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Abstract.Dualization of a monotone Boolean function represented by a conjunctive normal form
(CNF) is a problem which, in different disguise, is ubiquitous in many areas including Computer
Science, Artificial Intelligence, and Game Theory to mention some of them. It is also one of the
few problems whose precise tractability status (in terms of polynomial-time solvability) is still un-
known, and now open for more than 25 years. In this paper, we briefly survey computational results
for this problem, where we focus on the famous paper by Fredman and Khachiyan (J. Algorithms,
21:618–628, 1996), which showed that the problem is solvable in quasi-polynomial time (and thus
most likely not co-NP-hard), as well as on follow-up works. We consider computational aspects in-
cluding limited nondeterminism, probabilistic computation, parallel and learning-based algorithms,
and implementations and experimental results from the literature. The paper closes with open issues
for further research.
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1 Introduction

Dualizing a Boolean function f = f(x1, x2, . . . , xn) is a well-known problem in discrete mathematics. A
Boolean formula for the dual function f d = f(x1, x2, . . . , xn) can be easily obtained by interchanging in
any Boolean formula ϕ representing f the connectives ∧ and ∨, as well as 0 and 1. However, an efficient
solution of this problem is not straightforward if the formulas must be in a special format such as conjunctive
normal form (CNF) ϕ =

∧

c∈C

∨

`j∈c
, where each `j is a variable or its negation, which in addition may

be requested to be prime, i.e., no literal `j can be removed from each clause c. For example, the dual of
the Boolean function f = x2(x1 ∨ x3)(x1 ∨ x4) is fd = x2 ∨ x1x3 ∨ x1x4, which has the prime CNF
(x2 ∨ x1)(x2 ∨ x3 ∨ x4).

Constructing a dual CNF by applying elementary Boolean laws is not efficient in general. The study of
advanced dualization methods (possibly for restricted classes of Boolean functions) dates back to at least
the 1950/60’s, cf. [61, 4, 43]. Among these classes, the monotone Boolean functions f , which satisfy that
f(x) ≤ f(y) whenever x ≤ y, have received a lot of attention. Monotone functions have many nice
properties, including that they have a unique prime CNF in which no negation occurs. Following [31], the
monotone dualization problem is formulated as follows:1

Problem DUALIZATION

Input: The prime CNF ϕ of a monotone Boolean function f = f(x1, . . . , xm).
Output: The prime CNF ψ of its dual f d = f(x1, . . . , xm).

This problem is, in different disguise, ubiquitous and many problems in Computer Science, Artificial Intelli-
gence, and Game Theory are easily reduced to it, cf. [7, 29, 30, 32, 46]. Since (f d)d = f , it is tantamount to
generating a prime disjunctive normal form (DNF) for f from a given CNF. Because this DNF is unique and
consists of all prime implicants of f , monotone dualization resorts to an instance of the classical problem of
generating the prime implicants of a Boolean function, for which numerous algorithms exist, cf. [54, 76, 73]
and references therein.

Furthermore, monotone dualization is intimately related to important problems in hypergraph theory. It
is well-known that DUALIZATION is equivalent to computing the transversal hypergraph Tr(H) [5] of a
(finite) hypergraph H = (V, E), which has the same vertices as H and as edges the minimal transversals (or
hitting sets) of H, i.e., the minimal (under ⊆) sets T ⊆ V such that T ∩ E 6= ∅, for each E ∈ E . For that,
the variables are identified with the vertices V and the edges of H with the sets of literals in the clauses of
ϕ. E.g., for the function f above, V = {x1, x2, x3, x4} and E = {{x2}, {x1, x3}, {x1, x4}}; the minimal
transversals are {x1, x2} and {x2, x3, x4}, which correspond to the dual prime CNF (x1∨x2)(x2∨x3∨x4).
Since the complements of the transversals of H are its independent sets, DUALIZATION is tantamount to
computing the maximal independent sets of a hypergraph (in our example, {x3, x4} and {x1}) [57, 49].
Furthermore, each transversal of H corresponds to a set covering [58] of the dual hypergraph Hd = (V d, Ed)

of H, with vertices V d = E and edges Ed = {Ev | v ∈ V }, where Ev = {E ∈ E | v ∈ E} is the set of
edges of H in which v occurs, for each v ∈ V . In our example, {x1, x2} and {x2, x3, x4} correspond to the
set coverings {Ex2

, Ex1
} and {Ex2

, Ex3
, Ex4

}, respectively (recall that C ⊆ Ed is a set covering of Hd, if

1As for tractability concerns, the input may in fact consist of any CNF for f , from which its unique prime CNF is easily
computed.
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⋃

C = V d). Thus, DUALIZATION is tantamount to computing all minimal set coverings of Hd, which can
be efficiently computed from H, (vertices xi and xj such that Exi

= Exj
can be factored out easily).

In the 1980’s and early 1990’s, monotone dualization and its many relatives have been intensively stud-
ied with respect to their intrinsic computational complexity, and in particular the question whether these
problems are tractable. To this end, the monotone dualization problem has been cast, as common in com-
plexity theory, to a decisional version:

Problem DUAL

Input: Prime CNFs ϕ, ψ of monotone Boolean functions f = f(x1, . . . , xm)
and g = g(x1, . . . , xm), respectively.

Question: Are f and g dual Boolean functions?

Problem DUALIZATION is (under a suitable notion) polynomial-time equivalent to problem DUAL [7,
46]. While DUAL is easily seen to belong to the class co-NP, it is open (for more than 25 years now,
cf. [57, 48, 7, 29, 68]), whether the problem is solvable in polynomial time. Many polynomial cases are
known, cf. [2, 6, 8, 14, 12, 20, 9, 21, 26, 27, 28, 33, 31, 62, 63, 64, 67, 69, 70] and references therein, but
also interesting cases which are as hard as the general problem. The most noticeable is deciding whether
fd = f , which is known as SELF-DUALITY. A canonical example of a self-dual function is f = (x1 ∨

x2)(x2 ∨x3)(x1 ∨x3). In terms of hypergraphs, self-duality amounts to Tr(H) = H [74] (see also [7, 29]),
or whether an intersecting H is edge-critical, i.e., not 2-colorable but 2-colorable if any edge is removed
(such hypergraphs are called strange hypergraphs in [60]; see [25, 39] for polynomial cases of self-duality,
and [29] for other classes of hypergraphs for which 2-colorability is polynomially equivalent to DUAL).

In 1996, Fredman and Khachiyan proved in the landmark paper [37] that problem DUAL is solvable in
quasi-polynomial time, i.e., in time O(npolylog(n)), where n is the size of the input. They considered two
algorithms called A and B (which we shall briefly recall in Section 4), and demonstrated in a clever anal-
ysis that their running time is bounded by nO(log2 n) and no(logn), respectively. This result provides strong
evidence that problem DUAL is not co-NP-hard, since it is widely believed that no co-NP-hard problem
can be solved within this time bound. Furthermore, it gives rise to algorithms which solve problem DUAL-
IZATION in quasi-polynomial total time [37, 46], i.e., in quasi-polynomial time in the combined size of ϕ
and ψ. Note that since the output ψ can be exponentially larger than the input ϕ (for an easy example, let
ϕ = (x1 ∨ x2)(x3 ∨ x4) · · · (x2n−1 ∨ x2n)), tractability of DUALIZATION should be assessed in terms of
solvability in polynomial total (or output-polynomial [49]) time, i.e., in polynomial time in the combined
size of ϕ and ψ. The known polynomial cases of DUAL give rise to the respective output-polynomial cases
of DUALIZATION.

The results of Fredman and Khachiyan have been very influential, not only because of their significance
with respect to the issue of tractability of DUAL, but also because of the combinatorial methods and tools
used in it. Several follow-up works have been based on these results, addressing different aspects of the
problem. Among them are tractability under different input representations [46], solvability in polynomial
time with limited nondeterminism [52, 31], probabilistic aspects such as polynomial-time solvability on
average [75, 40], generalization of the problems to integer linear systems [15], etc.

In this paper, we briefly survey computational aspects of monotone dualization. The survey is not
exhaustive and focuses on the Fredman-Khachiyan results and follow-up work on dualization which has
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been strongly influenced by them. Other algorithms, in particular ones based on different computation
paradigms, are treated more shortly; for applications of dualization and closely related problems in different
domains, we refer to [7, 29, 30, 32, 37, 46] and references therein.

The plan for the remainder of this paper is as follows. The next section recalls concepts and fixes
notation. In Section 3 we then recall some simple decomposition-based algorithms which have been refined
and improved in many work in the literature. Section 4 is devoted to the famous Fredman and Khachiyan
paper [37], after which we briefly discuss some of the many follow-up works in Section 5. In Section 6 we
consider other algorithms, where for brevity we focus in learning-based, ordered variable-decomposition
based, and parallel algorithms. Section 7 gathers some papers with experimental results of the algorithms
and variants, while Section 8 concludes the paper with a discussion and open issues.

2 Preliminaries

Recall that a Boolean function (in short, function) is a mapping f : {0, 1}n → {0, 1}, where v ∈ {0, 1}n

is called a Boolean vector (in short, vector) whose i-th component is denoted by vi. As usual, we write
g ≤ f if f and g satisfy g(v) ≤ f(v) for all v ∈ {0, 1}n, and g < f if g ≤ f and g 6= f . A function f
is monotone (or positive), if v ≤ w (i.e., vi ≤ wi for all i) implies f(v) ≤ f(w) for all v, w ∈ {0, 1}n.
Boolean variables x1, x2, . . . , xn and their complements x̄1, x̄2, . . . , x̄n are called literals. A clause (resp.,
term) is a disjunction (resp., conjunction) of literals containing at most one of xi and x̄i for each variable.
The empty disjunction (resp., conjunction) is denoted by ⊥ (resp. >).

A clause c (resp., term t) is an implicate (resp., implicant) of a function f , if f ≤ c (resp., t ≤ f );
moreover, it is prime, if there is no implicate c′ < c (resp., no implicant t′ > t) of f , and monotone, if it
consists of positive literals only. A conjunctive normal form (CNF) (resp., disjunctive normal form, DNF)
is a conjunction of clauses (resp., disjunction of terms); it is prime (resp. monotone), if all its members are
prime (resp. monotone). For any CNF (resp., DNF) ρ, we denote by |ρ| the number of clauses (resp., terms)
in it. Furthermore, for any formula ϕ, we denote by V (ϕ) the set of variables that occur in ϕ, and by ‖ϕ‖ its
length, i.e., the number of literals in it. It is convenient to view CNFs ϕ also as sets of clauses, and clauses
as sets of literals; we thus use respective notation (e.g., c ∈ ϕ, x1 ∈ c etc).

As well-known, a function f is monotone iff it has a monotone CNF. Furthermore, all prime implicants
and prime implicates of a monotone f are monotone, and it has a unique prime CNF, denoted CNF(f),
which is given by the conjunction of all its prime implicates. For example, the monotone f such that
f(v) = 1 iff v ∈ {(1100), (1110), (1101), (0111), (1111)} has CNF(f) = x2(x1 ∨ x3)(x1 ∨ x4) (see
Figure 1).

Recall that the dual of a function f , denoted f d, is defined by fd(x) = f(x), where f and x is the
complement of f and x, respectively. By definition, we have (f d)d = f . From De Morgan’s law, we obtain
from formula ϕ of f a formula ϕd for fd by exchanging ∨ and ∧ as well as the constants 0 and 1. For
example, if f is given by ϕ = x1x2 ∨ x1(x3 ∨ x4), then fd is represented by ψ = (x1 ∨ x2)(x1 ∨ x3x4).
Note that for any monotone function f , f d is monotone as well. Thus if CNF(f d) =

∧

c∈C(
∨

xi∈c
xi), then

f has, by De Morgan’s law, the unique prime DNF
∨

c∈C(
∧

xi∈c
xi), which we denote by DNF(f). E.g.,

f from Figure 1 has DNF(f) = x1x2 ∨ x2x3x4. Thus, we will regard DUALIZATION also as the problem
of computing DNF(f) from CNF(f). Note that since (f d)d = f , computing CNF(f) from the DNF(f)

(resp., duality testing for DNFs in the input) has same complexity.
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(1100) (1010) (1001) (0110) (0101) (0011)

(1101) (0111)(1110) (1011)

(1000) (0001)(0100) (0010)

(1111)

(0000)

Figure 1: Boolean lattice and function f = x2(x1 ∨ x3)(x1 ∨ x4) (vectors v such that f(v) = 1 in bold)

3 Simple Algorithms

The dual form may be computed by simple divide and conquer algorithms using different decomposition
methods, such as clause-based and variable-based decomposition.

Clause-based decomposition. This method aims at combining the dual forms of sub-CNFs of the input
CNF ϕ to obtain the result. A simple example is the algorithm referred to as Berge’s algorithm [5], which
works as follows (ϕ =

∧m
i=1 ci):

1. Initialize ψ0 := {∅} (= ⊥);

2. for each i = 1, 2, . . . ,m do ψi := min({c′ ∪ {x} | c′ ∈ ψi−1, x ∈ ci}), where min(S) is the set of
all minimal sets (wrt ⊆) in the family of sets S .

Then, ψ = ψm holds. We remark that this algorithm has appeared in the literature earlier e.g. in [61, 72, 58],
and several improvements have been proposed, e.g. [4, 51, 3, 82]; see also [27]. For the input ϕ = x2(x1 ∨

x3)(x1 ∨ x4), we obtain (for left-to-right edge ordering) ψ0 = ⊥, ψ1 = x2, ψ2 = (x1 ∨ x2)(x2 ∨ x3), and
ψ3 = (x1 ∨ x2)(x2 ∨ x3 ∨ x4) = ψ. There are simple examples which show that the Berge algorithm may
produce intermediate CNFs ψi of exponential size in the final ψ. E.g., let ϕ represent the complete graph
on n vertices x1, . . . , xn, and suppose that the clauses (i.e., edges) c1, . . . , cm, m =

(

n
2

)

, are ordered such
that cj = x2j−1 ∨ x2j , for j = 1, 2, . . . , n/2. Then ψn/2 has Ω(2n/2) clauses (of the form `1 ∨ · · · ∨ `n/2
where `j ∈ {x2j−1, x2j} for each j = 1, 2, . . . , n/2), but ψm = ψ has only n clauses, which are of the
form c′i =

∨

j∈Ii
xj , where Ii = {1, . . . , n}\{i}, for i = 1, 2, . . . , n. In this example, using a suitable

ordering the algorithm works polynomially. However, as shown by Takata [78], there are instances ϕ for
which the largest intermediate result has size tΩ(log log t), where t is the size of ϕ and ψ, for every possible
edge-ordering. Hence, the Berge algorithm has super-polynomial runtime in general.

Variable-based decomposition. Different from edge-based decomposition, this method aims at combin-
ing the dual forms of CNFs which do or do not contain a particular variable x. This can be done using the
Shannon decomposition of f , given by f = xfx=1 ∨ fx=0. It implies that

ϕd ≡ (x ∨ ϕ 63x
d) ∧ ϕ−x

d, (1)
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where ϕ 63x = {c ∈ ϕ : x /∈ c} are the clauses in ϕ not containing x, and ϕ−x = {c− {x} | c ∈ ϕ} are the
clauses in ϕ minus the variable x. We can thus compute ϕ as follows:

1. If ϕ = > then return ψ := ⊥.

2. If ϕ = ⊥ then return ψ := >.

3. Otherwise, select a variable x, and recursively compute ψ1 := ϕ 63x
d and ψ2 := ϕ−x

d.

4. Return ψ := min({x ∨ c | c ∈ ψ1} ∪ ψ2).

For the input ϕ = x2(x1 ∨ x3)(x1 ∨ x4) and decomposition by x1, we have ψ1 = x2 and ψ2 = x2x3x4;
therefore, ψ = min({x2 ∨ x1, x2 ∨ x3 ∨ x4}) = (x2 ∨ x1)(x2 ∨ x3 ∨ x4) is recursively computed. For
the CNF ϕ which corresponds to the complete graph on x1, . . . , xn, decomposition by x1 yields for ϕ 63x1

a recursive instance, viz. the complete graph on x2, . . . , xn, and for ϕ−x1
a formula such that min(ϕ−x1

)

= x2 ∧ x3 ∧ · · · ∧ xn; the formula ϕ 63x1

d consists of the clauses ci = {xj | j ∈ {2, . . . , n} − {i}},
i ∈ {2, 3, . . . , n}, and ϕ−x1

d of the single clause x2 ∨ x3 ∨ · · · ∨ xn. While on complete graphs, the
algorithm is output-polynomial (in fact, polynomial in the input size), one can easily construct instances
which disprove that it is output-polynomial in general.

Also for this decomposition method, many refinements and variants exist, e.g. [3, 31, 27, 66]. Another
decomposition scheme, which derives from (1), is

ϕd ≡
n
∧

i=1

(xi ∨ ((ϕ 63xi
)−x1,x2,...,xi−1

)d), (2)

where α−x1,x2,...,xk
= {c − {x1, . . . , xk} | c ∈ α}, according to which the dual clauses are partitioned

into those containing x1; those containing x2 but not x1; those containing x3 but not x2, x2 etc. This
scheme is called “sprouting rule” in the context of generating prime implicants [76], and has been used e.g.
in [3, 66, 73].

4 Fredman and Khachiyan’s Results

In their paper [37], Fredman and Khachiyan have advanced variable-based decomposition for dualization
testing, and have presented two algorithms, A and B, which solve the problem with decreasing complexity.

Algorithm A. the first algorithm, which is shown in Table 1 (reformulated for CNF input), has running
time bounded by

n4n2+O(1) = nO(log2 n), (3)

where n is the size of the input. It is based on two important enhancements of variable-based decomposition:

1. Exploit simple properties of monotone dual pairs (intersection properties, relations of clause numbers
and sizes, etc), by which simple instances of the problem can be resolved.
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2. Select for the decomposition a benign variable which ensures that an exponential explosion blowup
in terms of (recursive) subproblems will not happen. As Fredman and Khachiyan showed, “frequent”
variables (those which occur most often in the input) fulfill this role.

In order to obtain analytic result (3) for the algorithm, the following properties of dual pairs are critical.
Let ϕ and ψ be CNFs representing functions f and f d, respectively. Then we have

Σc∈ϕ 2−|c| + Σc′∈ψ 2−|c′| ≥ 1.

We note that this property holds for arbitrary functions, not necessarily monotone functions. This immedi-
ately implies that ϕ or ψ contains a short clause, i.e.,

min{|c| | c ∈ ϕ ∪ ψ} ≤ log(|ϕ| + |ψ|). (4)

The second property is the intersection property of dual pairs:

c ∩ c′ 6= ∅ for any pair of c ∈ ϕ and c′ ∈ ψ. (5)

From (4) and (5), there exists a variable xi whose frequency ε(xi) = max{ |{c ∈ ϕ | xi ∈ c}|/|ϕ|,
|{c ∈ ψ | xi ∈ c}|/|ψ| } satisfies

ε(xi) ≥ 1/ log(|ϕ| + |ψ|) (6)

(the bounds (6) and (4) are tight within a factor of 2 [45]). Therefore, one of the subproblems (A.1) and
(A.2) created by decomposition with xi in Algorithm A is small, from which we can prove that Algorithm A
runs in nO(log2 n) time and thus is quasi-polynomial.

However, Algorithm A is not polynomial. For the class of monotone read-once functions, i.e., Boolean
functions which can be represented by an expression in which each variable occurs at most once, Gurvich
and Khachiyan [46] report an mΩ(logm) lower bound for Algorithm A, where m = |ϕ| + |ψ|. Notice that
dualization of read-once functions is solvable in polynomial time, cf. [2, 28]; thus, while quasi-polynomial
in general, Algorithm A is not always optimal.

Algorithm B. The second algorithm in [37], Algorithm B, checks for duality in no(logn) time. More
precisely, it works in time

n4χ(n)+O(1), (7)

where χ(n)χ(n) = n; note that χ(n) ∼ log n/ log log n = o(log n). Here, the idea is to take in the
decomposition step also information about the solvability of the one subproblem for the other into account.

Briefly, similar as Algorithm A in steps 1-3, Algorithm B first deals with instances which can be decided
easily. For the remaining cases, it selects any variable x for decomposition of the problem. If x is frequent
in both input formulas, then it applies the decomposition scheme of Algorithm A for x. Otherwise, it uses a
different decomposition scheme by which the problem is quasi-polynomially solved. Depending on whether
x is infrequent in ϕ or in ψ, first duality of the pair (A.1) respectively (A.2) as in Algorithm A is tested.
If the result for (A.1) is positive, then instead of the single pair in (A.2) for each clause c ∈ ψ0 the pair
(ψc1, ϕ

c
0) is tested for duality, where ψc1 = {c′ ∈ ψ1 | c ∩ c′ = ∅} and ϕc0 = {c′ \ c | c′ ∈ ϕ0}; similarly if

(A.2) is positive.
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Algorithm A.

Input: Monotone CNFs ϕ, ψ representing monotone f , g s.t. V (c) ∩ V (c′) 6= ∅,
for all c ∈ ϕ, c′ ∈ ψ.

Output: yes if f = gd, otherwise a vector w of form w = (w1, . . . , wm) such that
f(w) 6= gd(w).

Step 1:

Delete all redundant (i.e., non-minimal) clauses from ϕ and ψ.

Step 2:

Check whether (i) V (φ) = V (ψ),
(ii) maxc∈ϕ |c| ≤ |ψ|,
(iii) maxc′∈ψ |c′| ≤ |ϕ|, and
(iv) Σc∈ϕ 2−|c| + Σc′∈ψ 2−|c′| ≥ 1.

If any of (i)-(iv) fails, f 6= gd and a witness w is found in polynomial time (cf. [37]).

Step 3:

If |ϕ| · |ψ| ≤ 1, test duality in O(1) time.

Step 4:

If |ϕ| · |ψ| ≥ 2, find a variable xi occurring in ϕ or ψ with frequency ≥ 1/ log(|ϕ| + |ψ|).
Let

ϕ0 = {c− {xi} | xi ∈ c, c ∈ ϕ}, ϕ1 = {c | xi /∈ c, c ∈ ϕ},

ψ0 = {c′ − {xi} | xi ∈ c′, c′ ∈ ψ}, ψ1 = {c′ | xi /∈ c′, c′ ∈ ψ}.

Call algorithm A on the two pairs of forms

(A.1) (ϕ1, ψ0 ∧ ψ1) and (A.2) (ψ1, ϕ0 ∧ ϕ1)

If both calls return yes, then return yes (as f = gd), otherwise we obtain w
such that f(w) 6= gd(w) in polynomial time (cf. [37]).

Table 1: The first of the two algorithms by Fredman and Khachiyan for deciding duality

The quasi-polynomial time results of Fredman and Khachiyan show that DUAL is most likely not co-
NP-complete, which partially answers the question for the complexity status of DUAL. Another important
aspect is that, in complexity terms, the class of problems solvable in quasi-polynomial time is closed under
quasi-polynomial time transformations; i.e., any problem which is transformable in time O(npolylog(n)) to
some problem in this class is solvable in time O(npolylog(n)) as well (such computations compose). Thus
in particular, by means of the Fredman-Khachiyan algorithms, dualization serves as a host for proving that
problems can be solved in quasi-polynomial time. This has been exploited, e.g., in [11, 9, 15, 11, 16, 17, 18,
19, 32].

5 Follow-Up Work

The seminal paper by Fredman and Khachiyan turned out to be a fruitful basis for analyzing other aspects
of the monotone dualization problem, and for considering possible generalizations.
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5.1 Computational aspects

The following results have been obtained on different computational aspects of monotone dualization.

Other forms of representation. Gurvich and Khachiyan [46] considered the generation of a prime CNF
ϕ and/or a prime DNF ψ of a monotone function f for various representations of f . They and independently
Bioch and Ibaraki [7] showed that generating both ϕ and ψ simultaneously is feasible in incremental quasi-
polynomial time, provided that f(x) can be evaluated in polynomial time. They also showed that this is
still feasible in quasi-polynomial total time if f(x) can be evaluated in quasi-polynomial time. On the other
hand, generating only ϕ or ψ is not feasible in polynomial total time (unless P = NP) for a variety of
representations (cf. also [29, 27]).

In further work, Boros et al. extended the quasi-polynomial time results of [37, 46] to generating in-
crementally the minimal true points of a monotone function f , i.e., minimal vectors x such that f(x) = 1,
where f is given by a polynomial-time oracle, provided that the set Mf of all minimal true points satisfies a
uniform dual-boundedness property [9, 17]. This property requests that the hypergraph Mf = (V, Ef ) with
vertices V = {x1, . . . , xn} and an edge {xi | vi = 1} for each v ∈Mf , is such that for each sub-hypergraph
H = (V, E), where E ⊆ Ef is nonempty, the number of joint maximal independent sets of H and Mf is
quasi-polynomially bounded in the size of H, |V |, and the size of the oracle representing f ; monotone du-
alization is covered as a special case, as well as polymatroid functions [11], 2-monotonic functions [15],
weighted transversals [17, 19], and others [18]; For more details, we refer to [9].

Limited nondeterminism. Eiter, Gottlob, and Makino [31] and independently Kavvadias and Stavropou-
los [52] proved that monotone dualization can be solved with limited nondeterminism, i.e., by a polynomial-
time algorithm which makes at most poly-logarithmically many nondeterministic steps in the computation
(for a survey on limited nondeterminism, see [41]). More precisely, let g(n)-P denote the class of problems
solvable by a Turing machine in polynomial time with at most g(n) nondeterministic steps (i.e., bit guesses)
and βkP =

⋃

c(c logk n)-P for integer k ≥ 1. As shown in [31], monotone duality is in co-β2P (and in
fact decidable with O(χ(n)· logn) many nondeterministic steps). The key to this result is a careful analysis
of the information which is needed to describe the way from the root of the recursive computation tree to a
node which disproves duality of the input pair (f, g). The crucial observation is here that “left” and “right”
children do not occur with the same frequency, and that one may have an exponential gain by counting how
many times in a row one takes the left child (resp., the right child) rather than using one bit for each step.

While [31] used the original algorithms of Fredman and Khachiyan, Kavvadias and Stavropoulos present
in [52] a non-deterministic algorithm which, based on the methods of [37] proceeds in alternating phases
of deterministic and non-deterministic computation until the original problem is reduced to constant size.
In each deterministic step, O(n logn) subproblems are generated, of which one is non-deterministically
selected for further checking.

Probabilistic aspects. Several papers have considered probabilistic aspects of monotone dualization.
Shmulevich et al. [75] showed that almost all monotone Boolean functions are polynomially learnable with
membership queries only, if the number of variables n goes to infinity; this result implies that, in probabilistic
terms, monotone dualization can be solved by an algorithm with expected polynomial-total running time if
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n goes to infinity, if all monotone Boolean functions are equiprobable (and only in few cases, the running
time is super-polynomial).

Recently, Gaur and Krishnamurti [40] showed that problem SELF-DUALITY for monotone CNFs, for-
mulated as a special satisfiability problem, is solvable by an algorithm in polynomial time on average over
random instances, which uses case decomposition ideas similar to those in the Fredman-Khachiyan algo-
rithms. Furthermore, they showed that a simple basic version of their algorithm decides SELF-DUALITY in
time O(n2 logn+2).

Work space requirements. The original algorithms by Fredman and Khachiyan in [37] require workspace
super-polynomial in the input size, and are thus infeasible from a memory point of view, since the workspace
available in practice may be exceeded. Tamaki [79] has improved the enumeration of the dual clauses, based
on decomposition methods used in Algorithm B, such that it runs in quasi-polynomial total time (more
precisely, in time (n +m)O(log n), where n = ‖ϕ‖ and m = |ψ|) and in O(n log2 n) space. His algorithm
uses lexicographic ordering of clauses in order to prevent multiple output of the same clause. By this together
with the result in [7], we have an algorithm with incremental quasi-polynomial delay and (input) polynomial
space. The randomized improvement of Algorithm A in [10] has an expected total memory requirement of
all nodes on a path which is linear in the length m = ‖ϕ‖ + ‖ψ‖ of ϕ and ψ.

5.2 Generalizations to Posets

Fredman and Khachiyan’s algorithms have been generalized from the Boolean case to certain classes of par-
tially ordered sets (posets). Here, the problem considered is to recognize respectively to generate the dual of
a give set of elements A in the poset (P,�), which consists of the maximal independent elements of A, i.e.,
the largest elements in P \ {b ∈ P | a � b for some a ∈ A} with respect to �. Integer boxes [15], products
of forests [36], and products of lattices [35] fall into such generalizations. Together with a dual-boundedness
property [9], they imply incremental quasi-polynomial solvability of many generation problems such as gen-
erating maximal feasible points of monotone linear systems, inefficient points of probability distributions,
and maximal boxes (e.g., [15, 16]).

6 Other Algorithms

Apart from the algorithms discussed in the previous sections, a number of further algorithms for dualization
have been proposed. In this section, we consider algorithms which are based on methods in learning theory,
on advanced partitioning, and on parallel computation, respectively.

Learning-based algorithms. Some important task in concept learning is to compute the boundary, given
by the set min(T ) of the minimal true vectors and the set max(F ) of maximal false vectors of a monotone
Boolean function f with membership queries, i.e., an oracle for deciding whether v ∈ T holds for a given
vector v . It has been shown that this problem is polynomial-time equivalent to monotone dualization [7].
This result can be exploited to derive polynomial-time solvability of monotone dualization, thanks to results
about learning, for several classes of functions (e.g., [20, 24, 26, 64]).
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We note that computing only minimal true vectors (resp., maximal false vectors) is hard and requires
exponential time by information-theoretic bounds. It is known [1] that monotone DNFs (or CNFs) are not
exact learnable with membership oracles alone in time polynomial in the size of the target DNF (or CNF)
formula, since information theoretic barriers entail a lower bound of |CNF(f)|+ |DNF(f)| for the number
of queries which are needed to learn a monotone function f .

Algorithms for computing the boundary based on chain decomposition of the search space, have been
proposed, following different query strategies, by Hansel [47] and by Sokolov [77]; Gainanov [38] proposed
an algorithm that constructs border vectors one by one, by making at most n + 1 queries for each vector
starting from a yet unclassified vector, where n is the number of variables. The same method was applied
in [20, 63, 84]. Finding an unknown vector for a function is not easy, and is in fact equivalent to monotone
dualization. One may solve this problem by a neighborhood search algorithm in an already known border.
While this method is exponential in general, it works well in several cases [63]. Such an algorithm is
also used to derive the result that almost all monotone Boolean functions are learnable using membership
queries in polynomial time [75], which implies that almost all monotone Boolean functions are dualizable
in polynomial time.

Ordered variable-decomposition algorithms. In this subsection, we regard DUALIZATION as the prob-
lem of computing DNF(f) from CNF(f), where f is monotone (recall that a prime CNF of the dual function
fd is easily obtained from DNF(f)). Let

ϕ = c1 ∧ · · · ∧ cm (8)

be the prime CNF of f , where we assume without loss of generality that all variables xj (j = 1, 2, . . . n)
appear in ϕ. Let ϕi (i = 0, 1, . . . , n) be the CNF obtained from ϕ by fixing variables xj = 1 for all j with
j ≥ i+ 1. By definition, we have ϕ0 = > (truth) and ϕn = ϕ. For example, consider ϕ = (x1 ∨ x2)(x1 ∨

x3)(x2 ∨ x3 ∨ x4)(x1 ∨ x4). Then we have ϕ0 = ϕ1 = >, ϕ2 = (x1 ∨ x2), ϕ3 = (x1 ∨ x2)(x1 ∨ x3), and
ϕ4 = ϕ. Similarly, for the prime DNF

ψ = t1 ∨ · · · ∨ tk (9)

of f , we denote by ψi the DNF obtained from ψ by fixing variables xj = 1 for all j with j ≥ i+ 1. Clearly,
we have ϕi ≡ ψi, i.e., ϕi and ψi represent the same function denoted by fi.

Denote by ∆i (i = 1, 2, . . . , n) the CNF consisting of all the clauses in ϕi but not in ϕi−1. For the above
example, we have ∆1 = 1, ∆2 = (x1 ∨ x2), ∆3 = (x1 ∨ x3), and ∆4 = (x2 ∨ x3 ∨ x4)(x1 ∨ x4). Note that
ϕi = ϕi−1 ∧ ∆i; hence, for all i = 1, 2, . . . , n we have

ψi ≡ ψi−1 ∧ ∆i ≡
∨

t∈DNF(fi−1)

(t ∧ ∆i). (10)

Let ∆i[t], for i = 1, . . . , n denote the CNF consisting of all the clauses c such that c contains no literal
in ti−1 and c ∨ xi appears in ∆i. For example, if t = x2x3x4 and ∆4 = (x2 ∨ x3 ∨ x4)(x1 ∨ x4), then
∆4[t] = x1. It follows from (10) that for all i = 1, 2, . . . , n

ψi ≡
∨

t∈DNF(fi−1)

(

(t ∧ ∆i[t]) ∨ (t ∧ xi)
)

. (11)
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It is not difficult to see that ∆i[t] ≤ |DNF(fi−1)| ≤ |ψ| holds for all i and t ∈ DNF(fi−1). Different
from clause-based decomposition in Section 3, the intermediate results are always bounded by the output
length and hence this scheme is efficient if one can compute all ∆i[t]’s efficiently.

This scheme was used earlier in the graph case by Tsukiyama et al. [81], and later for hypergraphs by
Lawler et al. [57]. By means of it, several results have been obtained.

• A straight implementation of this scheme yields an algorithm which shows that monotone dualization
is solvable in polynomial total time for many well-known classes of functions, including functions
that are degenerated, read-bounded, acyclic, or have bounded treewidth (under different notions) [31],
where the bound is non-constant. On the other hand, the problem is as hard as in the general even
for hypertree-width 2 [30]. An incremental polynomial-time algorithm can be constructed from the
scheme, provided that the function is minor-closed [7]. However, while polynomial this algorithm is
rather slow.

• Exploiting the scheme in a depth-first manner leads to a dualization algorithm which runs in polyno-
mial space (in the size of the input). However, this algorithm will not be fast, since essentially we
trade space for time by it.

• A more sophisticated implementation using priority queues yields a speedup and enables enumeration
according to an ordering (which, moreover, is often polynomial delay); it may use exponential work
space in the input size, though [31].

Parallel algorithms. As for parallel computation, two types of problems have been considered around
the recognition problem DUAL and the generation problem DUALIZATION, respectively. The first type is
generating a counterexample to duality based on a dual subclauses (subtransversals), i.e., sets of variables
included in some dual clause [8, 14]. In general, deciding whether a clause is a dual subclause is NP-
complete, but for certain classes of functions it is polynomial (e.g., k-CNF, k-conformal functions). This is
then exploited for parallelization.

The second type is generating some resp. all dual clauses. While a single clause in the dual form of a
given CNF is efficiently computable in parallel for certain classes of CNFs, it is open whether this is possible
for all CNFs, cf. [50]. The papers [13, 55] considers parallel generation of a given number k of clauses in
the dual form of a CNF ϕ. As shown there, this problem can be solved in time O(δ log(1 + k)polylog(nδ))

using nO(log k)kO(δ) many processors if ϕ is uniformly δ-sparse, i.e., for every set of variables S ⊆ V , the
average variable degree in the CNF ϕS = {c ∈ ϕ | c ⊆ S} is bounded by δ. This implies that the problem
is in NC whenever δ is bounded by a constant (e.g., if ϕ is read-bounded). Exploiting this result, also new
results on the complexity of dualization for new classes of CNFs corresponding to hypergraphs of bounded
dual-conformality, and hypergraphs in which every edge intersects every minimal transversal in a bounded
number of vertices, were derived.

Several other algorithms exist which have been proposed in different domains (cf. [23, 27, 66, 44]); in
particular, in the area of diagnosis, several algorithms have been considered, cf. [71, 42, 85, 59].
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7 Implementations and Experiments

Many algorithms for solving the dualization problem or equivalent problems in applications have been
implemented. Often these algorithms are (slight) variants of the algorithms described in the literature.

Boros et al. [10] report about an implementation of a randomized variant of Algorithm A in [37] (in
fact, their algorithm solves the more general problem of generating all maximal independent elements of a
set of vectors from an integral box). The algorithm randomly guesses an additional dual clause (making up
to a fixed number of tries), and delays the actual computation of recursive inputs. The expected number of
recursive calls is shown to be nmO(log2m), where m is |ϕ| plus the number of clauses produced so far. The
experiments reported on randomly generated and designed inputs indicate that using randomization offers
substantial improvements, and that for random inputs the average CPU time per transversal does not increase
more than linearly with increasing the number of variables or clauses.

Bailey et al. [3] present a hybrid of an vertex-based and an edge-based algorithm for dualization. In-
formally, the variables are ordered by increasing frequency xi1 , xi2 , xi3 . . ., and then the dual clauses are
generated by sprouting as in Section 3. This scheme is recursively applied unless the volume of an instance
is below a certain threshold; in this case, an optimized version of the Berge algorithm is employed. Exper-
imental results on instances which are randomly generated from machine learning data sets show that this
algorithm is faster than others, including Algorithm B in [37] (which is significantly slower), the Kavvadias-
Stavropoulos algorithm [51], and algorithms proposed in the data mining domain.

Kavvadias and Stavropoulos [51, 53] present a variant of the Berge algorithm which makes two main
improvements. Firstly, variables which occur in exactly the same clauses are recursively factored out, by
replacing them with a new variable. In the obtained dual clauses, the latter is substituted back with any of
these variables. Secondly, the generation of clauses is performed depth-first rather than breadth-first; in this
way, the time until the first output can be polynomially bounded, while under usual breadth-first processing
it is exponential in general. A further improvement assures that no regeneration of minimal transversals
occurs at any intermediate level (this aim is similar as in [82]). Like Uno’s algorithm [82], it uses only space
polynomial in the input size. The experimental results reported in [51] for randomly generated inputs show
that the algorithm behaves very well compared with a naive dualization algorithm, and that, interestingly,
the time between subsequent outputs is quite uniform. Another finding was that an efficient implementation
of sets (as in the work reported, by bitmaps) is an important factor. In [53], Kavvadias and Stavropoulos
compare their algorithm (with some advances in implementation) against the algorithms of Boros et al.
(BEGK) [10] and Bailey et al. (BMR) [3], on the test sets from [10, 3] and on random instances. On the
data sets from [10], the Kavvadias-Stavropoulos (KS) algorithm outperforms the other two with respect to
runtime, with the BMR algorithm being the second fastest in most cases. However, in several test cases,
some other algorithm uses less memory. In particular, it seems that the KS algorithm behaves better if the
dual CNF has more clauses than the input CNF. On the data sets from [3], the BEGK and BMR algorithms
[10, 3] are faster, and the BMR algorithm uses the least memory. On the random instances considered, the
runtimes of the algorithms greatly vary, but the KS algorithm uses far less memory than the other ones.

Uno [82] presents another variant of the Berge algorithm, in which the fact is exploited that every
variable x in every dual clause c of ϕmust be critical, i.e., there must be some clause c′ ∈ ϕ such that c∩c′ =

{x}. In this way, the dual clauses can be uniquely generated in a computation tree. As reported in [83], this
tree was in the experiments linear in the size of ϕd, even though it still may have exponential intermediate
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size. Further improvements reduce the effort for criticality checking and the number of iterations, by keeping
a set of uncovered clauses. It is reported in [83] that in experiments (comprising data from frequent-set
problems in knowledge discovery) the memory requirement was linear in the input size, compared with a
O|n·ϕ|) worst case bound (which can be improved upon) where n is the number of variables.

Lin and Jiang [59] report experimental results for the HS-tree algorithm from [71], and for different
implementations of (slight variants of) the vertex-based decomposition algorithm outlined in Section 3,
named BHS-tree algorithm and Boolean algorithm. According to their results, the management of trees data
structures as in HS-tree and BHS-tree has significant overhead compared with the Boolean algorithm, which
was implemented using lists.

Interesting results for dualization algorithms in the learning scheme, where the number of membership
queries is most significant, have been obtained by Torvik and Triantaphyllou [80], who studied the minimum
number of queries which are needed by an optimal algorithm on average, and compared the algorithms
by Hansel [47], Sokolov [77], Gainanov [38] (known as FINDBORDER), and a novel algorithm, which is
artificially designed and less intuitive, against it. Using an unbiased sampling framework, they found that
the popular FINDBORDER algorithm makes almost twice as many queries compared with the minimum,
and that, interestingly, the earliest algorithm [47] is best among those in the previous literature. For the
average number of queries to identify each border vector of f , i.e., minimal (resp. maximal) vector v such
that f(v) = 1 (resp., f(v) = 0), we have a similar picture. FINDBORDER needs about two queries (for an
optimum of one), while Hansel’s algorithm performed best among those from the previous literature; the
novel algorithm in [80] outperforms all previous known algorithms.

8 Discussion and Conclusion

We have briefly surveyed work that deals with computational aspects of monotone dualization, focusing on
the important Fredman-Khachiyan paper [37] and follow-up papers. While significant progress has been
made on the monotone dualization problem over the last decade, there are still many issues open. The
most important issue concerning the computational complexity is, of course, whether the problem (in its
decisional variant DUAL) is solvable in polynomial time or not. In line with resolving this question, pushing
the tractability frontier for the problem by identifying new interesting polynomial classes of dualization
remains an important issue. One example of such an interesting class for which this is open is log-CNFs
(i.e., CNFs with clauses of logarithmic size).

Other complexity issues are solvability of DUAL in polylog space, and the issue of lower bounds for
the problem. It is, for instance, yet unknown whether monotone dualization is P-hard or hard for nonde-
terministic logspace (under logspace reductions). As for the parallel complexity of the problem, it is open
whether the generation problem DUALIZATION can be solved in polylog-time (in the input length) with
quasi-polynomial many processors (in the combined size of the input and output).

On the algorithms side, while there are studies of the behavior of some algorithms for monotone du-
alization (e.g., [51, 83, 10, 3, 59, 80]), a comprehensive, systematic experimental evaluation of the many
algorithms for this problem is still missing to date. However, it seems that the more refined algorithms do no
show a blatantly exploding behavior, as typical with intractable problems, on instances occurring in practice.
Along with the experimental evaluation, an interesting task is to compile a collection of “hard” instances of
dualization for different (types of) algorithms.
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An interesting issue are non-monotone dualization problems which are polynomial-time equivalent to
monotone dualization. Here, several interesting results have been obtained. Khardon [56] showed that
generating the set of all prime implicants of a given Horn CNF ϕ is polynomial-time equivalent to monotone
dualization. While this set, viewed as a DNF ψ, is equivalent to ϕ, it is redundant in general and a sub-DNF
ψ′ ⊂ ψ may equivalently represent ψ; so, one is interested in a non-redundant such ψ ′ for representing
ϕ. While the problem of generating any nonredundant ψ ′ is at least as hard as monotone dualization, it is
open whether this problem is polynomial-time equivalent to it or harder [56]. For the class of bidual Horn
functions (where ϕd represents also a Horn function), this problem is equivalent to monotone dualization
[34]; interestingly, bidual Horn functions have, like monotone functions, a unique non-redundant prime
DNF.

Another interesting issue is the Horn transformation problem between Horn CNFs and characteristic
sets, which are unique representations of Horn functions. It is known that the transformation problem
between Horn CNFs consisting of all prime implicates and characteristic sets is polynomial-time equivalent
to monotone dualization, while it is open for nonredundant Horn CNFs [56].

Further issues are generating the dual form under certain restrictions, or producing only a part of the dual
form efficiently. Instances of the first kind are enumerating the clauses of the dual function with bounded
delay, or under work space constraints. For example, for quadratic CNFs the dual clauses can be enumerated
with polynomial delay and in (input) polynomial space [81, 65], and with polynomial delay if in addition
lexicographic ordering is required [49]. It is open whether the polynomial delay and the polynomial space
result extends to k-CNFs, for constant k ≥ 3. In the general case, it would be interesting to know whether
the dual clauses can be enumerated with quasi-polynomial time delay in the input size or, a bit weaker, with
amortized such delay (i.e., delay mnO(logn) where m = |ψ| and n = ‖ϕ‖) [79].

Finally, producing only a part of the dual form can be viewed as a generalization of the problem; an
instance of this is enumerating all dual clauses of bounded size, cf. [22]. Note that generating a given
number k of clauses in the dual form is (under a suitable notion) polynomial-time equivalent to DUAL.
The problem is in RNC (more precisely, solvable in time polylog(n, |ϕ|, k) on a number of processors
polynomial in n and |ϕ|) if ϕ has bounded clause size [12] as well as for other classes of formulas [55].
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