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The Original Problem

Hilbert’s Question about Polynomial Equations

Is there an algorithm which can determine whether or not an arbitrary
polynomial equation in several variables has solutions in integers?

Using modern terms one can ask if there exists a program taking
coefficients of a polynomial equation as input and producing “yes” or
“no” answer to the question “Are there integer solutions?”.

This problem became known as Hilbert’s Tenth Problem
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The Answer

This question was answered negatively (with the final piece in
place in 1970) in the work of Martin Davis, Hilary Putnam, Julia
Robinson and Yuri Matiyasevich. Actually a much stronger result
was proved. It was shown that the recursively enumerable subsets
of Z are the same as the Diophantine subsets of Z.
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Recursive and Recursively Enumerable Subsets of
Z

Recursive Sets

A set A ⊆ Zm is called recursive or decidable if there is an
algorithm (or a computer program) to determine the membership
in the set.

Recursively Enumerable Sets

A set A ⊆ Zm is called recursively enumerable if there is an
algorithm (or a computer program) to list the set.

Theorem

There exist recursively enumerable sets which are not recursive.
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Diophantine Sets

A subset A ⊂ Zm is called Diophantine over Z if there exists a
polynomial p(T1, . . .Tm,X1, . . . ,Xk) with rational integer
coefficients such that for any element (t1, . . . , tm) ∈ Zm we have
that

∃x1, . . . , xk ∈ Z : p(t1, . . . , tm, x1, . . . , xk) = 0~�
(t1, . . . , tm) ∈ A.

In this case we call p(T1, . . . ,Tm,X1, . . . ,Xk) a Diophantine
definition of A over Z.

Corollary

There are undecidable Diophantine subsets of Z.
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Existence of Undecidable Diophantine Sets
Implies No Algorithm

Suppose A ⊂ Z is an undecidable Diophantine set with a
Diophantine definition P(T ,X1, . . . ,Xk). Assume also that we
have an algorithm to determine existence of integer solutions for
polynomials. Now, let a ∈ Z>0 and observe that a ∈ A iff
P(a,X1, . . . ,XK ) = 0 has solutions in Zk . So if can answer
Hilbert’s question effectively, we can determine the membership in
A effectively.
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Diophantine Sets Are Recursively Enumerable

It is not hard to see that Diophantine sets are recursively
enumerable. Given a polynomial p(T , X̄ ) we can effectively list all
t ∈ Z such that p(t, X̄ ) = 0 has a solution x̄ ∈ Zk in the following
fashion. Using a recursive listing of Zk+1, we can plug each
(k + 1)-tuple into p(T , X̄ ) to see if the value is 0. Each time we
get a zero we add the first element of the (k + 1)-tuple to the t-list.
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A Simple Example of a Diophantine Set over Z

The set of even integers

{t ∈ Z|∃w ∈ Z : t = 2w}

To construct more complicated examples we need to establish
some properties of Diophantine sets.
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Diophantine Sets and Definitions

Intersections and Unions of Diophantine Sets

Lemma

Intersections and unions of Diophantine sets are Diophantine.

Proof.

Suppose P1(T , X̄ ),P2(T , Ȳ ) are Diophantine definitions of subsets
A1 and A2 of Z respectively over Z. Then

P1(T , X̄ )P2(T , Ȳ )

is a Diophantine definition of A1 ∪ A2, and

P2
1 (T , X̄ ) + P2

2 (T , Ȳ )

is a Diophantine definition of A1 ∩ A2.
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Diophantine Sets and Definitions

One vs. Finitely Many

Lemma (Replacing Finitely Many by One)

Any finite system of equations over Z can be effectively replaced
by a single polynomial equation over Z with the identical
Z-solution set.



Hilbert’s Tenth Problem: Undecidability of Polynomial Equations

The Original Problem

Diophantine Sets and Definitions

One vs. Finitely Many

Proof.

Consider a system of equations
g1(x1, . . . , xk) = 0
g2(x1, . . . , xk) = 0

. . .
gm(x1, . . . , xk) = 0

This system has solutions in Z if and only if the following equation
has solutions in Z:

g1(x1, . . . , xk)2 + g2(x1, . . . , xk)2 + . . .+ gm(x1, . . . , xk)2 = 0
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Diophantine Sets and Definitions

One vs. Finitely Many

Corollary

We can let the Diophantine definitions consist of several
polynomials without changing the nature of the relation.
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Diophantine Sets and Definitions

A Tool for Diophantine Definitions: Write GCD
as a Linear Combination

Proposition

Let a, b ∈ Z6=0 with (a, b) = 1. The there exist x , y ∈ Z such that
ax + by = 1.
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Diophantine Sets and Definitions

More Complicated Diophantine Definitions

Proposition

The set of non-zero integers has the following Diophantine definition:

{t ∈ Z|∃x , u, v ∈ Z : (2u − 1)(3v − 1) = tx}

Proof.

If t = 0, then either 2u − 1 = 0 or 3v − 1 = 0 has a solution in Z,
which is impossible.
Suppose now t 6= 0. Write t = t2t3, where t2 is odd and t3 6≡ 0
mod 3. Then since (t2, 2) = 1 and (t3, 3) = 1, by a property of GCD
there exist u, xu, v , xv ∈ Z such that 2u + t2xu = 1 and 3v + t3xv = 1.
Then (2u − 1)(3v − 1) = t2xut3xv = t(xuxv ).
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Diophantine Sets and Definitions

The set of non-negative integers

From Lagrange’s Theorem we get the following representation of
non-negative integers:

{t ∈ Z|∃x1, x2, x3, x4 : t = x2
1 + x2

2 + x2
3 + x2

4}
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Extensions of the Original Problem

A General Question

A Question about an Arbitrary Recursive Ring R

Is there an algorithm, which if given an arbitrary polynomial
equation in several variables with coefficients in R, can determine
whether this equation has solutions in R?

The most prominent open questions are probably the
decidability of HTP for R = Q and R equal to the ring of
integers of an arbitrary number field.
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Undecidability of HTP over Q Implies
Undecidability of HTP for Z

Indeed, suppose we knew how to determine whether solutions exist
over Z. Let Q(x1, . . . , xk) be a polynomial with rational
coefficients. Then

∃x1, . . . , xk ∈ Q : Q(x1, . . . , xk) = 0~�
∃y1, . . . , yk , z1, . . . , zk ∈ Z : Q(

y1

z1
, . . . ,

yk

zk
) = 0 ∧ z1 . . . zk 6= 0.

So decidability of HTP over Z would imply the decidability of HTP
over Q.
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Extensions of the Original Problem

Using Diophantine Definitions to Solve the
Problem

Lemma

Let R be a recursive ring containing Z and such that Z has a
Diophantine definition p(T , X̄ ) over R. Then HTP is not decidable
over R.

Proof.

Let h(T1, . . . ,Tl) be a polynomial with rational integer coefficients
and consider the following system of equations.

h(T1, . . . ,Tl) = 0
p(T1, X̄1) = 0

. . .
p(Tl , X̄l) = 0

(1)

It is easy to see that h(T1, . . . ,Tl) = 0 has solutions in Z iff (1) has
solutions in R. Thus if HTP is decidable over R, it is decidable over
Z.
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Extensions of the Original Problem

The Plan

So to show that HTP is undecidable over Q we just need to
construct a Diophantine definition of Z over Q!!!



Hilbert’s Tenth Problem: Undecidability of Polynomial Equations

Mazur’s Conjectures

The Statements of the Conjectures

A Conjecture of Barry Mazur

The Conjecture on the Topology of Rational Points

Let V be any variety over Q. Then the topological closure of
V (Q) in V (R) possesses at most a finite number of connected
components.

A Nasty Consequence

There is no Diophantine definition of Z over Q.

Actually if the conjecture is true, no infinite and discrete (in the
archimedean topology) set has a Diophantine definition over Q.
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The Statements of the Conjectures

Understanding Mazur’s Conjecture

Suppose you are given a system of polynomial equations:
P1(x1, . . . , xk) = 0
P2(x1, . . . , xk) = 0

. . .
Pm(x1, . . . , xk) = 0

(2)

Think of solutions to this system as points in Rk but consider only
the points whose coordinates are rational numbers. In other words
we are interested in the set

RP = {(x1, . . . , xk) ∈ Qk : (x1, . . . , xk) is a solution to system (2)}.

Now take the topological closure of RP in Rk (i.e. the points plus
the “boundary”). Mazur’s conjecture asserts that the resulting set
will have finitely many “connected pieces”.
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Diophantine Models

Another Plan: Diophantine Models

What is a Diophantine Model of Z?

Let R be a recursive ring whose fraction field is not algebraically
closed and let φ : Z −→ Rk be a recursive injection mapping
Diophantine sets of Z to Diophantine sets of Rk . Then φ is called
a Diophantine model of Z over R.



Hilbert’s Tenth Problem: Undecidability of Polynomial Equations

Mazur’s Conjectures

Diophantine Models

Another Plan: Diophantine Models

Sending Diophantine Sets to Diophantine Sets Makes the
Map Recursive

Actually the recursiveness of the map will follow from the fact that
the φ-image of the graph of addition is Diophantine. Indeed, if the
φ-image of the graph of addition is Diophantine, it is recursively
enumerable. So we have an effective listing of the set

D+ = {(φ(m), φ(n), φ(m + n)),m, n ∈ Z}.

Assume we have computed φ(k − 1). Now start listing D+ until we
come across a triple whose first two entries are φ(k − 1) and φ(1).
Then third element of the triple must be φ(k).
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Diophantine Models

Making Addition and Multiplication Diophantine is Enough

It is enough to require that the φ-images of the graphs of Z-addition
and Z-multiplication are Diophantine over R. For example, consider the
φ image of a set

D = {t ∈ Z|∃x ∈ Z : t = x2 + x}

Let D× be the graph of multiplication and let D+ be the graph of
addition. Then by assumption φ(D×) and φ(D+) are Diophantine sets
with R-Diophantine definitions F+(A,B,C , Ȳ ) and Fx(A,B,C , Z̄ )
respectively. Thus, we have that T ∈ φ(D) iff ∃W ,X ∈ R such that
(W ,X ,T ) ∈ φ(D+) (i.e. T = φ(t),X = φ(x),W = φ(w), t = x + w)
and (X ,X ,W ) ∈ φ(D×) (i.e. w = x2). Using Diophantine definitions
we can rephrase this in the following manner: T ∈ φ(D) iff there exist
W ,X , Ȳ , Z̄ in R such that{

F+(W ,X ,T , Ȳ ) = 0 ( i.e. (W ,X ,T ) ∈ φ(D+))
F×(X ,X ,W , Z̄ ) = 0 ( i.e. (X ,X ,W ) ∈ φ(D×))
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Diophantine Models

Diophantine Model of Z Implies Undecidability

If R has a Diophantine model of Z, then R has undecidable
Diophantine sets. Indeed, let A ⊂ Z be an undecidable Diophantine
set. Suppose we want to determine whether an integer n ∈ A.
Instead of answering this question directly we can ask whether
φ(n) ∈ φ(A). By assumption φ(n) is algorithmically computable.
So if φ(A) is a computable subset of R, we have a contradiction.

So all we need is a Diophantine model of Z over Q!!!!
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Diophantine Models

A Theorem of Cornelissen and Zahidi

Theorem

If Mazur’s conjecture on topology of rational points holds, then there
is no Diophantine model of Z over Q.
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The Rings between Z and Q

A Ring in between

Let S be a set of primes of Q. Let OQ,S be the following subring
of Q.{m

n
: m, n ∈ Z, n 6= 0, n is divisible by primes of S only

}
If S = ∅, then OQ,S = Z. If S contains all the primes of Q, then
OQ,S = Q. If S is finite, we call the ring small. If S is infinite, we
call the ring large.

Example of a Small Ring not Equal to Z

{ m

3a5b
: m ∈ Z, a, b ∈ Z>0}
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Rings Big and Small

Example of a Big Ring not Equal to Q

{ m∏
pni
i

: pi ≡ 1 mod 4, ni ∈ Z>0}

Remark

Observe that Q is the fraction field of any small or big ring.
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Rings Big and Small

Diophantine Properties of Big and Small Rings

Lemma

The set of non-zero elements of a big or a small ring is
Diophantine over the ring.

Corollary

Let R be a big or a small ring. Let A ⊂ Qm be Diophantine over
Q. Then A ∩ Rm is Diophantine over R.
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Diophantine Properties of Big and Small Rings

Proof.

Let f (T1, . . . ,Tm,X1, . . . ,XK ) be a Diophantine definition of A over Q. In
other words, ∀t1, . . . , tm ∈ Q, we have that

(t1, . . . , tm) ∈ A⇐⇒ ∃x1, . . . , xk ∈ Q : f (t1, . . . , tm, x1, . . . , xk) = 0

Now we are going to replace each ti by ui
vi

with ui , vi ∈ R and vi 6= 0 to obtain
the following: t1, . . . , tm ∈ A ∩ R ⇐⇒

∃u1, v1 . . . , uk , vk ∈ R : f (t1, . . . , tm,
u1

v1
, . . . ,

uk

vk
) = 0 ∧

k∏
i=1

vi 6= 0

~�
∃u1, v1 . . . , uk , vk ∈ R :

(
k∏

i=1

vi )
deg(f )f (t1, . . . , tm,

u1

v1
, . . . ,

uk

vk
) = 0 ∧

k∏
i=1

vi 6= 0
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Diophantine Properties of Big and Small Rings

Proposition

1 “One=finitely many” over big and small rings.

2 The set of non-negative elements of a big or a small ring R is
Diophantine over R: a small modification of the Lagrange
argument is required to accomodate possible denominators

{t ∈ R|∃x1, x2, x3, x4, x5 : x2
5 t = x2

1 + x2
2 + x2

3 + x2
4 ∧ x5 6= 0}



Hilbert’s Tenth Problem: Undecidability of Polynomial Equations

Rings Big and Small

Order at a Prime

Definition

Let p be a prime number. Let x 6= 0 be an integer. Let n ∈ Z≥0

be such that pn divides x but pn+1 does not divide x . Then let
ordp x = n. If y ∈ Q, y 6= 0 and y = x1

x2
, where x1, x2 ∈ Z6=0, then

let ordp y = ordp x1 − ordp x2. Also let ordp 0 =∞. If x ∈ Q and
ordpx ≥ 0 we say that x is integral at p.

Example

ord3(25
9 ) = −2, ord5(25

9 ) = 2, ord7(25
9 ) = 0
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Some Properties of Order

Lemma

If x , y ∈ Q, p – a prime of Q and ordp x < ordp y, then
ordp(x + y) = ordp x.

ordp xn = n ordp x for any n ∈ Z.

Example

ord5(25 + 125) = ord5 25 = 2 = ord5 150
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Another Way to Look at Big and Small Rings

Let S be a set of primes. Then a ring

OQ,S = {x ∈ Q : ordp x ≥ 0 ∀p 6∈ S}

is called a small ring if S is finite and big otherwise.
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Defining Order is Enough

Theorem

Suppose the set of rational numbers integral at any given prime is
Diophantine over Q. Then Z is Diophantine over any small ring.

Proof.

Let S = {p1, . . . , pk}. Note that for any prime p, the set of
elements of OQ,S integral at p is Diophantine over OQ,S . This is a
consequence of the fact that we can define the set of non-zero
elements of OQ,S (see Frame 8.) Putting several Diophantine
definitions together we conclude that the set of elements of OQ,S
integral at p1, . . . , pk is Diophantine over OQ,S . However, integers
are precisely the elements of OQ,S integral at all the primes of
S.
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Defining Integers over Small Subrings of Q

Theorem (Julia Robinson)

Z has a Diophantine definition over any small subring of Q.
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Some Ideas behind the Proof

Claim

Let x ∈ Q, let p be a prime number. Then ordp( x2

p + 1
p2 ) is even if

and only if ordp x ≥ 0.

Proof.

Suppose ordp x < 0. Then

ordp
x2

p = 2 ordp x − 1 ≤ −3 < ordp
1
p2 = −2. Thus,

ordp( x2

p + 1
p2 ) = ordp

x2

p = 2 ordp x − ordp p = 2 ordp x − 1 6≡ 0
mod 2.
Suppose now that ordp x ≥ 0. Then ordp

x2

p ≥ −1. Therefore

ordp
x2

p > ordp
1
p2 = −2 and ordp( x2

p + 1
p2 ) = ordp

1
p2 = −2 ≡ 0

mod 2
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Definability over Small Rings

Some Ideas behind the Proof

Another Step in the Proof

Let p be a prime number such that 5 is not a square modulo p.
(For example we can let p = 3.) Then a2 − 5b2 = z has solutions
in Z only if ordp z is even.
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The Statement of Poonen’s Theorem

Theorem

There exist recursive sets of primes T1 and T2, both of natural
density zero and with an empty intersection, such that for any set
S of primes containing T1 and avoiding T2, the following hold:

Z has a Diophantine model over OQ,S .

Hilbert’s Tenth Problem is undecidable over OQ,S .



Hilbert’s Tenth Problem: Undecidability of Polynomial Equations

Poonen’s Theorem

What is Natural Density?

Definition

Let A be a set of primes. Then the natural density of A is equal to
the limit below (if it exists):

lim
X→∞

#{p ∈ A, p ≤ X}
#{p ≤ X}
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A Proof Overview

We start with an equation of the form

y2 = x3 + ax + b.

with 4a3 + 27b2 6= 0. We can choose a, b ∈ Z and a set of primes
S so that in OQ,S all the solutions (x , y) to this equation with
y > 0 constitute the set

{(xi , yi )} ∪ { finite set of pairs },

where |yj − j | < 10−j . Note that we know how to define positive
numbers using a variation on Lagrange’s theme (see Frame 10)
and how to get rid of a finite set of undesirable values (just say
“ 6=” as in Frame 8).
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Constructing a Model of Z>0 using yj ’s

We claim that φ : j −→ yj is a Diophantine model of Z>0. In other
words we claim that φ is a recursive injection and the following
sets are Diophantine:

D+ = {(yi , yj , yk) ∈ D3 : k = i + j , k , i , j ∈ Z>0}

and
D2 = {(yi , yk) ∈ D2 : k = i2, i ∈ Z>0}.

(Note that if D+ and D2 are Diophantine, then
D× = {(yi , yj , yk) ∈ D3 : k = ij , k, i , j ∈ Z>0} is also Diophantine
since xy = 1

2((x + y)2 − x2 − y2.)
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Constructing a Model of Z>0 Using yj

Sums and Squares Are Diophantine

It is easy to show that

k = i + j ⇔ |yi + yj − yk | < 1/3.

and with the help of Lagrange this makes D+ Diophantine.
Similarly we have that

k = i2 ⇔ |y2
i − yk | < 2/5,

implying that D2 is Diophantine.
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