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1. Introduction 

In dealing with numerical problems for which classical methods of solution 
are unfeasible, many people have tried various procedures of searching for an 
answer on a computer. Our efforts in this direction have produced procedures 
which seem to have had (for us and for others who have used them) more suc- 
cess than has been achieved elsewhere, so that we have been encouraged to 
publish this report of our studies. 

We use the phrase "direct search" to describe sequential examination of trial 
solutions involving comparison of each trial solution with the "best" obtained 
up to that time together with a strategy for determining (as a function of earlier 
results) what the next trial solution will be. The phrase implies our preference, 
based on experience, for straightforward search strategies which employ no 
techniques of classical analysis except where there is a demonstrable advantage 
in doing so. 

We have found it worthwhile to study direct search methods for the following 
reasons: 

(a) They have provided solutions to some problems, of importance to us, 
which had been unsuccessfully attacked by classical methods. (Examples are 
given below.) 

(b) They promise to provide faster solutions for some problems that are 
solvable by classical methods. (For example, a method for solving systems of 
linear equations, proposed in Section 5, seems to take an amount of time that 
is proportional only to the first power of the number of equations.) 

(c) They are well adapted to use on electronic computers, since they tend 
to use repeated identical arithmetic operations with a simple logic. Classical 
methods, developed for human use, often stress minimization of arithmetic by 
increased sophistication of logic, a goal which may not be desirable when a 
computer is to be used. 

(d) They provide an approximate solution, improving all the while, at all 
stages of the calculation. This feature can be important when a tentative solu- 
tion is needed before the calculations are completed. 

(e) They require (or permit) different kinds of assumptions about the func- 
tions involved in various problems, and thus suggest new classifications of func- 
tions which may repay study. 

Direct search is described roughly in Section 2, and explained heuristically 
in Section 3. Section 4 describes a kind of strategy. Sections 5 and 6 describe 
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examples in which we have used direct search in curve fitting problems, solving 
integral equations, maximizing or minimizing functions with or without restric- 
tions on the independent variables, and solving systems of equations. 

2. S i m p l e  Descr ipt ion of Direct  Search 

The application of direct search to a problem requires a space of points P 
which represent possible solutions, together with a means of saying that  P1 is a 
"be t te r"  solution than P2 (written Pi c P2) for any two points in the space. 
There is presumably a single point P*,  the solution, with the property P *  c P 

for all P ~ P* .  

In these terms, the basic form of direct search is as follows. A point B0 is 
arbitrarily selected to be the first "base point".  A second point, P1,  is chosen 
and compared with B0. If P~ c P0, Pi becomes the second base point, B1 ; 
if not, B1 is the same as B0. This process continues, each new point being com- 
pared with the current base point. The "s t ra tegy"  for selecting new trial points 
is determined by a set of "s ta tes"  which provide the memory. The number of 
states is fimte. There is an arbitrary initial state So, and a final state which 
stops the search. The other states represent various conditions which arise as a 
function of the results of the trials made. The kind of strategy used is dictated 
by various aspects of the problem, including one's knowledge of the structure 
of the solution space. The strategy itself comprises the choice of Bo and So, the 
rules of transition between states, and the rules for selecting trial points as a 
function of current state and base point. 

Suppose, for example, that  the problem is to minimize a function f ( x l ,  x~ ,  

• ." , xn). A solution point P ,  is a vector (xl , ,  x: , ,  . . .  , xn,), and we say that  
P~ c P~ if and only if 

f ( x l l ,  x2, ,  " '" , x,,) < f ( x l ~ ,  x2~, "'" , x=~). 

The base point Br ,  then, is simply that  point, from among B0, P1,  P2,  • • • , P r ,  
which has produced (apart  from ties) the smallest value of f ( x l ,  x2 ,  • • • , x~).  

The next trial point, P~+~, is determined (relative to B~) by the present state S~. 
I t  is convenient to think of a trial at P~+i as a "move"  or "s tep"  from the 

base point B~. The move is a "success" if P~+~ c B~, and is a "failure" otherwise. 
Roughly speaking, the states make up part  of the logic, influencing moves to be 
proposed in the same general direction (assuming that  direction is meaningful 
in the solution space) as those which have recently succeeded; they suggest new 
directions if recent moves have failed; and, finally, they decide when no further 
progress can be made. The fact that  no further progress can be made does not 
always indicate that  the solution has been found. Thus direct search may fail. 
Since, so far, no useful sufficient conditions for the success of direct search have 
been derived, we recommend the method for the following types of problem: 

(a) problems for which the answers can be tested, once found; 
(b) problems which consist of many separate cases, a few of which can be 

checked by alternative methods. 
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In  addition, if neither situation holds, a partial  check can be obtained by 
using direct search several times, with different (perhaps randomly chosen) 
starting points each time. This makes direct search available for problems on 
which all other methods fail. 

A more precise definition of the basic form of direct search is given in Appendix 
A. Various modifications, of course, may  be desirable in special cases. The pat-  
tern search described in Section 4 and Appendix B is such a modification. 

3. Heuristic Justifications 

In  discussing direct search with others, we have found tha t  certain questions 
are repeatedly asked. I t  seems in order to comment  on such questions at  this 
point. The questions fall natural ly into two groups: 

(h) 
1. Under what conditions does direct search converge to the solution? 
2. Once an approximate solution is found, how good is it? 
3. What is the effect of error, if any, in the functional determinations? 

(B) 
1. What are the advantages, if any, over classical methods, such as polynomial approxi- 

mations ? 
2. How can one justify neglecting information? (For example, referring to the preceding 

section, we often know, not only a way of comparing P, and B~_~, but also a way of 
measuring the difference. If so, why is this difference not always used~) 

The questions in group A are pert inent and suggest areas of research. We 
have no answers to thegn except to point out that ,  for many  classical procedures, 
the same questions are still unanswered. Also, such answers as have been given 
are often of more academic than  practical interest. For example, the fact tha t  
a given function is the limit of a convergent sequence of polynomials is in general 
neither necessary nor sufficient to the useful approximation of tha t  function by 
a polynomial. 

The questions in group B can be discussed in terms of the optimization prob- 
lem ( tha t  of finding the max imum or minimum of a function of several variables).  
I t  has become orthodox to solve such problems by using some form of the 
"method  of steepest ascent ,"  abbreviated MSA below. The remarks below are 
not intended to be critical of tbis useful method, but  ra ther  to recall its ]imita- 
tions, well known to many,  but  apparent ly  not all, of its users. 

(a) The only justification of the MSA is an intuitive one, based on such 
physical interpretations as blind men climbing mountains or rivers finding their 
way to the ocean. In  numerical problems one is not restricted to continuous 
search, and it is hard to see why these particular analogies should recommend 
it. There appears to be no reason why proposed alternatives should have to 
justify themselves in terms of the MSA. 

(b)  An obvious way of a t tacking the optimization problem is to make some 
observations, fit a second-degree polynomial, find the max imum of the quadratic 
and use this point as a location for iteration of the at tack.  Experience has shown 
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that  the returns from this activity are not commensurate with the effort re- 
quired. The amount of effort expended locally has therefore been reduced by 
fitting only a first-degree polynomial, and this simplified at tack is the MSA. 
Direct search carries the simplification one step farther. I t  is clear even if one 
looks at the simplest non-trivial case (a quadratic function of two variables, 
having non-circular contours) tha t  the direction of steepest ascent is only 
loosely associated with the direction to the maximum point, so that  work done 
in finding it precisely hardly seems worthwhile. The fact tha t  the direction of 
steepest ascent is not invariant with respect to changes of scale is further evi- 
dence of its unimportance. Experience with direct search methods indicates 
that  the MSA computations represent an inefficient use of computation time. 

(c) The MSA is not, as some seem to think, an objective method. Once the 
direction of steepest ascent has been determined, the MSA itself provides no 
means of searching along this direction. 

In short, our answer to the questions in group B is that  there is no virtue in 
the manipulation of information merely because it is available. The burden of 
justification should fall at least as much on those who spend time processing 
information as on those who do not use it. Local information provides rough 
guideposts, but  exacting examination of it is of dubious value. As the search 
proceeds from locality to "be t te r"  locality, information acquired in earlier 
stages becomes less and less useful and should be discarded as soon as it is 
obsolete. 

The reader may share the feelings of the authors that  this section has been 
rich in opinions but  somewhat deficient in facts. We attr ibute this to the state 
of the field of numerical analysis, which provides little by way of a theoretical 
framework for the comparison of numerical methods. The test of a numerical 
method must usually be empirical, and in the remaining sections we therefore 
provide some examples on which we have used direct search methods. 

4. Pattern Search--A Specific Kind of Strategy 

Pat tern  search is a direct search routine for minimizing a function S(q~) of 
several variables ,~ = (~t ,  ,p2, . . .  , ~K). The argument ~ is varied until the 
minimum of S(¢)  is obtained. The pat tern search routine determines the se- 
quence of values for ~; an independent routine computes the functional values 
of S(~o). 

The operative mechanism of the routine will now be indicated. The successive 
values of ~ can be interpreted as points in a K-dimensional space. The proce- 
dure of going from a given point to the following point is called a move. A move 
is termed a success if the value of S(:o) decreases; otherwise, it is a failure. The 
pat tern search routine makes two types of move. The first type of move is an 
exploratory move designed to acquire knowledge concerning the behavior of 
the function S(~).  This knowledge is inferred entirely from the success or failure 
of the exploratory moves without regard to any quantitat ive appraisal of the 
functional values. The rudimentary information of success or failure is utilized 
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by combining it into a "pattern" which indicates a probable direction for a 
successful move. The exploratory moves form a (vector) basis for the argu- 
ment space. For simplicity, the exploratory moves are here taken to be simple, 
that is, at each move only the value of a single coordinate is changed. The second 
type of move is a pattern move designed to utilize the information acquired in 
the exploratory moves, and accomplish the actual minimization of the function 
by moving in the direction of the established "pattern". As set up each pattern 
move is followed by a sequence of exploratory moves which continually revise 
the pattern. The point from which a pattern move is made is designated a base 
point, and the direct search procedure may be conceived as fundamentally 
proceeding from base point to base point. 

Although the deduction of "optimum" properties for direct search procedures 
has proved difficult, intuitive arguments for pattern search can be given. The 
pattern move from a given base point duplicates the combined moves from the 
previous base point. That is, all coordinates are changed by an amount equal 
to the difference between the present base point and the previous base point. 
The intuitive basis for this type of move is the presumption that whatever con- 
stituted a successful set of moves in the past is likely again to prove successful. 
The result of the pattern move may be either a success or a failure. The conse- 
quent routines are discussed separately below. 

Following a successful pattern move it is reasonable to conduct a series of 
exploratory moves and attempt to further improve the result. Each exploratory 
move is carried out as follows: A single coordinate of the point is varied to see 
whether a successful move can be made by either increasing or decreasing this 
coordinate by a prescribed step size. If a success is obtained the altered value 
of the coordinate is retained; otherwise, the original value is restored. Such 
exploratory moves are made for each coordinate, and the final point reached 
becomes a new base point. In this way the successful pattern move is further 
improved and only the information as to whether the exploratory moves succeed 
or fail is used. 

If the pattern move fails, the simplest way of continuing the search would 
be to begin over again from the base point with a series of exploratory moves, 
and thus establish an entirely new pattern. Experience has shown that this 
continuation procedure is basically sound. Typically a pattern once established 
will, through continuous modification, grow until the length of the pattern move 
is 10 to 100 times the basic step size. When the pattern move then fails, it is 
generally not possible to make any further significant progress in a direction 
similar to that established by the pattern, and no simple modification of the 
pattern permits a good new direction to be selected. 

An exception to the above argument must be made when the pattern is first 
being established. Also, it does happen that previously successful patterns can 
sometimes again be made successful by slight modification. In these two cases, 
essentially similar patterns would be produced by starting the search over again. 
Since progress towards the goal of minimizing the function is only really made 
in the pattern moves, it is desirable to reduce the number of exploratory moves, 
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and to retain patterrns when possible. For these reasons, it has proved highly 
desirable to also follow a pattern move which fails by a series of exploratory 
moves. The final point then reached is compared with the base point of the 
pattern move, and if the overall set of moves is now a success this final point 
becomes the new base point. Further efforts to retain an established pattern 
have not been deemed worthwhile. Consequently, if the overall set of moves is 
a failure the pattern is abandoned and the search begun again from the base 
point. (Note that with the addition of the procedure of this paragraph the suc- 
cess or failure of the pattern move becomes irrelevant, since in either case the 
pattern move is followed by exploratory moves.) 

The direct search procedure outlined above has been termed pattern search 
because it is based on the determination of a "pattern" of simple moves that will 
give a successful direction in which to move. From the above description it can 
be realized that the major reduction in S(~) is produced by the pattern move. 
Some reduction is made by the exploratory moves, but their primary function 
is to supply information for the improvement of the pattern move. 

In practice, pattern search has proved particularly successful in locating 
minima on hypersurfaces which contain "sharp valleys". On such surfaces 
classical techniques behave badly and can only be induced to approach the 
minimum slowly. Direct search procedures using only simple moves are forced 
into small step sizes in order to keep from moving out of the valley on each 
step. Consequently, though faster than classical techniques, such direct search 
procedures are not overly fast. Pattern search has the inherent potentiality of 
making pattern moves directly down the valley, and hence rapidly approaching 
the minimum. 

The method of terminating the search has not been mentioned. For any given 
value of the step size, the search procedure will reach an impasse when, the pattern 
move having failed to determine a new base point, all the exploratory moves 
from the base point fail. To further continue the search, it is necessary to reduce 
the prescribed step size. The amount of reduction should be enough to permit 
a new pattern to be established. However, too large a reduction in step size will 
result in slowing down the search. In practice, the total search time has not 
proved to be overly sensitive to the amount of reduction. The final termination 
of the search is made when the step size is sufficiently small to insure that the 
optimum has been closely approximated. In any case, the step size must be kept 
above a practical limit imposed by the means of computation. 

An exact description of a pattern search routine, which has been applied, is 
given in Appendix B. 

5. Some Examples 

In this section we shall discuss first two examples of curve fitting in which 
we used direct search when other methods failed, and next the problem of 
solving systems of linear equations which we have studied in order to compare 
direct search with conventional methods where the latter are most useful. All 
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of these problems are attacked by turning them into optimization problems, so 
there is no need to consider a separate example of these. The optimization prob- 
lem with restricted variables is discussed in the next section. 

The first curve-fitting problem came to us as a set of measurements of neutron 
flux in a nuclear reactor, to be fitted by the curve 

y(x) = A cos (Bx + E) + C eosh (Dx + E). 

A set of "adjusted" counts y~ were made at points x , ,  i = 1, 2, . - .  , n. The 
variance of each count was proportional to its mean. The fit of the curve was 
therefore judged by the weighted sum of squares 

S = ~ [y~ - A cos (Bxl -t- E) -- C cosh (Dx~ +E)  ]2 
,-1 a~ [A cos (Bx~ + E) + C cosh (Dx, + E)] ' 

so that the problem was to find A, B, C, D, and E to minimize S. (The a~ are 
factors related to the manner in which the counts were adjusted.) 

The task of minimizing S by classical methods is a formidable one, and it was 
decided to simplify the problem by minimizing 

S* ~ a = ( ~y,)-l[y, _ A cos (Bx~ -t- E) -- C cosh (Dx~ + E)] ~. 

(Since the errors y~ -- x, were small compared to the magnitude of y(x,), it was 
reasonable to replace the denominator in S by the approximation a,y, .) 

To handle the non-linear parameters B, D, and E, the usual linearization 
device was used. The function S* was expanded into a power series, through 
quadratic terms, about a first estimate of the parameter values. The parameter 
values minimizing this quadratic surface were expected to afford a better esti- 
mate of the parameter values which minimize S*. By iterating this expansion 
and minimization process, it was anticipated that a convergent sequence of 
estimates would be obtained, provided only that the initial estimates were not 
too bad. 

For this problem, very close approximations could easily be made to A, B, 
and E, while good approximations to C and D were constructible. I t  was ex- 
pected therefore that a few iterations on a computer would supply a highly 
precise solution. The first application of the process, however, yielded a set of 
second approximations with a much larger value of S*, and the process had 
failed. 

An auxiliary technique, intended to force the reduction of S*, was devised to 
operate with a minimum of additional information. Using only the value of S* 
for the new parameters, the third derivative in the direction of the parameter 
change was estimated, and re-evaluation of the minimum was made by fitting a 
cubic curve in this direction. This seemed sufficient to insure convergence, but 
it turned out to be discouragingly slow. The source of the difficulty was that, 
for the arguments considered, the exponential character of the "cosh" term 
prevented reasonable approximation by a quadratic function. 

The inadequacy of the classical approach was further emphasized by the fact 
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that an intelligent person could obtain much better estimates in less time with- 
out using all these derivatives. Since the classical procedure required the cal- 
culation of 20 derivatives and 2 functional evaluations for each iteration, the 
question arose as to whether a direct search procedure could make greater 
progress in 22 steps (i.e., 22 functional evaluations) than the classical procedure 
could make in each iteration. When a direct search strategy (though a very 
simple one) was used, its progress was so much greater that the two methods 
could not sensibly be compared. 

The direct search method was also applied to the more difficult problem of 
minimizing S rather than S*, and a fairly simple strategy produced a satisfactory 
solution in less than an hour of medium-speed computer time. Since then, other 
results have indicated that this time can be reduced by at least a factor of 10 
by minimizing S* instead of S, using an incremental procedure (Appendix C) 
to shorten the functional computations, and by using pattern search. 

A similar problem, connected with some metallurgical studies, involved the 
fitting of a curve 

p ( T )  = a +  bT + cT 3 - dT  exp ( - q / T ) .  

The non-linearity introduced by q, and an additional condition requiring that 
a, b, d, and q be non-negative, made the problem unsolvable by usual techniques. 
A simple direct search routine, used with a standard computational subroutine 
for the exponential, turned out to be too slow. An incremental procedure (taking 
advantage of the fact that move sizes are constant) was substituted for the 
functional computation, reducing the time on the medium-speed computer to 
slightly over an hour per problem. It  is expected that, if further problems of 
this sort come to us, the combination of incremental functional computation 
with the pattern search strategy will reduce the machine time to a few minutes. 

It  is clear that direct search can be used to solve a system of one or more 
equations of the form 

f , ( X l  , X~,  " ' "  , Xn) ~-- 0,  i = 1, 2, " .  , n 

where the form of the f, is practically arbitrary, so long as the solution is unique. 
One has only to minimize the function 

[ f , ( x l  , x ~ ,  . . .  , xn)] ~. 

Rather than invent difficult equations to solve, it was decided to try direct 
search on systems of linear equations, represented by 

(1) A x  = b, 

where A is an n X n matrix and x and b are vectors. We let u stand for a trial 
solution of the system and let e = u -- x. It  was found convenient to solve the 
problem by minimizing the following, where the superscript T denotes the 
transpose: 

erBe. 
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Here B is a positive definite matrix equal to A (if A is positive definite). Since 
x is unknown, the value of erAe is also unknown; however, the change in erAe 
with a change in u is computable, and this information is sufficient to allow 
minimization by direct search. (If A is not positive definite the equivalent set 
of equations A T A x  = Arb are solved and B is taken equal to the positive definite 
matrix A TA.) 

A preliminary evaluation of the direct search method was made by solving 
(1) with the positive definite matrix A = a [  -{- J being selected for experi- 
mentation. Here I is the unit matrix and J is the matrix all of whose elements 
are ones. By varying a the condition number P of the matrix A could be varied 
to yield a well-conditioned matrix (P small) or an ill-conditioned matrix (P 
large). The condition number P of a matrix is defined to be the ratio of the 
largest to the smallest characteristic root. In a general sense, the condition 
number measures the difficulty in solving the system. The right-hand side b 
was taken simply to be the sequence of odd numbers. Table I gives the times 
required to obtain 5 significant figures in a solution. The times quoted are for 
the direct search process alone and do not include the time, of about n seconds, 
for initial scaling. 

In order to explain the results of the use of direct search on systems such as 
(1), the effect of an ill-conditioned matrix A must be described. In classical 
procedures, a sufficiently ill-conditioned matrix may cause the solution obtained 
to be meaningless, but it has no effect on the time required. With direct search, 
an ill-conditioned matrix causes the computation time to increase; there is 
hope, however, that the solution is ultimately obtained. 

For comparison, two conventional programs were applied to the same equa- 
tions (See Table II. Note that the natures of the different methods preclude 
any absolute comparison.) The most interesting result is the apparent linear 
increase with n of the time of solution using the direct search method. This is in 
contrast with the well known fact that for conventional methods the time of 
solution is proportional to n 3. This result, which could be anticipated from the 
principles of the method, points to direct search as a technique suited to solving 
large sets of linear equations. 

T A B L E  I 

Direct Search Method--Time for Solution in Seconds 

P = 2 P = 11 P = 101 

n = 5 13 21 161 
n = 10 27 30 277 
n = 15 47 63 209 
n = 20 70 95 413 

T A B L E  I I  

Conventional Methods--Time for Solution inn Seconds 
(n = 20 o n l y )  

D a t a t r o n  F l o a t i n g  P o i n t  P r o g r a m  (6 s i g n i f i c a n t  f igures )  . . . . . . . .  132 s e c o n d s  
D a t a t r o n  F i x e d  P o i n t  P r o g r a m  (Modif ied)  (7 s i g n i f i c a n t  f igures)  270 s e c o n d s  
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Certain other features of the direct search method can be observed by ex- 
amining Table I. Firstly, the time for solution is a stochastic (random) variable, 
and the actual time depends on chance effects occurring during the course of 
the search. Secondly, the time for solution depends on the condition of the matrix, 
and as the matrix becomes progressively more ill-conditioned the time for solu- 
tion increases. This deleterious effect of the condition has been partially obviated 
by the use of pattern search. This method has been developed through study of 
the behavior of the simple direct search method used to obtain the above re- 
sults. Pattern search is well adapted to cope with the geometrical situation 
characteristic of ill-conditioned matrices. It has been applied to a particular 
4-variable matrix, chosen because it was very ill-conditioned and had given 
difficulty under previous classical methods of solution. Whereas the simple 
direct search procedure could not obtain a solution in a reasonable time, pattern 
search was able to develop the solution in 60 to 90 seconds per significant digit. 
Experience with this early version of pattern search has been incorporated in 
the improved version given in Section 4 and Appendix B. Various modifications 
of pattern search are now under study to determine their behavior with ill- 
conditioned matrices. It is conjectured that the use of a strategy of pattern 
search type will make the direct search method a very useful one in the solution 
of very badly conditioned systems, as well as systems of large size. 

6. Problems Whose Solutions Are Functions 

In this section we consider problems which require the determination of a 
function satisfying certain conditions. (For such problems, numerical approxi- 
mations generally provide solutions which are expressible as a finite collection 
of numbers. Strictly speaking, then, there is no difference between a problem 
whose solution is a set of numbers and one whose solution is a set of functions, 
but the point of view is different and we find the dichotomy useful.) 

We are concerned here with the type of problem for which there is defined a 
family of functions that are permissible solutions, the solution being that mem- 
ber of the family which most nearly satisfies the conditions stated in the problem. 
The case that has been treated most is of course that in which the family of 
permissible solutions is defined by some elementary function containing one or 
more parameters that vary over some domain. If these parameters enter linearly, 
solutions can be obtained by classical methods; if they enter nonlinearly, one 
can use least squares with direct search, as exemplified in Section 5. 

The case of interest here is that in which the family of permissible solutions 
cannot be described in terms of a function known except for some parameters. 
Often an experimenter, wishing to fit a curve to some data, knows nothing 
more than the general shape of the solution. For example, in dealing with a func- 
tion of one variable, he may believe (from theory or experience) that the func- 
tion is monotone, or convex, or something of this sort. Prior knowledge of this 
kind is difficult, if not impossible, to use in conjunction with classical methods. 

A problem that we have solved by direct search methods is the following. A 
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situation described by the equation 

f(x) = ~ ( u ) k ( x - u )  dx 

had been studied experimentally to the extent that f ( x )  and k(y)  had been 
observed, with error, at a finite number of points. The problem was to deduce 
~(u), known, by physical considerations, to be unique. 

At first, a step-function solution was tried. This turned out to require too 
much labor unless the successive approximations could be performed by a 
computer. Next, polynomial approximations were tried. I t  was clear that the 
degree of the polynomial would have to be fairly high, say 8 or 10. Measurement 
error, however, caused the fitted polynomial curves to have an absurd (from 
the physical point of view) number of bends. The same was true of a solution 
in which 9(u) was approximated by polygons. 

Finally, it became clear that the known properties of ~(u) would have to be 
incorporated into the solution from the beginning. These were: 

~(u) = 0, u =< a for some a 
~(u) ~ 0, u > a 

~p'(u) ~ 0, u < b for some b 
~'(u) ~ 0, u > b 

~"(u)  => O, u < c for some c 
~"(u) ~ 0, c < u < d for some d 
~'(u)  ~ 0, d < u 

The problem was then solved, to the satisfaction of the physicists who pre- 
sented it, by representing ~(u) by a polygon whose vertices satisfied inequalities 
on differences corresponding to the inequalities on derivatives given above. The 
family of permissible solutions consisted of polygons (each determined by 20 
vertices). The problem was treated as an optimization problem in 20 variables 
(the vertices of the polygonal approximations), the idea being to minimize a 
certain error function which represented the degree of failure of a certain approxi- 
mation to ~(u) to satisfy the original integral equation. 

A simpler problem, conceptually, is that of simply fitting a curve to a set of 
points obtained empirically. A scientist, confronted with this problem, and having 
no theoretical form for the relationship under study, usually resorts to "fitting 
a smooth curve by eye." If one could find out what he means by a "smooth 
curve", it could probably be expressed as one of a family of curves, several 
derivatives of which satisfy certain inequalities. If one could provide him with a 
numerical method for solving his problem when put in such a form, he might 
be willing to learn how to do it, and thus add a degree of objectivity to this very 
prevalent kind of scientific inference. 

To show how direct search might provide such a numerical method, let us 
consider the following very simple problem. Given the data points (a~, b~) i = 
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1, 2, . . .  , n, find the "bes t"  fit y = f ( x ) ,  given only that  

f ' (x)  >= 0 

f " ( x )  =< O. 

We reformulate the problem as follows: Find the values y, ,  
to minimize 

S = ~ ( y l -  b,) 2 

subject to the restrictions 
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i =  1 , 2 ,  . . . , n ,  

Y,+i-- Y, ~ 0, i = 1,2,  . . .  , n - -  1, 

y,+~-- 2yi+l ÷ y ,  ~ 0, i - -  1,2,  . . .  , n - -  2. 

This is now an optimization problem in n variables and can be attacked by 
direct search. In addition to the usual difficulties there is the fact that  the 
solution must lie on the boundary of a rather complicated region. Some strategies 
that  had succeeded on simpler problems were tried without success, and so the 
following at tack was devised. 

Let  

( 2 )  f ( x l  , x ~ ,  " .  , x n )  

be a function to be minimized, subject to the restrictions 

gl(zl, x ~ ,  . . .  , x , , )  =< 0 

(3) 
gr(x~ , x~ , . . .  , x , , )  =< O. 

Then, instead of searching for an answer over the complicated "permissible 
region" defined by (3),  we proceed to minimize the function 

f ( x l  , . . .  , x , )  + ~ k,u, 

over the whole n-dimensional space, where 

~g~(x~ , x2 , . . .  , xn )  if this is positive 
u~ = ~0 otherwise, 

and k, => 0, i -~ 1,2, . . . ,  r. 

Thus k , ~  represents a "pena l ty"  for not satisfying the inequality 

g, (x~ , . . .  , x , )  =< O. 

For a given set of k's a solution can be found, and as the k's are increased this 
solution should approach the solution desired. 

This method has been tried out on simple examples, with encouraging results. 
I t  hardly needs to be pointed out tha t  much remains to be learned about this 
method. There will be times when it does not produce a satisfactory solution. 
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The solution itself is difficult to interpret, particularly with regard to its varia- 
bility in the face of error. Nevertheless, it is to us a step in an interesting direc- 
tion, and one which may turn out to be profitably used on some of the many 
problems of maximizing or minimizing over a restricted domain. 

7. Summary 

"Direct Search" techniques constitute an approach to a variety of numerical 
problems for which classical methods of solution have proved unfeasible. With 
their emphasis on the use of simple strategies rather than complex tactics, they 
are more suited to use on modern computers than classical methods and would 
appear to justify work done in seeking more precise definitions and results than 
we have been able to find. In addition to their practical importance in supplying 
a successful way of attacking hitherto "unsolvable" problems, we feel their 
greatest value may lie in stimulating new concepts for functional classification. 

APPENDIX A 

A Formal Definition of Direct Search 

A formal definition of direct search is provided below. This definition was 
made to be general and to describe direct search in its most basic form. It  is not 
difficult, however, to devise procedures that are not altogether covered by this 
definition. 

There is a space ~ of points P. There is a comparative relation c on the 
points of ~ satisfying the transitive relation (P C Q, Q c R) ~ P c R. There 
is an extremal point P* of ~ with the property P* c P for any other P in ~. 
The point P* represents the solution to a problem, other points of ~ representing 
possible solutions. 

A direct search procedure makes sequential comparisons, using the c rela- 
tion, to determine: 

1. A set of "trial points" Pr .  (Here and below, r -- 1, 2, . . -  , N, where N is 
determined below.) 

2. An initial "base point" B0 and a set of base points Br, where Br = P, for 
some s =< r. 

3. A set of integers, called the "states" of the procedure, including an initial 
state So, the state S, being associated with the base point B, .  

4. A "stop rule" for terminating the procedure, that is, for determining N. 
5. An "approximate solution", or approximation to P*, which is B~. 
The "strategy" for the determination of these sets is defined by the following 

rules: 
a. The initial base point B0 and the initial state So(~0) are arbitrary. 
b. The remaining trial points are P, = h(B,_l, S,_i), where h is a function 

onto ~, and Sr_~ ~ 0. 
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c. If P,  c B,_i then B, = P, and Sr = f(Sr-1). Otherwise, Br = B~_i and 
S, = g(S,_l). 

d. When for the first time S~ -- 0, the procedure stops; i.e., N = i. 
Direct search is distinguished from other numerical procedures by having a 

finite number of states which, without loss of generality, can be indexed by a set 
of integers. I t  includes, as special cases, those techniques for which h does not 
depend on B,_i, such as (a) techniques which depend on inspection of all points 
of an arbitrarily determined set, or (b) Monte Carlo techniques which depend 
on a random selection of points in ~. It does not include methods which possess 
a continuum of states, such as those (e.g., Newton's method and methods of 
steepest ascent) which rely on the use of such tools as derivatives and power 
series approximations. 

APPENDIX B 

Pattern Search 

An exact description of a pattern search routine, which has been applied, is 
given in the accompanying figures. A flow diagram for pattern search is given 
in Chart 1. The notation is self-explanatory. The sequence following the label (~) 
is the basic iterative loop consisting of a pattern move followed by a set of ex- 
ploratory moves. The sequence following the label (~) is for an initial set of 
exploratory moves from a base point when a new pattern must be established. 
The sequence labeled (~) controls the reduction of step size and termination of 
the search. 

The remaining charts (2--4) give details of the procedure. Explicitly the 
procedure is carried out by sequentially transforming a set of variables. These 

Q 

® 

® 

Start I .~1 Evaluate function at 
I initial base point 

"v-' Start I - i  Make ~ 
at B a s e  Exploratory 
Point Moves 

I basel I a tory I 
I p°intl I . . . . .  I I Movesl 

Is present functional I Yes 
value below that at I No 

Base Point ? I 

~t Is present = Y~ 
I functional value ] 

below that at I~ 
Base Point? I 

Yes , ~  

No : ~  

~I Is step size I No LI 
I smallenough? l Yes -I Decrease step size 

Stop 
CHART i. Descriptive flow diagram for pattern search 
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Startl =l I calculate S (~) ~ Yes 

- ~ ~ calculate S(~) 
s -. s (~ ) I  I s (~ ) - ,  s ' - - ' ~  ' ~" - ' ~ ' - - ~ - - , , ( ~ )  

Yes 

Stop 
CHART 2. Deta i led  flow d iagram for p a t t e r n  search 

For notation see Table IV. 
Starting Conditions: Initially, the variables ¢ and K as well as A, p, and 8 are assigned 

values; and a routine to compute S(~) is supplied. 

Enter 

I Increase Coordinate 1 

Is move a~ Yes 
success?_.,/ lNo 

I Decrease Coordinate I .3 Retain new 
t, ( r ls  move a~ Yes coordinate 

~success?J v I and new 
functional 

~ No value I 
i t lReset Coordinate I 

CHART 3. Descr ip t ive  flow diagram for explora tory  moves (Program E) .  

The  rout ine  shown is carr ied out  for each coordinate  separa te ly  

variables and their value interpretat ions are given in Table I I I .  In  Char t  2, 
which for clarity has been drawn to parallel Char t  1, a detailed flow diagram in 
terms of the problem variables is exhibited. 

The notation is explained in Table IV. All branching conditions are given in 
terms of direct questions symbolized by  a s ta tement  surrounded by  an oval. 
The substitution t ransformation x --~ y is here defined to constitute a means of 



CHXRT 4. Detailed flow diagram for exploratory moves 

Ja i l  k, E k I ' (see note) (a) The program E is ~ - [  ~l 

(b) The program E~ is" 

Enter 

[ ~ k  + A ' ~ q b k  

Calculate S(~) [ 

Yes < s) 

No 

Calculate 

Yes < s) 

1 t 
Exit 

=IS(~ --, S' I 

NOTE: The loop implicit  in (a) may be carried out explicitly (for K ~ 1) by the routine:  

Yes 
i i =; Exit 

or by any other suitable equivalent  i terat ion scheme. 

TABLE I I I  

Variables and Their Value Interpretations for Charts ~ and 
The variables ¢,, 0, and ¢ are points in a K-dimensional space; the rest of the variables 

are unidimensional. 

9 the previous base point  
¢ the current base point 

the base point  resulting from the current  move 
S(¢Q the functional value at the base point 
S(~) the functional vMue for this move 

S the functional value before this move (usually, the smallest value so far at tained 
by the set of exploratory moves) 

z~ current step size 
" m i n i m u m "  step size 

p reduction factor for step size, p < 1. 
~, one of the coordinate values for ~, k ~ 1, 2, . . -  , K. 
K number of coordinates for the points. 
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TABLE IV 
Notatwn for Detailed Flow Diagrams 

x --~ y means the value of the variable x is to become the new value of the vail- 
able y. 

stands for the question "Is the statement p true?". 
E: S. ~ indicates that a program E (See Charts 3 and 4) is to be carried out which 

will affect the values of the variables S and ~. 
calculate S(~) indicates lhat the value of S(~) is to be calculated by an independent pro- 

gram 

altering the value of the variable y. Programs specific to any particular electronic 
computer  can be adapted from these flow diagrams. 

A P P E N D I X  C 

Incremental Procedures 

In  calculating a sequence of functional values, t ime can usually be saved by  
simply calculating the changes in the successive values of the function. This is 
particularly true when the argument  is changing in fixed increments, in which 
case multiplications can generally be replaced by  additions and functional sub- 
routines by  either single multiplications or simple linear algorithms. 

Consider, for example, the calculation of y = a + be c~ for a single sequence 
of values of the arguments  (a, b, e), using fixed simultaneous increments ~a, Ab, 

and Ac. A conventional computat ional  scheme would consist of repetition of the 
sequence 

a + A a - - ~ a  

b+Lxb--~b 
c + A c - - ~ c  

CX -'-~" t 

e x p  (t) --~ 

a + b~ ~ y ,  

where exp indicates entrance into an exponential subroutine. A corresponding 
incremental  scheme would be 

a + Aa- - ->a  

b + ~b--~b 

a + b~ ~ y ,  

where v is the fixed constant e ~ac, the third line arising from 

+ A ~  = e (c+~°)~ = eCXe ~a~ = ~ .  

The big reduction in time, of course, comes from the replacement of the use of 
the exponential subroutine by  a single multiplication. 

The incremental scheme is clearly well adapted to repeated (unmodified) 
pa t tern  moves and can be incorporated into the routine which computes the 
successive values of S. (Related schemes could be similarly applied to the S 
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computat ion itself, but these will not be detailed here.) A similar scheme can 
be applied to the exploratory m o v e s - - a  separate scheme being used for each 
direction and each paramete r - -p rov ided  appropriate  modifications are made, 
as described below, to "upda t e "  the pat tern  move scheme. 

When an exploratory move is made in parameter  a, the pat tern  move incre- 
ment  Aa must  be modified by  addition of the exploratory move increment ~a. 
The value of ~a is either a or -c¢, where a is a constant. In  carrying out the ex- 
ploratory move, ~a is used in lieu of ,Sa, and 0 in lieu of &b and &c, since only 
one parameter  is being changed. Similarly, for an exploratory move in parameter  
b, ~b (which is =t:~) must  be added to Ab. Finally, for an exploratory move in 
parameter  c, the multiplicative factor e -- e ~¢ is used in lieu of ~, and ~ is multi-  
plied by  ~; the value of e is e ~ or e -v~, where ,y is a constant.  These schemes are 
summarized below: 

EXPLORATORY MOVES: 

(i) a parameter  a + 8a ~ a 
a + b ~ y  (or more s i m p l y y  + ~ a ~ y )  

&a + ~a ~ Aa 

(iX) b parameter  b + ~ b - - ~ b  
a + b~---~y 

5b + ~b ~ 5b 

(iii) c parameter  
a +  b~ --~ y 

PATTERN MOVES: 
a + 5 a - - ) a  

b + A b - - ~ b  

a + b~----~y 
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