in the terminology of Logic. For each k ∈ N we
let Lk,C denote the language which consists of the following symbols: (a)
symbols for the elements of the ring C, (b) the symbol + for addition, (c)
the predicate-symbol Pk for the relation ‘x is a k-th power’, so Pk(x) ↔ ∃y ∈
R[x = yk], (d) for each c ∈ C, a symbol for the function of multiplication
by c : x → cx. We adopt the convention that we will interpret always these
symbols in the stated way. Obviously, a positive-quantifier-free formula of
Lk,C is a disjunction of systems of linear equations of the type occurring
in Question 1.2, together with conditions of the form Pk(xi). A positive-
existential formula of Lk,C is a formula of the form ∃yφ(x, y) where φ is
a positive-quantifier-free formula of Lk,C (x and y are tuples of variables
ranging in R). A subset of a power of R that can be defined by a positive-
existential formula is said to be positive-existentially definable. Since the
quantifier ∃ distributes over ∨ (the conjunction or) it is easy to see that
finite unions and finite intersections of positive-existential sets are positive-
existential. The positive-existential theory of R in the language Lk,R is the
set of all positive-existential formulas of Lk,C which are true over R. It is
trivial to see that Question 1.2 is equivalent to the following

Question 1.2(b) : Is the positive-existential theory of R in the language
Lk,C decidable?
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We will deal with the case in which R = F (t) is a field of rational
functions in the variable t, with coefficients in the field F . We will assume
throughout that F has characteristic zero, so that Z can be thought to be
a subring of F . Then Question 1.2 for R = F (t) and for C = Z[t] becomes

Question 1.3 Is the positive existential theory of F (t) in the language
Lk,Z[t] decidable?

In Section 3 we will show that for k = 2 a negative answer to Question
1.3 follows from [19] for all fields F such that the positive-existential ring-
theory of F (t), in the language of rings augmented by a symbol for t, is
undecidable. Such is the case, for example for F = R, the field of reals
(see [3]), so Bq(2, R(t), Z[t]) has a negative answer. We remark that it is
unknown whether the ring-theory of C(t) is undecidable (C is the field of
complex numbers). More accurately, we prove :

Theorem 1.4 Let F be a field of zero characteristic and let t be a vari-
able. Then multiplication in F (t) is positive-existentially definable in L2,Z[t].
Consequently, if the existential ring theory of F (t) in the language of rings
augmented by a symbol for t is undecidable, then the positive-existential
L2,Z[t]-theory of F (t) is undecidable.

By [3] we obtain :

Corollary 1.5 (a) Assume that F is a real-closed field. Then the subset
Z of F (t) is positive-existentially definable in the language L2,Z[t] and the
positive-existential theory of F (t) in the language L2,Z[t] is undecidable.

(b) Assume that F is a real field. Then the positive-existential theory of
F (t) in the language L2,Z[t] is undecidable.

We think it likely that our proof of Theorem 1.4 can be adjusted to any
function field of an elliptic curve over F in the place of F (t).

For k ≥ 3 essentially nothing is known on Bq(k, R, C). Our guess is
that in some cases, at least, if the positive-existential ring-theory of R with
constants from C is undecidable then the positive-existential Lk,C-theory of
R is undecidable. Our next result is in this direction. In Section 5 we will
answer a question similar to Question 1.3, for k = 3, allowing additional
conditions such as ‘x ∈ F ’ and ‘x(0) = 0’, in the case that R is a field of
rational functions F (t) in the variable t, with coefficients in the field F , and
for C = Z[t].
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We introduce the necessary terminology. Let Lk,Z[t],Con,ord be the aug-
mentation of Lk,Z[t] by the predicate ‘Con’ which is interpreted as

Con(x) ↔ x ∈ F

and by the predicate ‘ord’ which is interpreted as

ord(x) ↔ x(0) = 0

(the value of the rational function x at t = 0 is 0). The languages Lk,Z[t],Con

and Lk,Z[t],ord are the restrictions of Lk,Z[t],Con,ord by deleting the obvious
predicate symbols.

We prove :

Theorem 1.6 Let F be a field of zero characteristic, let t be a variable and
let ξ be a primitive cube root of 1 in an extension of F . Then

(a) The subset Z[ξ] ∩ F of F (t) is positive-existentially definable in the
language L3,Z[t],Con,ord. Consequently if Bq(3,Z[ξ] ∩ F, Z) has a negative
answer (for example, if Z[ξ] ∩ F = Z and Bq(3) has a negative answer)
then the positive-existential theory of F (t) in the language L3,Z[t],Con,ord is
undecidable.

(b) Assume that for some a, b ∈ Z, with ab 6= 0, F has a subset D such
that for all n ∈ Z[ξ] ∩ F there is a d ∈ D such that an3 + bd3 = 1. Then
the subset Z[ξ]∩F of F (t) is positive-existentially definable in the language
L3,Z[t],ord. Hence if Bq(3, Z[ξ]∩F, Z) has a negative answer then the positive-
existential theory of F (t) in the language L3,Z[t],ord is undecidable.

The next Corollary provides some examples where the hypothesis of (b)
of the Theorem holds.

Corollary 1.7 (a) Assume that F is a field containing the set of algebraic
numbers (over Q). Then the subset Z[ξ] of F (t) is positive-existentially
definable in the language L3,Z[t],ord. Hence if Bq(3, Z[ξ], Z) has a negative
answer then the positive-existential theory of F (t) in the language L3,Z[t],ord

is undecidable.
(b) Assume that F is a real-closed field. Then the subset Z of F (t) is

positive-existentially definable in the language L3,Z[t],ord. Hence if Bq(3) has
a negative answer then the positive-existential theory of F (t) in the language
L3,Z[t],ord is undecidable.

In particular, if Bq(3) has a negative answer then the positive-existential
theories of Q(t) and R(t) in the language L3,Z[t],ord are undecidable.
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Both statements are easy consequences of Theorem 1.6: The proof of (a) is
obvious; The proof of (b) follows from Theorem 1.6(b) by taking a = 1 = −b.

We present an outline of the proof of Theorem 1.6 in Section 4 and the
complete proof in Section 5.

It is obvious that Bq(k,R, C) is a sub-problem of the decidability prob-
lem for the positive-existential theory of R with constant symbols for the
elements of C (sometimes called “diophantine problem for (R,C)”). Let Lt

be the language of rings, augmented by the constant-symbol t. Undecid-
ability is known for the positive-existential theories in Lt of fields of rational
functions F (t) in the cases that F is a real field or a finite field (see [3], [12]
and [18]). Open is the problem of the existence of an algebraically closed
field F for which the diophantine problem for (F (t), Z[t]) is undecidable.
But it is known that the positive-existential theory of any field F (t) in the
extension of Lt by a predicate for the elements of F and a predicate for
‘ord(x)’ is undecidable (cf. [22]). The question whether these predicates are
positive-existentially definable in Lt is open, but in special cases such as for
F equal to the field of real numbers and for F equal to a finite field. This
is the motivation behind our choice to extend the languages Lk,Z[t] by the
predicates Con and ord.

For more undecidability results and questions in this direction the reader
may consult [6], [15], [21] and the surveys in [13] and [16].

We remark that the method of proof of Theorem 1.6 does not give a
positive-existential definition of multiplication in L3,Z[t],Con,ord. Also the
method does not generalize to values of k greater than 3.

In Section 2 we present a number theoretical problem, Problem 2.2
which, if answered positively, will imply a negative answer to Bq(k). It
is a generalization of the “n squares problem” (or Büchi’s problem) of [9],
[11] and [19]. Our motivation for presenting it is that if one thinks that it is
plausible, then one will consider the undecidability statement of Theorem
1.6 at least as likely.

Throughout N is the set of natural numbers {1, 2, . . . } and Z the set of
rational integers.

2 The “n k−th powers problem”

Definition 2.1 Let y = (yi)i=0,...,n−1 be a sequence of complex numbers.
We call the difference sequence of y the sequence ∆(y) = (∆(y)(i))i=0,...,n−2
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defined by ∆(y)(i) = yi+1 − yi. The `-th difference of y, denoted

∆(`)(y) = (∆(`)(y)(i))i=0,...,n−`−1

is defined recursively by ∆(1)(y) = ∆(y) and ∆(`+1)(y) = ∆(∆(`)(y)).

Let k ∈ Z, k ≥ 2. Let R be any integral domain of characteristic zero.
It is easy to see that for any x ∈ R, the `-th difference

∆(`)((x + i)k
i=0,...,n−1)

for ` ≤ k, is a sequence of the form

(p`,k(x), p`,k(x + 1), . . . , p`,k(x + n− `− 1)

where p`,k(x) is a polynomial in x, of degree k − `, with integer coefficients
which depend on k and `. Observe that pk,k(x) = k!.

We formulate the ‘n k−th powers problem’ (or ‘Büchi’s problem
for k’).

Problem 2.2 Let k be a rational integer with k ≥ 2.
(i) Is there a natural number n ≥ k such that any sequence of natural

numbers (xi)i=0,...,n−1 which satisfies

(2.2.1) ∆(k)((xk
i )i=0,...,n−1) = (k!)

(the sequence with n − k terms, each equal to k!) is necessarily a sequence
of successive numbers (that is, either for each i, xi = x0 + i or, for each i,
xi = x0 − i)?

(ii) Is there a natural number n ≥ k such that any sequence of ra-
tional numbers (xi)i=0,...,n−1 which satisfies (2.2.1) is such that for each
i = 0, . . . , n − 1, ±xi+1 = ±xi + 1? (the ± do not have to correspond).
Moreover, if k is odd, is it true that, additionally, xi+1 = xi + 1?

It is obvious that a positive answer to (ii) of Problem 2.2 implies a
positive answer to (i).

For k = 2, (2.2.1) gives a system of n− 2 equations of the form

x2
i+2 − 2x2

i+1 + x2
i = 2
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and for k = 3 it gives n− 3 equations of the form

x3
i+3 − 3x3

i+2 + 3x3
i+1 − x3

i = 6 .

It is obvious from the above observations that if xi+1 = xi + 1 then relation
(2.2.1) holds. In fact for k = 2 more is known.

Lang’s Conjecture [8, Conjecture 5.8] Let X be a smooth projective al-
gebraic variety of general type, defined over a number field M . Then there
exists a proper Zariski-closed subset Z of X such that for all number fields
K containing M , X(K)− Z(K) is finite.

Define Xn to be the projective subvariety of Pn cut out by the homog-
enizations of equations (2.2.1) for k = 2 (see the first set of equations in
Section 3). Vojta proved :

Theorem 2.3 [19, Theorem 0.5] If Lang’s Conjecture holds for some Xn(Q)
then the n 2−nd powers problem has a positive answer.

In fact the proof of Vojta shows that, assuming Lang’s Conjecture, equa-
tion (2.2.1) for k = 2 has only the solutions ±xi+1 +1 = ±xi over Q. At this
point we have no further evidence in favor of a positive answer to Problem
2.2. In [9] it is shown that a positive answer to the n 2−nd powers prob-
lem implies a negative answer to Bq(2). We present a similar argument for
k−th powers, for k odd.

Theorem 2.4 Let k ≥ 3 be an odd rational integer. If Problem 2.2(ii) has
a positive answer then the positive existential theory of Z in the language
Lk,Z is undecidable, thus Bq(k) has a negative answer.

Proof : Linear elimination proves the equivalence of the decidability of the
positive-existential theory of Z in the language Lk,Z and Bq(k) (the details
are left to the reader).

Assume that n is such that Problem 2.2(ii) (both statements) has a
positive answer for n. We will represent arbitrary integers as certain linear
combinations of k-th powers and we will interpret multiplication among
two integers in terms of the corresponding representations in a way that
is positive-existential in the language Lk,Z. Thus, if the positive-existential
theory of Z in Lk,Z were decidable, then the ring-theory of Z would be
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decidable, which would contradict the negative answer to Hilbert’s tenth
problem given in [10].

The formula

φ(y0, . . . , yn−1) ≡ [∆(k)((yi)i=0,...,n−1) = (k!)]
∧

i=0,...,n

‘yi is a k-th power’

is a formula of the language Lk,Z. Having assumed a positive answer to
Problem 2.2(ii) we obtain that φ(y0, . . . , yn−1) implies that, setting yi = xk

i ,
we have

xi+1 = xi + 1 .

Then, obviously, writing x = x0, we have

yi+1 − yi = p1,k(x + i) .

It is easy to see that

{Xk, (X + 1)k, . . . , (X + k)k}

is a basis of the vector space of polynomials in the variable X of degree at
most k over Q. Hence both X and X2 can be written as Q-linear combina-
tions of elements of this basis, say

X =
∑

i

ci(X + i)k and X2 =
∑

i

di(X + i)k

for some fixed rational numbers (depending on k) ci and di. Write

h1(Y0, . . . , Yk) =
∑

i

ciYi and h2(Y0, . . . , Yk) =
∑

i

diYi .

We interpret arbitrary elements x of Z as the quantities x = h1(y0, . . . , yk)
for which

∃yk+1, . . . , yn−1φ(y0, . . . , yk, . . . , yn)

is true. Then we have
x2 = h2(y0, . . . , yk)

hence we obtain a representation of the graph of the squaring function in Lk,Z
(in the end we will need to clear denominators of terms of the equations so
that only integers appear as coefficients). Finally we interpret multiplication
using the equivalence

c = ab ↔ (a + b)2 = a2 + b2 + 2c .

3
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Remark 2.5 If the n k−th powers problem has a positive answer over
Q then one obtains a result similar to that of Theorem 2.4 for Q. But
undecidability does not follow from current knowledge : the analogue of
Hilbert’s tenth problem for Q is an open problem (cf. [13]).

Remark 2.6 It seems plausible that the ‘n k−th powers problem’ may
have a positive answer over any ring of integers of a number field, or in any
number field. Certainly it has a negative answer in any extension of the
ring of real algebraic integers. We can not predict a characterization of the
extensions of Z where it holds.

3 Systems of Squares

We consider Question 1.3 for k = 2 (that is, Bq(2, F (t), Z[t]) of the Intro-
duction) where F is a field of characteristic zero. In what follows Xn is the
projective subvariety of the projective n-space Pn, over C, cut out by the
equations (in projective coordinates (x, x1, . . . , xn))

x2
i + x2

i−2 = 2x2
i−1 + 2x2, i = 3, . . . n

In [19] P. Vojta observed that

Theorem 3.1 For n ≥ 6 the variety Xn is a surface of general type.

Then he showed

Theorem 3.2 ([19], Theorem 3.1) For n ≥ 8, the only curves on Xn of
geometric genus 0 or 1 are the ‘trivial’ lines

±xi = ±x1 − (i− 1)x, i = 2, . . . , n .

This has as an immediate consequence the following :

Corollary 3.3 Let n ≥ 8. Assume that F is a field of zero characteristic
and that y1, . . . , yn ∈ F (t) are not all constant (i.e. in F ) and satisfy

y2
i + y2

i−2 = 2y2
i−1 + 2

for i = 3, . . . , n. Then for some ε = ±1 and for all i = 2, . . . , n we have

±yi = εy1 − (i− 1) .
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Proof : Assume that yi are as in the hypothesis. The yi involve finitely
many coefficients. Embed the subring of F generated by those coefficients
into the field of complex numbers and observe that the hypothesis of the
Corollary remains true with F replaced by C. So, without loss of generality,
we assume that F = C. Write yi = ai

b
with ai, b ∈ F [t] such that the greatest

common divisor of the elements of the set (b, a1, . . . , an) is the unit ideal.
Homogenize simultaneously all the ai and b, that is, substitute t by t1

t0
, and

find homogeneous polynomials B(t0, t1), A1(t0, t1), . . . , An(t0, t1) of the form

B(t0, t1) = tr0b

(
t1
t0

)
and Ai(t0, t1) = tri

0 ai

(
t1
t0

)
so that the only common zero of all B and Ai is (t0, t1) = (0, 0). Then the
correspondence

(t0, t1) → (B(t0, t1), A1(t0, t1), . . . , An(t0, t1))

is a map from the projective line P(C) into Xn. By Hurwitz’s formula (cf.
[5]) the image of that map is a projective curve of geometric genus 0, or, in
different words,

(x, x1, . . . , xn) = (B(t0, t1), A1(t0, t1), . . . , An(t0, t1))

is a parametrization of a curve on Xn of geometric genus 0. Hence, by
Theorem 3.2, we have

±xi = ±x1 − (i− 1)x .

The latter relation implies that for each i = 2, . . . , n we have

±yi = ±y1 − (i− 1) .

Finally, we show that the ± correspond in the way stated in the conclu-
sion : Set ±y2 = εy1 − 1 for some ε = ±1 and assume that for some k ≥ 2
we have ±yi = εy1 − (i− 1) for i = 2, . . . , k but ±yk+1 = −εy1 − k. Then

y2
k+1 + y2

k−1 − 2y2
k = 2ε(k + 1)y1 + 2 .

On the other hand, by hypothesis, (yk−1, yk, yk+1) satisfies

y2
k+1 + y2

k−1 − 2y2
k = 2 .
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Equating the right hand sides of the last two equalities we obtain

ε(k + 1)y1 = 0 .

Then all yi are in F , which contradicts the hypothesis. The conclusion fol-
lows. 3

Note : Corollary 3.3 follows also from Theorem 0.6 of [19] which states :

Let n ≥ 8 be an integer, and let f : C → Xn be a non-constant holomorphic
map. Then the image of f lies in one of the ‘trivial lines’.

The proof of this Theorem is by results of Vojta in Nevanlinna Theory while
the proof of Theorem 3.2 is based on algebro-geometric tools.

The proof of Corollary 3.3 is the following (the authors thank Paul Vo-
jta for pointing this out) : As in the above proof, assume without loss of
generality that F = C. Then the array (y1, . . . , yn) of rational functions
induces a meromorphic map from C to Xn, which extends to a holomorphic
map from C to Xn, by the valuative criterion of properness (for the termi-
nology and the necessary facts see [20]). Then the latter Theorem implies
the conclusion.

Proof of Theorem 1.4. Let φ(z, w) denote the formula

∃w1, . . . , w8 ∈ F (t) [w = w1 ∧ 2z = w2 − w1 − 1∧
i=3,...,8

wi + wi−2 = 2wi−1 + 2
∧

i=1,...,8

P2(wi)] .

Assume that w = z2. Then it is trivial to see that φ(z, w) holds true by
taking wi+1 = (z + i)2 for i = 2, . . . , 7. Now assume that φ(z, w) is true.
We claim that then either w = z2 or w ∈ F . Assume that w /∈ F . Let wi

satisfy the quantifier-free part of φ. Set wi = y2
i for some yi ∈ F (t) (since φ

is true such yi exist). Then y1 6∈ F and by Corollary 3.3, for some ε = ±1
and for all i = 2, . . . , n we have

±yi = εy1 − (i− 1) .

Then w = y2
1 and

2z = (εy1 − 1)2 − y2
1 − 1
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hence z = −εy1 and w = z2.
It is then trivial to see that w = z2 is equivalent to

φ(z, w) ∧ φ(tz, t2w) ∧ φ(z + t, w + 2tz + t2) ∧ φ(t(z + t), t2(w + 2tz + t2)) .

Thus squaring and, consequently, multiplication is definable in L2,Z[t]. �

It follows that for any field F of characteristic zero the positive-existential
L2,Z[t]-theory of F (t) is decidable if and only if the existential ring-theory
(in the language Lt of the Introduction) of F (t) is decidable.

4 The case k = 3 for fields of rational func-

tions: Outline of method

We consider the case k = 3. Let ξ be a primitive cube root of unity. Con-
sider the following equation

(MD1) (1− t3)y3 = 1− x3

over F (t). The crucial fact for the proof of Theorem 1.6 is :

For any solution (x, y) of (MD1), the value of y at t = 1 is in Z[ξ].
This results from the following analysis. Consider the elliptic curve E defined
by the affine equation

X3 + Y 3 = 1

(for the theory of elliptic curves the reader may consult [7] and [17]). It is
well known that E together with any point O on the line at infinity is an
elliptic curve over F . Fix an s such that t3 + s3 = 1. For each x, y ∈ F (t)
which satisfy (MD1) the rational function

(t, s) → (x(t), sy(t))

defines a function from E into itself. By a theorem of Weil, any such function
is the translation (by some point of E , rational over F ) of an endomorphism
of E . We will show that in our situation the set of possible translations is
finite. So, modulo (in the group sense) a finite set, one can associate to each
solution of (MD1) an endomorphism of E . The ring of endomorphisms of E
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is isomorphic to Z[ξ]. It turns out that, depending on the endomorphism
[n], three cases can occur. The function [n](t, s) can be of any the forms
(xn, syn), (sxn, yn) and (1

s
xn,

1
s
yn). Each of these cases gives an equation

which is either (MD1) or one of two similar equations (they are equations
(MD2) and (MD0) of the next Section). Conversely, the rational maps which
are defined by any of those equations form a subset of the group RatF (E) of
rational maps from E to E over F . We will prove that this subset is actually a
subgroup which is isomorphic to the group EndF (E)⊕E3(F ), where EndF (E)
denotes the ring of endomorphisms on E and E3(F ) the group of rational
points of order 3 on E . Finally we will show that any n ∈ Z[ξ] is the value
of a rational function (such as y) associated to some solution of one of the
equations (MDi), at t = 1. Thus we will obtain a definition of F ∩ Z[ξ]
over F (t) which is positive-existential in L3,Z[t],Con,ord and Theorem 1.6 will
follow.

We note that elliptic curves of the form of equations (MDi) have been
studied first by Y. Manin and J. Denef.

5 Systems of Cubes

Throughout this section F is a field of characteristic zero. We consider the
elliptic curve E defined by the projective equation

X3 + Y 3 = Z3,

with the distinguished point being O = [1,−1, 0] on the ‘line at infinity’
Z = 0. Note that there are two other points on the line at infinity, that is
[1,−ξ, 0] and [−ξ, 1, 0], where ξ 6= 1 denotes a cube root of unity. The curve
E has complex multiplication, and its j-invariant is 0 (see [17, chapter III,
exercise 3.3, p. 104]). Therefore it has 6 automorphisms (see [17, Chapter
III, Theorem 10.1, p. 103]). Writing

x =
X

Z
and y =

Y

Z

we obtain the equation
x3 + y3 = 1

which defines the affine part Ea of the elliptic curve E . The six automor-
phisms are given by [1], [ξ], [ξ2] and their negatives, where [ξ] and [ξ2] are
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defined by

[ξ](x, y) = (ξx, ξy) and [ξ2](x, y) = (ξ2x, ξ2y) .

We will now describe the addition law on E . If P = (x0, y0) its negative is
given by

	P = (y0, x0) .

Let Pi = (xi, yi), i = 1, 2, be two points on E . If

(x3, y3) = (x1, y1)⊕ (x2, y2)

then we find, by applying the method described in [17, Chapter III, §2, pp.
55-59] :

y3 =
−3λ2ν

1 + λ3
− x1 − x2

which, if x1x2 6= 0, can be written

y3 =
1− ν3

(1 + λ3)x1x2

where λ and ν are given by, if x1 6= x2,

λ =
y2 − y1

x2 − x1

and ν =
y1x2 − y2x1

x2 − x1

and, if x1 = x2 = x,

λ = −x2

y2
and ν =

1

y2
.

The first coordinate x3 is then given by x3 = λy3 + ν. But by symmetry,
x3 can also be obtained by exchanging x1 with y1, and x2 with y2, in y3. In
particular, we obtain the ‘duplication formula’ for the curve E :

2(x, y) =

(
y

x3 + 1

y3 − x3
, x

y3 + 1

x3 − y3

)
=

(
y

x3 + 1

1− 2x3
, x

x3 − 2

1− 2x3

)
.

In order to compute the order of the points at infinity, it is convenient to
write it also in projective coordinates :

2[T, S, R] = [S(T 3 + R3), T (T 3 − 2R3), R(R3 − 2T 3)].
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We find
2[1,−ξ, 0] = [−ξ, 1, 0] = 	[1,−ξ, 0]

which implies that the points [1,−ξ, 0], as well as [−ξ, 1, 0], are of order 3.
We observe that the point [1, 0, 1] is also of order 3, since

2[1, 0, 1] = [0, 1, 1] = 	[1, 0, 1] .

The image of this point through each of the 6 automorphisms give 6 new
points of order 3. So we found all the 9 points of order 3 on E , remembering
that 3 of them (counting the neutral) are on the line at infinity (see [17,
chapter 3, Corollary 6.4, p. 89]).

More generally, the addition formula is given in projective coordinates
by the following. If

[X1, Y1, Z1]⊕ [X2, Y2, Z2] = [X3, Y3, Z3]

then we can choose :

X3 = Z1Z2(Z2Y1 − Z1Y2) + X1X2(X1Y2 −X2Y1)
Y3 = Z1Z2(Z2X1 − Z1X2) + Y1Y2(X2Y1 −X1Y2)
Z3 = X1X2(X1Z2 −X2Z1) + Y1Y2(Y1Z2 − Y2Z1)

We deduce from this the ‘triplication formula’ (note that by applying the
addition formula to 2(T, S, R)⊕ (T, S, R), all the coordinates X3, Y3 and Z3

have (T +S) as a common factor, and this simplifies much the computation) :

3[T, S, R] = [−T 9 − 3R3T 6 + 6R6T 3 −R9,

T 9 − 6R3T 6 + 3R6T 3 + R9, TSR(3T 6 − 3R3T 3 + 3R6)].

If n = n1 + n2ξ ∈ Z[ξ] and i ∈ {0, 1, 2} we will write n ∼ i, if n1 + n2 is
congruent to i mod 3 (this corresponds to congruence modulo 1− ξ).

Lemma 5.1 (i) Let S, T , R be such that S3 + T 3 = R3. For any n ∈ Z[ξ],
there exist homogeneous polynomials Fn, Gn, Hn in F [T 3, R3] such that :

n[T, S, R] = [Fn, Gn, TSRHn] if n ∼ 0
n[T, S, R] = [TFn, SGn, RHn] if n ∼ 1
n[T, S, R] = [SFn, TGn, RHn] if n ∼ 2.

(ii) For any n ∈ Z[ξ], the three coordinates of n[T, S, R] have the same global
degree dn in the variables T , S, R (not uniquely determined).
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(iii) Let X, Y and Z be elements of F (T,R). Then (X, Y, SZ)⊕(T, S, R) is
of the form (X0, SY0, Z0), (X, SY, Z)⊕(T, S, R) is of the form (SX1, Y1, Z1)
and (SX, Y, Z)⊕ (T, S, R) is of the form (X2, Y2, SZ2), for some functions
Xi, Yi and Zi in F (T,R).
(iv) Write s = S

R
and t = T

R
so that s3 + t3 = 1. For any n ∈ Z[ξ],

there exist homogeneous polynomials Xn, Yn, Zn in F [T, R], and, if n 6= 0,
rational functions xn, yn in F (t) such that :

n[T, S, R] = [Xn, Yn, SZn] if n ∼ 0
n[T, S, R] = [Xn, SYn, Zn] if n ∼ 1
n[T, S, R] = [SXn, Yn, Zn] if n ∼ 2

and, on the affine part of E,

n(t, s) = (1
s
xn,

1
s
yn) if n ∼ 0

n(t, s) = (xn, syn) if n ∼ 1
n(t, s) = (sxn, yn) if n ∼ 2.

(v) We have

xn+a(1) =
yn(1)

a

1

y2
n(1)− axn(1)

for all n ∼ 2.

Proof : We prove (i) by induction in 3 steps. Observe that the assertion is
true for n = 0, 1, 2, 3. Let a = 1 or ξ.

1. First suppose that n ∼ 1. We apply the addition formula to

[TFn, SGn, RHn]⊕ [aT, aS, R]

and find polynomials U, V,W such that

U = S[R3Hn(Gn − aHn) + a2T 3Fn(Fn −Gn)]

V = T [R3Hn(Fn − aHn) + a2S3Gn(Gn − Fn)]

W = R[T 3Fn(aFn − a2Hn) + S3Gn(aGn − a2Hn)].

Choose Fn+a = U
S
, Gn+a = V

T
and Hn+a = W

R
.
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2. Now suppose that n ∼ 2. We apply the addition formula to

[SFn, TGn, RHn]⊕ [aT, aS, R]

and find polynomials

U = T (R3GnHn + a2S3F 2
n)− S(aR3H2

n + a2T 3FnGn)

V = S(R3FnHn + a2T 3G2
n)− T (aR3H2

n + a2S3FnGn)

W = aTSR[S(F 2
n − aGnHn) + T (G2

n − aFnHn)].

In the formula for W , write A = (F 2
n−aGnHn) and B = (G2

n−aFnHn).
So we have W = aTSR[SA + TB]. Note that

(SA + TB)(S2A2 − STAB + T 2B2) = S3A3 + T 3B3.

By multiplying U , V and W by S2A2 − STAB + T 2B2, and writing
the new quantities Xn+1, Yn+1 and Zn+1 respectively, we obtain new
polynomials U1, V1 and W1. The polynomials U1 and V1 can be written
in the form

S3α + S2Tβ + ST 2γ + T 3δ .

It happens that in both cases the polynomials β and γ are 0. The
computation finally gives :

U1 = T 3(R3GnHn + a2S3F 2
n)(G2

n − aFnHn)2

− S3(aR3H2
n + a2T 3FnGn)(F 2

n − aGnHn)2

V1 = S3(R3FnHn + a2T 3G2
n)(F 2

n − aGnHn)2

− T 3(aR3H2
n + a2S3FnGn)(G2

n − aFnHn)2

W1 = aTSR[S3(F 2
n − aGnHn)3 + T 3(G2

n − aFnHn)3].

Choose Fn+a = U1, Gn+a = V1 and Hn+a = W1

TSR
.

3. Suppose finally that n ∼ 0 and apply the addition formula to

[Fn, Gn, TSRHn]⊕ [aT, aS, R].
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We find polynomials

U = T [S(R3GnHn + a2F 2
n)− T (aR3S3H2

n + a2FnGn)]

V = S[T (R3FnHn + a2G2
n)− S(aR3T 3H2

n + a2FnGn)]

W = aR[T (F 2
n − aS3GnHn) + S(G2

n − aT 3FnHn)].

We use the same technique as in the second step to obtain :

U1 = T [S3(R3GnHn + a2F 2
n)(G2

n − aT 3FnHn)2

− T 3(aR3S3H2
n + a2FnGn)(F 2

n − aS3GnHn)2]

V1 = S[T 3(R3FnHn + a2G2
n)(F 2

n − aS3GnHn)2

− S3(aR3T 3H2
n + a2FnGn)(G2

n − aT 3FnHn)2]

W1 = aR[T 3(F 2
n − aS3GnHn)3 + S3(G2

n − aT 3FnHn)3].

Choose Fn+a = U1

T
, Gn+a = V1

S
and Hn+a = W1

R
.

Note that we proved the first part of the lemma for all integers n1+n2ξ ∈ Z[ξ]
such that n1 and n2 are non-negative. It follows obviously for all the other
integers in Z[ξ]. The details are left to the reader.

(ii) and (iii) are immediate consequences of the computations above.

(iv) The first part is a direct consequence of (i). The second part is a
consequence of (ii). The fact that dn is not uniquely determined by n (since
we are in projective coordinates) does not matter : we divide each coordi-
nate of n[T, S, R] by Rdn in order to obtain new coordinates in the variables
t and s. The lemma follows.

(v) Consider the second step of the proof of (i). In U1 and 1
S
W1, replace

T and R by 1, Fn by xn(1), Gn by yn(1) and Hn by 1. Observe that
S3 = R3 − T 3 must be replaced by 0. We get

xn+a(1) =
yn(1)

a

(y2
n(1)− axn(1))2

(y2
n(1)− axn(1))3

=
yn(1)

a

1

y2
n(1)− axn(1)

.

3
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Lemma 5.2 For any [n] ∈ EndF (E), n 6= 0, we have

xn = y−n

Proof : First consider n ∼ 1. Therefore −n ∼ 2. We have

(sx−n, y−n) = [−n](t, s) = 	[n](t, s) = 	(xn, syn) = (syn, xn)

using Lemma 5.1(iv). And we have(
1

s
x−n,

1

s
y−n

)
= [−n](t, s) = 	[n](t, s) = 	

(
1

s
xn,

1

s
yn

)
=

(
1

s
yn,

1

s
xn

)
for n ∼ 0. 3

Let us denote by RatF (E) the group of F -rational maps E → E , by
EndF (E) the ring of endomorphisms of E and by E(F ) the group of F -
rational points of E . Let us write

R0 = {f ∈ RatF (E) | ∃X,Y, Z ∈ F [T, R], f([T, S, R]) = [X, Y, SZ])}
R1 = {f ∈ RatF (E) | ∃X,Y, Z ∈ F [T, R], f([T, S, R]) = [X, SY, Z])}
R2 = {f ∈ RatF (E) | ∃X,Y, Z ∈ F [T, R], f([T, S, R]) = [SX, Y, Z])}.

We will identify [T, S, R] with the identity map in RatF (E). Also we will
use the symbol ⊕ for the addition in RatF (E).

Lemma 5.3 Let i ∈ {0, 1, 2}. Denote by i the congruent class of i mod 3.
We have

Ri ⊕ [T, S, R] = Ri+1

and the union
⋃2

i=0 Ri is a subgroup of RatF (E).

Proof : From Lemma 5.1(iii), we know that Ri ⊕ [T, S, R] ⊂ Ri+1. Actually
this inclusion is an equality of sets :

R0 ⊂ R1 	 [T, S, R] ⊂ R2 	 2[T, S, R] ⊂ R0 	 3[T, S, R] = R0.

The last equality comes from the fact that 3[T, S, R] ∈ R0. So we have

2⋃
i=0

Ri = R0 ∪ (R0 ⊕ [T, S, R]) ∪ (R0 ⊕ 2[T, S, R]).
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Therefore it suffices to prove that R0 is a subgroup of RatF (E). But this is
obvious from the addition formula. 3

We consider the natural morphism of groups, which is an isomorphism
(see [17, Chapter III, §4, p. 75]) :

Ψ: EndF (E)⊕ E(F ) −→ RatF (E).

There are actually two natural ways to define Ψ(P ) if P ∈ E(F ). We can
define it as the translation map by P or as the constant map. We will choose
the second way. Write E3(F ) for the set of points of order 3 of the curve E
(including the neutral). Write

P a
1 = [a, 0, 1] P a

2 = [0, a, 1] and P a
0 = [1,−a, 0]

where a denotes any of the three cube roots of unity. Write

Pi = {P a
i | a = 1, ξ, ξ2} .

With the following lemma one can see how a point on E behaves after adding
a point of order 3.

Lemma 5.4 Let [U, V,W ] be a point on E, and a = 1, ξ or ξ2. We have

[U, V,W ]⊕ [1,−a, 0] = [aU, a2V, W ]
[U, V,W ]⊕ [0, a, 1] = [−aW, U,−a2V ]
[U, V,W ]⊕ [a, 0, 1] = [V,−aW,−a2U ]

Proof : To get the first and the second equations we apply the addition
formula and multiply the 3 coordinates of the results respectively by

U2 − a2UV + aV 2

W 3
,

and
W 2 + a2V W + aV 2

U3
.

In order to find the third equation, observe that [a, 0, 1] is the negative of
[0, a, 1] and use the second equation.

If one does not like using the addition formula, one could observe that
the right hand sides of the equations define morphisms without fixed points,
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therefore translations; the image of the origin by these translations give the
constants on the left hand sides. 3

Write

Ui = {[n]⊕ P a
j | [n] ∈ EndF (E), n + j ∼ i and a = 1, ξ or ξ2}.

Lemma 5.5 We have

Ψ−1(
2⋃

i=0

Ri) = EndF (E)⊕ E3(F ).

More precisely, we have Ψ−1(Ri) = Ui.

Proof : It is clear from Lemma 5.1(i) that we have

Ψ−1(
2⋃

i=0

Ri) ⊇ EndF (E)

and we have

Ψ−1(
2⋃

i=0

Ri) ⊇ E3(F )

observing that the points of order 3 have one of their coordinates which is 0.
We prove the other inclusion. Since

⋃2
i=0 Ri is a group, it suffices to prove

that the only constant points in the image by Ψ−1 of
⋃2

i=0 Ri are points of
order 3. If P = [X, Y, Z] is a point in

E(F ) ∩Ψ−1(
2⋃

i=0

Ri),

Ψ(P ) is just the constant map, and we know it belongs to some Ri. Either
i = 1 which implies that the coordinate Y must be 0 and then P ∈ P1, or
i = 2 which implies that X = 0 and then P ∈ P2, or i = 0 which implies
that Z = 0 and then P ∈ P0. Therefore the point P is one of the nine points
of order 3. The first part of the lemma is proven.

We now prove the second part. From Lemma 5.1(i) we have Ψ({[n] ∈
EndF (E) | n ∼ i}) ⊆ Ri. It is clear from Lemma 5.4 that Ψ(Ui) ⊆ Ri.
This inclusion is actually an equality because the sets Ui form a partition
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of EndF (E)⊕ E3(F ). 3

Let us consider the following equations :

(MD0) x3 + y3 = 1− t3

(MD1) x3 + (1− t3)y3 = 1
(MD2) (1− t3)x3 + y3 = 1

and their analogues in projective coordinates

(pMD0) X3 + Y 3 = (1− t3)Z3

(pMD1) X3 + (1− t3)Y 3 = Z3

(pMD2) (1− t3)X3 + Y 3 = Z3.

Each equation (pMDi) defines an elliptic curve Ei over F (t). The point
[t, 1, 1] is obviously a solution of Equation (pMD1). Observe that each set
Pi is the set of constant points of the curve Ei and that the points P a

i are of
order 3 on E , therefore also on the curves Ei. Denote by Ei(F (t)) the group
of points of Ei which are rational over F (t).

Theorem 5.6 The disjoint union of sets
⋃2

i=0 Ei(F (t)) has a natural struc-
ture of group and we have

Ei(F (t)) = {[Xn, Yn, Zn]⊕ P a
j | n + j ∼ i and a = 1, ξ or ξ2}

for i = 0, 1, 2.

Proof : Consider the map

Φ:
2⋃

i=0

Ei(F (t)) −→
2⋃

i=0

Ri

defined by

[X, Y, Z] 7→


f : [T, S, R] → [X, Y, sZ] if [X, Y, Z] ∈ E0(F (t))

f : [T, S, R] → [X, sY, Z] if [X, Y, Z] ∈ E1(F (t))

f : [T, S, R] → [sX, Y, Z] if [X, Y, Z] ∈ E2(F (t))

where t = T
R

and s = S
R
. This map is obviously a bijection of sets, and

therefore Φ−1 brings the structure of group of
⋃2

i=0 Ri on
⋃2

i=0 Ei(F (t)). The
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second assertion of the theorem is an immediate consequence of Lemma 5.5,
we have

Ei(F (t)) = Φ−1(Ri) = Φ−1 ◦Ψ(Ui)

for i = 0, 1, 2. 3

Consider the elliptic curve E0 defined by its affine equation

y2 = 4x3 − 1.

The curve E0 is isomorphic to E through the following isomorphism

τ : E0 −→ E
[X, Y, Z] 7−→ [Y −

√
3Z,−Y −

√
3Z,−2

√
3X].

Denote by Q the Weierstrass function on E0 (the reader who is not familiar
with basic properties of the Weierstrass functions may look into [17]). Let
(P ,R) denote the affine part of τ([Q,Q′, 1]). We write shortly

(P ,R) = τ(Q,Q′) .

If
n = a + bξ ∈ EndF (E)

we will write
n = a + bξ2

for the conjugate of n. We have

nn = a2 + b2 − ab ∈ Z

and for m, n ∈ EndF (E), the obvious relations

m + n = m + n and mn = m n .

Denote by Id the identity map.

Lemma 5.7 We have
P ′ = −

√
3R2

and for any [n] ∈ EndF (E)

[n](P ,R) = (P ,R) ◦ (nId ).
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Proof : First we compute the derivative of P . We get

P =
Q′ −

√
3

−2
√

3Q
and R =

Q′ +
√

3

2
√

3Q

from (P ,R) = τ(Q,Q′). Hence we have

P ′ =
−2
√

3Q′′Q+ 2
√

3(Q′ −
√

3)Q′

12Q2
= −

√
3

(
Q′′Q−Q′2 +

√
3Q′)

6Q2

)

for the derivative of P . From Q′2 = 4Q3− 1 we get 2Q′′Q′ = 12Q′Q2 hence
Q′′ = 6Q2. On the one hand we replace Q′′ and Q′2 in the expression of P ′

P ′ = −
√

3

(
6Q3 − (4Q3 − 1) +

√
3Q′)

6Q2

)
= −

√
3

(
2Q3 + 1 +

√
3Q′)

6Q2

)

and on the other hand we have

−
√

3R2 = −
√

3

(
Q′ +

√
3

2
√

3Q

)2

= −
√

3

(
Q′2 + 2

√
3Q′ + 3

12Q2

)

hence

−
√

3R2 = −
√

3

(
4Q3 − 1 + 2

√
3Q′ + 3

12Q2

)
= −

√
3

(
2Q3 +

√
3Q′ + 1

6Q2

)

which proves the first assertion of the lemma.
Concerning the second assertion, it is known that for any [n]0 ∈ EndF (E0),

we have
[n]0(Q,Q′) = (Q,Q′) ◦ (nId )

(by construction of the Weierstrass function, see for example [17]). For
a = 1, ξ, or ξ′, write [a]0 the automorphism on E0 defined by

[a]0[X, Y, Z] = [aX, Y, Z]

(note the difference with the case of E). It is easy to see that

[ξ] ◦ τ = τ ◦ [ξ2]0 .
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Therefore, if n = p + qξ, we have

[n] ◦ τ = [p + qξ] ◦ τ := ([p]⊕ [q] ◦ [ξ]) ◦ τ =

[p] ◦ τ ⊕ [q] ◦ (τ ◦ [ξ2]0) =

τ ◦ [p]0 ⊕ τ ◦ [q]0 ◦ [ξ2]0 = τ ◦ [n]0.

Combining the two equalities above, we find

[n](P ,R) = [n] ◦ τ(Q,Q′) = τ ◦ [n]0(Q,Q′) =

τ ◦ (Q,Q′) ◦ (nId ) = (P ,R) ◦ (nId ).

3

Lemma 5.8 If n ∼ 1, then we have

x′n
y2

n

= n

Proof : Since n ∼ 1, we know from Lemma 5.1(iv) and Lemma 5.7 that

(P ,R) ◦ (nId ) = [n](P ,R) = (xn ◦ P ,Ryn ◦ P)

Therefore we have

x′n◦P =
1

P ′ (xn◦P)′ =
1

−
√

3R2
(P◦nId )′ =

1

−
√

3R2
nP ′◦nId = n

R2 ◦ nId

R2
.

Since we have
R2 ◦ nId = R2y2

n ◦ P
we have

x′n ◦ P = ny2
n ◦ P .

The lemma follows because (P ,R), seen as a map C → E , is a global
parametrization of the curve E (by construction of the Weierstrass function,
see [17]). 3

Theorem 5.9 Let n ∈ Z[ξ]. We have

x3
n(1) =


1
n3 if n ∼ 0

1 if n ∼ 1

−n3 if n ∼ 2

y3
n(1) =


− 1

n3 if n ∼ 0

n3 if n ∼ 1

1 if n ∼ 2
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Proof : Because of Lemma 5.2, it suffices to prove it for the yn’s. The
proof is done in two steps. Observe that if x, y ∈ F (t) satisfy the equation
x3 +(1− t3)y3 = 1, then y cannot have a pole at 1 : suppose it had a pole of
order n at 1; then (1− t3)y3 would have a pole at 1 of order 3n− 1, which
would be also the order of x3 at 1, but this is impossible since it is not a
multiple of 3.

Suppose that n ∼ 1. From Lemma 5.1(iv), we know that

x3
n + (1− t3)y3

n = 1 .

This implies that x3
n(1) = 1 = y3

−n(1). We get

3x′nx
2
n − 3t2y3

n + 3(1− t3)y′ny
2
n = 0

by differentiating both sides of Equation (MD1). By Lemma 5.8 we know
that x′n = ny2

n. The equation becomes

nx2
n − t2yn + (1− t3)y′n = 0

after canceling the term 3y2
n. Evaluating at t = 1, we find

yn(1) = nx2
n(1)

and therefore
y3

n(1) = n3x6
n(1) = n3 .

Observe that for n ∼ 2 we have xn(1) = −ny2
n(1).

Suppose now that n ∼ 0 and write n = m + a, where a is equal to 1 or
ξ. Since m ∼ 2 we get

xm+a(1) =
ym(1)

a

1

y2
m(1)− axm(1)

from Lemma 5.1(v). Also we know from the previous step that

xm(1) = −my2
m(1) .

Therefore the equation above becomes

xm+a(1) =
ym(1)

a

1

y2
m(1) + amy2

m(1)
=

1

aym(1)

1

1 + am

=
a

ym(1)

1

a2 + m
=

a

ym(1)

1

a + m
.
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We know from the previous step that ym(1)3 = 1, therefore we have

x3
n(1) = x3

m+a(1) =
1

(a + m)3
=

1

n3 .

We obtain y3
n(1) from Lemma 5.2. 3

For n + i ∼ 1, write (see the definition of P a
i before Lemma 5.4)

(xn⊕P a
i
, syn⊕P a

i
) = [n](t, s)⊕ P a

i .

Corollary 5.10 For any [n] ∈ EndF (E) and i = 0, 1, 2 such that n + i ∼ 1
we have

y3
n⊕P a

i
(1) = n3.

Proof : From Lemma 5.4, we find

yn⊕P a
0

= a2yn yn⊕P a
1

= a2 1

xn

yn⊕P a
2

= −a
xn

yn

.

We conclude with Theorem 5.9. 3

Proof of Theorem 1.6. a) Consider the following formula Ψ0(z), in the
language L3,Z[t],Con,ord :

∃x, y(P3(x) ∧ P3(y) ∧ [1− (t + 1)3]y = 1− x ∧ Con(z) ∧ ord(y − z)).

Apply Corollary 5.10 with t replaced by t+1 to see that Ψ0(z) is equivalent
to ‘z ∈ Z[ξ]∩F and z is a cube’. The second difference of the three successive
cubes q − 1, q and q + 1 is

[(q + 1)3 − q3]− [q3 − (q − 1)3] = 6q.

Then the formula Ψ1(z), given by

∃z1, z2, z3[Ψ0(z1) ∧Ψ0(z2) ∧Ψ0(z3) ∧ z = (z3 − z2)− (z2 − z1)]

defines a set
U = {z ∈ F (t) | Ψ1(z)}

which satisfies
6Z[ξ] ∩ F ⊂ U ⊂ Z[ξ] ∩ F .
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Finally we get a positive-existential definition of Z[ξ] ∩ F by :

z ∈ Z[ξ] ∩ F ⇐⇒
5∨

i=0

∃wΨ1(w) ∧ z = w + i.

b) Assume that for some a, b ∈ Z with ab 6= 0, F has a subset D such
that for all n ∈ Z[ξ] ∩ F , there is a d ∈ D such that

an3 + bd3 = 1 .

Replace each occurrence of Con(z) in the proof of (a) by the formula :

θ(z) : ∃w[P3(z) ∧ P3(w) ∧ az + bw = 1].

Then the proof of (a) still works. This is, first, because the curve

aX3 + bY 3 = 1

is of genus 1 and does not admit a rational parametrization (by Hurwitz’s
formula, see [5]), hence any z satisfying θ(z) must be in F and secondly
because, by assumption, for any n ∈ Z[ξ] ∩ F , θ(n3) holds. �
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