Ignacio J. Araya araya.quezada.ignacio@gmail.com Universidad Andrés Bello

Universidad de Concepción - Concepción - Chile

August 24, 2019

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Contents

- 1 Kounterterm Renormalization
- 2 Kounterterms in even dimensions
- 3 Kounterterms in odd dimensions
- 4 Entanglement and Rényi Entropy in the AdS/CFT context

- 5 Entanglement Entropy and Replica Trick
- 6 Going to codimension-2
- 7 EE as the renormalized area of the RT surface

8 Outlook

Kounterterms

- Kounterterms is an alternative counterterm series whose main characteristic is its explicit dependence on the extrinsic curvature K_{ij}. [Olea, hep-th/0610230 and hep-th/0504233].
- In even dimensions, they originate from the addition of a topological invariant to the Einstein- Hilbert action ⇒ Topological Renormalization
- An analogous renormalization scheme is defined in odd-dimensions
- The Kounterterm expansion can be written in closed form.

Kounterterms

- Kounterterms is an alternative counterterm series whose main characteristic is its explicit dependence on the extrinsic curvature K_{ij}. [Olea, hep-th/0610230 and hep-th/0504233].
- In even dimensions, they originate from the addition of a topological invariant to the Einstein- Hilbert action ⇒ Topological Renormalization
- An analogous renormalization scheme is defined in odd-dimensions
- The Kounterterm expansion can be written in closed form.

Kounterterms

- Kounterterms is an alternative counterterm series whose main characteristic is its explicit dependence on the extrinsic curvature K_{ij}. [Olea, hep-th/0610230 and hep-th/0504233].
- In even dimensions, they originate from the addition of a topological invariant to the Einstein- Hilbert action ⇒ **Topological Renormalization**
- An analogous renormalization scheme is defined in odd-dimensions
- The Kounterterm expansion can be written in closed form.

Kounterterms

- Kounterterms is an alternative counterterm series whose main characteristic is its explicit dependence on the extrinsic curvature K_{ij}. [Olea, hep-th/0610230 and hep-th/0504233].
- In even dimensions, they originate from the addition of a topological invariant to the Einstein- Hilbert action ⇒ **Topological Renormalization**
- An analogous renormalization scheme is defined in odd-dimensions
- The Kounterterm expansion can be written in closed form.

Kounterterms in even dimensions

Topological Renormalization in even dimensions

EH action+Euler term:

$$I_{ren} = \frac{1}{16\pi G} \int_{M} d^{2n} x \sqrt{-G} \left(R - 2\Lambda + \alpha_{2n} \delta^{[\nu_1 \dots \nu_{2n}]}_{[\mu_1 \dots \mu_{2n}]} R^{\mu_1 \mu_2}_{\nu_1 \nu_2} \cdots R^{\mu_{2n-1} \mu_{2n}}_{\nu_{2n-1} \nu_{2n}} \right)$$

for

$$\alpha_{2n} = (-1)^n \, \frac{\ell^{2n-2}}{2^n n \, (2n-2)!}$$

• Euler theorem in D = 2n dimensions:

$$\int_{M} d^{2n} x \mathcal{E}_{2n} = (4\pi)^n \, n! \chi\left(M\right) + \int_{\partial M} d^{2n-1} x B_{2n-1}$$

Renormalized action:

$$I_{ren} = I_{EH} + \frac{c_{2n-1}}{16\pi G} \int_{\partial M}^{r} d^{2n-1} x B_{2n-1}(h, K, \mathcal{R})$$

Kounterterms in even dimensions

Topological Renormalization in even dimensions

EH action+Euler term:

$$I_{ren} = \frac{1}{16\pi G} \int_{M} d^{2n} x \sqrt{-G} \left(R - 2\Lambda + \alpha_{2n} \delta^{[\nu_1 \dots \nu_{2n}]}_{[\mu_1 \dots \mu_{2n}]} R^{\mu_1 \mu_2}_{\nu_1 \nu_2} \cdots R^{\mu_{2n-1} \mu_{2n}}_{\nu_{2n-1} \nu_{2n}} \right)$$

for

$$\alpha_{2n} = (-1)^n \, \frac{\ell^{2n-2}}{2^n n \, (2n-2)!}$$

• Euler theorem in D = 2n dimensions:

$$\int_{M} d^{2n} \times \mathcal{E}_{2n} = (4\pi)^{n} n! \chi(M) + \int_{\partial M} d^{2n-1} \times B_{2n-1}$$

Renormalized action:

$$I_{ren} = I_{EH} + \frac{c_{2n-1}}{16\pi G} \int_{\partial M} d^{2n-1} x B_{2n-1}(h, K, \mathcal{R})$$

Kounterterms in even dimensions

Topological Renormalization in even dimensions

EH action+Euler term:

$$I_{ren} = \frac{1}{16\pi G} \int_{M} d^{2n} x \sqrt{-G} \left(R - 2\Lambda + \alpha_{2n} \delta^{[\nu_1 \dots \nu_{2n}]}_{[\mu_1 \dots \mu_{2n}]} R^{\mu_1 \mu_2}_{\nu_1 \nu_2} \cdots R^{\mu_{2n-1} \mu_{2n}}_{\nu_{2n-1} \nu_{2n}} \right)$$

for

$$\alpha_{2n} = (-1)^n \, \frac{\ell^{2n-2}}{2^n n \, (2n-2)!}$$

• Euler theorem in D = 2n dimensions:

$$\int_{M} d^{2n} x \mathcal{E}_{2n} = (4\pi)^{n} n! \chi(M) + \int_{\partial M} d^{2n-1} x B_{2n-1}$$

Renormalized action:

.

$$I_{ren} = I_{EH} + \frac{c_{2n-1}}{16\pi G} \int_{\partial M} d^{2n-1} x B_{2n-1}(h, K, \mathcal{R})$$

Kounterterms in even dimensions

Surface term: n-th Chern form

The n-th Chern form is given by

$$B_{2n-1} = 2n\sqrt{h} \int_{0}^{1} dt \delta_{[j_{1}...j_{2n-1}]}^{[i_{1}...i_{2n-1}]} K_{i_{1}}^{j_{1}} \left(\frac{1}{2} \mathcal{R}_{i_{2}i_{3}}^{j_{2}j_{3}}(h) - t^{2} K_{i_{2}}^{j_{2}} K_{i_{3}}^{j_{3}}\right) \times \\ \dots \times \left(\frac{1}{2} \mathcal{R}_{i_{2n-2}j_{2n-1}}^{j_{2n-2}j_{2n-1}}(h) - t^{2} K_{i_{2n-2}}^{j_{2n-2}} K_{i_{2n-1}}^{j_{2n-1}}\right)$$

and the coefficient

$$c_{2n-1} = \frac{(-1)^n \, \ell^{2n-2}}{n \, (2n-2)!}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

■ The surface term *B*_{2*n*−1} is the boundary correction of the Euler theorem.

Kounterterms in even dimensions

Surface term: n-th Chern form

The n-th Chern form is given by

$$B_{2n-1} = 2n\sqrt{h} \int_{0}^{1} dt \delta_{[j_{1}...j_{2n-1}]}^{[i_{1}...i_{2n-1}]} K_{i_{1}}^{j_{1}} \left(\frac{1}{2} \mathcal{R}_{i_{2}i_{3}}^{j_{2}j_{3}}(h) - t^{2} K_{i_{2}}^{j_{2}} K_{i_{3}}^{j_{3}}\right) \times \\ \dots \times \left(\frac{1}{2} \mathcal{R}_{i_{2n-2}j_{2n-1}}^{j_{2n-2}j_{2n-1}}(h) - t^{2} K_{i_{2n-2}}^{j_{2n-2}} K_{i_{2n-1}}^{j_{2n-1}}\right)$$

and the coefficient

$$c_{2n-1} = \frac{(-1)^n \, \ell^{2n-2}}{n \, (2n-2)!}$$

・ロト・日本・モート モー うへぐ

The surface term B_{2n-1} is the boundary correction of the Euler theorem.

Kounterterms in odd dimensions

Kounterterms in odd dimensions

 Kounterterm-renormalized Einstein-AdS action in odd-D given by

$$I_{EH}^{ren} = I_{EH} + \frac{c_{2n}}{16\pi G} \int_{\partial M} B_{2n}$$
$$c_{2n} = \frac{(-1)^n \ell^{2(n-1)}}{2^{2(n-1)} n [(n-1)!]^2}$$

• The extrinsic counterterm B_{2n} is

$$B_{2n} = -2nd^{2n}x\sqrt{-h}\delta^{[j_1\cdots j_{2n}]}_{[i_1\cdots i_{2n}]}\int_{0}^{1}dt\int_{0}^{t}ds\delta^{i_1}_{j_1}K^{i_2}_{j_2}\left(\frac{1}{2}\mathcal{R}^{i_3i_4}_{j_3j_4} - t^2K^{i_3}_{j_3}K^{i_4}_{j_4}\right)$$
$$+\frac{s^2}{\ell^2}\delta^{i_3}_{j_3}\delta^{i_4}_{j_4}\cdots\left(\frac{1}{2}\mathcal{R}^{i_{2n-1}i_{2n}}_{j_{2n-1}j_{2n}} - t^2K^{i_{2n-1}}_{j_{2n-1}}K^{i_{2n}}_{j_{2n-1}} + \frac{s^2}{\ell^2}\delta^{i_{2n-1}}_{j_{2n-1}}\delta^{i_{2n}}_{j_{2n}}\right)$$

Kounterterms in odd dimensions

Kounterterms in odd dimensions

Kounterterm-renormalized Einstein-AdS action in odd-D given by

$$I_{EH}^{ren} = I_{EH} + \frac{c_{2n}}{16\pi G} \int_{\partial M} B_{2n}$$
$$c_{2n} = \frac{(-1)^n \ell^{2(n-1)}}{2^{2(n-1)} n [(n-1)!]^2}$$

• The extrinsic counterterm B_{2n} is

$$B_{2n} = -2nd^{2n}x\sqrt{-h}\delta^{[j_1\cdots j_{2n}]}_{[i_1\cdots i_{2n}]}\int_0^1 dt \int_0^t ds \delta^{i_1}_{j_1}K^{i_2}_{j_2} \left(\frac{1}{2}\mathcal{R}^{i_3i_4}_{j_3j_4} - t^2K^{i_3}_{j_3}K^{i_4}_{j_4}\right)$$
$$+\frac{s^2}{\ell^2}\delta^{i_3}_{j_3}\delta^{i_4}_{j_4}\right)\cdots \left(\frac{1}{2}\mathcal{R}^{i_{2n-1}i_{2n}}_{j_{2n-1}j_{2n}} - t^2K^{i_{2n-1}}_{j_{2n-1}}K^{i_{2n}}_{j_{2n-1}} + \frac{s^2}{\ell^2}\delta^{i_{2n-1}}_{j_{2n-1}}\delta^{i_{2n}}_{j_{2n}}\right)$$

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

We consider

$$ds_{5ch}^{2} = \frac{dr^{2}}{f^{2}(r)} - f^{2}(r) dt^{2} + r^{2}\sigma_{mn}(y) dy^{m}dy^{n}$$
$$f^{2} = k + \frac{r^{2}}{\ell^{2}} - \frac{\mu}{r^{2}}; \ (f^{2})' = \frac{2r}{\ell^{2}} + \frac{2\mu}{r^{3}}; \ (f^{2})'' = \frac{2}{\ell^{2}} - \frac{6\mu}{r^{4}}$$

Riemann and extrinsic curvature (radial foliation) are

$$\begin{aligned} \mathcal{K}_{j}^{i} &= -\frac{1}{2N} h^{ik} \partial_{r} h_{kj} = \begin{bmatrix} -f' & 0\\ 0 & -\frac{f}{r} \delta_{n}^{m} \end{bmatrix} \\ \mathcal{R}_{tr}^{tr} &= -\frac{1}{2} \left(f^{2} \right)^{\prime \prime} ; \ \mathcal{R}_{tm}^{tn} = \mathcal{R}_{rm}^{rn} = -\frac{1}{2r} \left(f^{2} \right)^{\prime} \delta_{m}^{n} \\ \mathcal{R}_{kl}^{mn} &= \frac{1}{r^{2}} \left(k - f^{2} \right) \delta_{[kl]}^{[mn]} ; \ \mathcal{R}_{m_{1}m_{2}}^{n_{1}n_{2}} = \frac{k}{r^{2}} \delta_{[m_{1}m_{2}]}^{[n_{1}n_{2}]} \end{aligned}$$

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

We consider

$$ds_{5ch}^{2} = \frac{dr^{2}}{f^{2}(r)} - f^{2}(r) dt^{2} + r^{2}\sigma_{mn}(y) dy^{m}dy^{n}$$
$$f^{2} = k + \frac{r^{2}}{\ell^{2}} - \frac{\mu}{r^{2}}; \ (f^{2})' = \frac{2r}{\ell^{2}} + \frac{2\mu}{r^{3}}; \ (f^{2})'' = \frac{2}{\ell^{2}} - \frac{6\mu}{r^{4}}$$

Riemann and extrinsic curvature (radial foliation) are

$$\begin{aligned} \mathcal{K}_{j}^{i} &= -\frac{1}{2N} h^{ik} \partial_{r} h_{kj} = \begin{bmatrix} -f' & 0\\ 0 & -\frac{f}{r} \delta_{n}^{m} \end{bmatrix} \\ \mathcal{R}_{tr}^{tr} &= -\frac{1}{2} \left(f^{2} \right)^{\prime \prime} ; \ \mathcal{R}_{tm}^{tn} = \mathcal{R}_{rm}^{rn} = -\frac{1}{2r} \left(f^{2} \right)^{\prime} \delta_{m}^{n} \\ \mathcal{R}_{kl}^{mn} &= \frac{1}{r^{2}} \left(k - f^{2} \right) \delta_{[kl]}^{[mn]} ; \ \mathcal{R}_{m_{1}m_{2}}^{n_{1}n_{2}} = \frac{k}{r^{2}} \delta_{[m_{1}m_{2}]}^{[n_{1}n_{2}]} \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Euclidean E-H action gives

$$I_{EH} = \frac{1}{16\pi G} \int_{M}^{\beta} d^{5}x \sqrt{-G} \left(R + \frac{12}{\ell^{2}}\right)$$
$$I_{EH}^{E} = \frac{1}{16\pi G} \int_{0}^{\beta} d\tau \int_{\Sigma_{k,3}}^{\gamma} \sqrt{\sigma} d^{3}y \int_{r_{h}}^{\infty} drr^{3} \left[\left(f^{2}\right)'' + \frac{3\left(f^{2}\right)'}{r} \right]$$

And considering the form of $f^2(r)$,

$$I_{EH}^{E} = \frac{\beta \operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \left[\left(f^{2} \right)' r^{3} \right] \Big|_{r_{h}}^{\infty} = -S + \frac{2}{3}\beta M + \frac{\beta \operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \lim_{r \to \infty} \left[\frac{2r^{4}}{\ell^{2}} \right]$$
$$S = \frac{\operatorname{Vol}(\Sigma_{k,3}) r_{h}^{3}}{4G} = \frac{\operatorname{Area}[\mathcal{H}]}{4G} ; \ M = \frac{3 \operatorname{Vol}(\Sigma_{k,3}) \mu}{16\pi G}$$

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Euclidean Einstein-Hilbert part missing $\frac{1}{3}$ of the mass, it also has a volume divergence. B_3 fixes both issues. Explicitly:

$$I_{ren} = I_{EH} + I_{B_4}; \ I_{B_4} = \frac{c_4}{16\pi G} \int_{\partial M} B_4; \ c_4 = \frac{\ell^2}{8}$$

$$B_4 = -4d^4 x \sqrt{-h} \int_0^1 dt \int_0^t ds \delta^{[j_1 \cdots j_4]}_{[i_1 \cdots i_4]} \delta^{i_1}_{j_1} K^{i_2}_{j_2} \left(\frac{1}{2} \mathcal{R}^{i_3 i_4}_{j_3 j_4} - t^2 K^{i_3}_{j_3} K^{i_4}_{j_4} + \frac{s^2}{\ell^2} \delta^{i_3}_{j_3} \delta^{i_4}_{j_4}\right)$$

$$I^E_{B_4} = \frac{1}{16\pi G} \frac{3\ell^2}{2} \beta \operatorname{Vol}(\Sigma_{k,3}) \lim_{r \to \infty} \left[\frac{r^3 (f^2)' \left(\frac{k-f^2}{r^2} + \frac{1}{3\ell^2}\right) + \left(2f^2 - r (f^2)'\right) \left(\frac{k}{2} - \frac{f^2}{4} + \frac{r^2}{4\ell^2}\right)}{16\pi G} \right]$$

$$I^E_{B_4} = \frac{\beta \operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \lim_{r \to \infty} \left[\mu + \frac{3}{2} \ell^2 k^2 - \frac{2r^4}{\ell^2} \right] + [\operatorname{vanishing terms}]$$

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Therefore, we have

$$I_{B_4}^E = \frac{1}{3}\beta M - \frac{\beta \operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \lim_{r \to \infty} \left[\frac{2r^4}{\ell^2}\right] + \beta E_0$$
$$E_0 = \frac{\operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \left(\frac{3}{2}\ell^2 k^2\right)$$
$$I_{ren}^E = I_{EH}^E + I_{B_4}^E = -S + \beta \left(M + E_0\right) = \beta F$$

 The extrinsically renormalized Euclidean action then reproduces the correct thermodynamics including the vacuum energy (Miskovic and Olea, [1012.4867]) Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Therefore, we have

$$I_{B_4}^E = \frac{1}{3}\beta M - \frac{\beta \operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \lim_{r \to \infty} \left[\frac{2r^4}{\ell^2}\right] + \beta E_0$$
$$E_0 = \frac{\operatorname{Vol}(\Sigma_{k,3})}{16\pi G} \left(\frac{3}{2}\ell^2 k^2\right)$$
$$I_{ren}^E = I_{EH}^E + I_{B_4}^E = -S + \beta \left(M + E_0\right) = \beta F$$

 The extrinsically renormalized Euclidean action then reproduces the correct thermodynamics including the vacuum energy (Miskovic and Olea, [1012.4867])

Holographic Entanglement Entropy

- Using AdS/CFT, EE of spatial subregions in Holographic CFTs can be obtained by geometric computation on bulk gravity dual.
- Holographic EE for Einstein-AdS bulk gravity is computed using area prescription of Ryu-Takayanagi [hep-th/0603001]:

$$S_{EE} = \frac{Vol(\Sigma)}{4G}.$$

Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary B is required to be conformally cobordant to entangling surface ∂A at conformal boundary C.

 Covariant version of prescription constructed by Hubeni, Rangamani and Takayanagi [0705.0016].

Holographic Entanglement Entropy

- Using AdS/CFT, EE of spatial subregions in Holographic CFTs can be obtained by geometric computation on bulk gravity dual.
- Holographic EE for Einstein-AdS bulk gravity is computed using area prescription of Ryu-Takayanagi [hep-th/0603001]:

$$S_{EE}=rac{Vol(\Sigma)}{4G}.$$

Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary B is required to be conformally cobordant to entangling surface ∂A at conformal boundary C.

 Covariant version of prescription constructed by Hubeni, Rangamani and Takayanagi [0705.0016].

Holographic Entanglement Entropy

- Using AdS/CFT, EE of spatial subregions in Holographic CFTs can be obtained by geometric computation on bulk gravity dual.
- Holographic EE for Einstein-AdS bulk gravity is computed using area prescription of Ryu-Takayanagi [hep-th/0603001]:

$$S_{EE} = rac{Vol(\Sigma)}{4G}.$$

 Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary B is required to be conformally cobordant to entangling surface ∂A at conformal boundary C.

 Covariant version of prescription constructed by Hubeni, Rangamani and Takayanagi [0705.0016].

Holographic Entanglement Entropy

- Using AdS/CFT, EE of spatial subregions in Holographic CFTs can be obtained by geometric computation on bulk gravity dual.
- Holographic EE for Einstein-AdS bulk gravity is computed using area prescription of Ryu-Takayanagi [hep-th/0603001]:

$$S_{EE} = rac{Vol(\Sigma)}{4G}.$$

- Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary B is required to be conformally cobordant to entangling surface ∂A at conformal boundary C.
- Covariant version of prescription constructed by Hubeni, Rangamani and Takayanagi [0705.0016].

Entanglement and Rényi Entropy in the AdS/CFT context

Ryu-Takayanagi Construction

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Extremization of area functional

- Area functional given by integral over codimension-2 surface
 Σ of determinant of induced metric.
- Consider an embedding function for Σ. I.e, write one coordinate in terms of the others, at t = const.
- Impose the extremization condition on the area functional and derive the corresponding E-L equation.

- Embedding has to satisfy resulting differential equation.
- Explicit computation in [1712.09099, Appendix A].

Extremization of area functional

- Area functional given by integral over codimension-2 surface
 Σ of determinant of induced metric.
- Consider an embedding function for Σ. I.e, write one coordinate in terms of the others, at t = const.
- Impose the extremization condition on the area functional and derive the corresponding E-L equation.

- Embedding has to satisfy resulting differential equation.
- Explicit computation in [1712.09099, Appendix A].

Extremization of area functional

- Area functional given by integral over codimension-2 surface
 Σ of determinant of induced metric.
- Consider an embedding function for Σ. I.e, write one coordinate in terms of the others, at t = const.
- Impose the extremization condition on the area functional and derive the corresponding E-L equation.

- Embedding has to satisfy resulting differential equation.
- Explicit computation in [1712.09099, Appendix A].

Extremization of area functional

- Area functional given by integral over codimension-2 surface
 Σ of determinant of induced metric.
- Consider an embedding function for Σ. I.e, write one coordinate in terms of the others, at t = const.
- Impose the extremization condition on the area functional and derive the corresponding E-L equation.

- Embedding has to satisfy resulting differential equation.
- Explicit computation in [1712.09099, Appendix A].

Extremization of area functional

- Area functional given by integral over codimension-2 surface
 Σ of determinant of induced metric.
- Consider an embedding function for Σ. I.e, write one coordinate in terms of the others, at t = const.
- Impose the extremization condition on the area functional and derive the corresponding E-L equation.

- Embedding has to satisfy resulting differential equation.
- Explicit computation in [1712.09099, Appendix A].

Example: HEE of an interval in AdS_3/CFT_2

 We consider global AdS₃ in Poincaré coordinates which is dual to a CFT₂ in flat Minkowski spacetime, and an interval of length L as the entangling region A:

$$ds^{2} = \frac{dz^{2}}{z^{2}} + \frac{1}{z^{2}} \left(-dt^{2} + dx^{2}\right)$$
$$A : \left\{ \left(t = \text{const}, x \in \left[-\frac{L}{2}, \frac{L}{2}\right]\right) \right\}$$

From the RT formula, EE of L is given by length of minimal arc cobordant to A:

$$S_{EE} = \frac{1}{4G} \int_{\Sigma} d\xi \sqrt{\frac{1}{z^2} (z'^2 + x'^2)}$$
$$z' = \frac{dz}{d\xi} ; \ x' = \frac{dx}{d\xi}$$

Example: HEE of an interval in AdS_3/CFT_2

 We consider global AdS₃ in Poincaré coordinates which is dual to a CFT₂ in flat Minkowski spacetime, and an interval of length L as the entangling region A:

$$ds^{2} = \frac{dz^{2}}{z^{2}} + \frac{1}{z^{2}} \left(-dt^{2} + dx^{2} \right)$$
$$A : \left\{ \left(t = \text{const}, x \in \left[-\frac{L}{2}, \frac{L}{2} \right] \right) \right\}$$

From the RT formula, EE of L is given by length of minimal arc cobordant to A:

$$S_{EE} = \frac{1}{4G} \int_{\Sigma} d\xi \sqrt{\frac{1}{z^2} (z'^2 + x'^2)}$$
$$z' = \frac{dz}{d\xi} ; \ x' = \frac{dx}{d\xi}$$

Example: HEE of an interval in AdS_3/CFT_2

Minimal arc given by geodesic in the bulk. Parametrized by:

$$\Sigma : \{ (x(\xi), z(\xi)) \}_{\xi \in [0,\pi]}$$
$$x(\xi) = \frac{L}{2} \cos \xi \; ; \; z(\xi) = \frac{L}{2} \sin \xi$$

Computing the length, we obtain

$$S_{EE} = \lim_{\epsilon \to 0} \frac{1}{4G} 2 \int_{\frac{2\epsilon}{L}}^{\frac{\pi}{2}} \frac{d\xi}{\left(\frac{L}{2}\right)\sin\xi} \left(\frac{L}{2}\right) \sqrt{\sin^2\xi + \cos^2\xi}$$
$$= \lim_{\epsilon \to 0} \frac{1}{2G} \int_{\frac{2\epsilon}{L}}^{\frac{\pi}{2}} \frac{d\xi}{\sin\xi} = \lim_{\epsilon \to 0} \frac{1}{2G} \ln\left|\frac{1 + \cos\left(\frac{2\epsilon}{L}\right)}{\sin\left(\frac{2\epsilon}{L}\right)}\right| = \lim_{\epsilon \to 0} \frac{1}{2G} \ln\left|\frac{L}{\epsilon}\right|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example: HEE of an interval in AdS_3/CFT_2

Minimal arc given by geodesic in the bulk. Parametrized by:

$$\Sigma : \{ (x(\xi), z(\xi)) \}_{\xi \in [0,\pi]}$$
$$x(\xi) = \frac{L}{2} \cos \xi \; ; \; z(\xi) = \frac{L}{2} \sin \xi$$

Computing the length, we obtain

$$S_{EE} = \lim_{\epsilon \to 0} \frac{1}{4G} 2 \int_{\frac{2\epsilon}{L}}^{\frac{\pi}{2}} \frac{d\xi}{\left(\frac{L}{2}\right) \sin \xi} \left(\frac{L}{2}\right) \sqrt{\sin^2 \xi + \cos^2 \xi}$$
$$= \lim_{\epsilon \to 0} \frac{1}{2G} \int_{\frac{2\epsilon}{L}}^{\frac{\pi}{2}} \frac{d\xi}{\sin \xi} = \lim_{\epsilon \to 0} \frac{1}{2G} \ln \left|\frac{1 + \cos\left(\frac{2\epsilon}{L}\right)}{\sin\left(\frac{2\epsilon}{L}\right)}\right| = \lim_{\epsilon \to 0} \frac{1}{2G} \ln \left|\frac{L}{\epsilon}\right|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Example: HEE of an interval in AdS_3/CFT_2

The holographic dictionary for AdS₃/CFT₂ relates the central charge of the CFT to the 3D Newton's constant in the bulk. The previous result for the EE computed in the CFT is recovered:

$$c = \frac{3}{2G}$$
$$S_{EE} = \frac{c}{3} \ln \left| \frac{L}{\epsilon} \right|$$

Computation reduced to a simple geometry problem!

Example: HEE of an interval in AdS_3/CFT_2

The holographic dictionary for AdS₃/CFT₂ relates the central charge of the CFT to the 3D Newton's constant in the bulk. The previous result for the EE computed in the CFT is recovered:

$$c = \frac{3}{2G}$$
$$S_{EE} = \frac{c}{3} \ln \left| \frac{L}{\epsilon} \right|$$

Computation reduced to a simple geometry problem!

Example: Spherical entangling surface

• When $\partial \Sigma$ is a sphere, embedding given by:

$$\Sigma:\left\{t=const;\ r^2+\ell^2
ho=R^2
ight\}$$

- Substitute in extremization condition. Verify that it is satisfied.
- Compute area integral explicitly. Split integral into radial part and boundary part.
- Integral diverges. Expand in powers of the radial coordinate.
 For d=odd, universal part is finite. For d=even, universal part is log-divergent.
- Later: How to obtain the universal part directly (Kounterterm renormalization).
Example: Spherical entangling surface

$$\Sigma:\left\{t=const;\ r^2+\ell^2
ho=R^2
ight\}$$

- Substitute in extremization condition. Verify that it is satisfied.
- Compute area integral explicitly. Split integral into radial part and boundary part.
- Integral diverges. Expand in powers of the radial coordinate.
 For d=odd, universal part is finite. For d=even, universal part is log-divergent.
- Later: How to obtain the universal part directly (Kounterterm renormalization).

Example: Spherical entangling surface

$$\Sigma:\left\{t=const;\ r^2+\ell^2
ho=R^2
ight\}$$

- Substitute in extremization condition. Verify that it is satisfied.
- Compute area integral explicitly. Split integral into radial part and boundary part.
- Integral diverges. Expand in powers of the radial coordinate.
 For d=odd, universal part is finite. For d=even, universal part is log-divergent.
- Later: How to obtain the universal part directly (Kounterterm renormalization).

Example: Spherical entangling surface

$$\Sigma:\left\{t=const \ ; \ r^2+\ell^2\rho=R^2\right\}$$

- Substitute in extremization condition. Verify that it is satisfied.
- Compute area integral explicitly. Split integral into radial part and boundary part.
- Integral diverges. Expand in powers of the radial coordinate.
 For d=odd, universal part is finite. For d=even, universal part is log-divergent.
- Later: How to obtain the universal part directly (Kounterterm renormalization).

Example: Spherical entangling surface

$$\Sigma:\left\{t=const \ ; \ r^2+\ell^2\rho=R^2\right\}$$

- Substitute in extremization condition. Verify that it is satisfied.
- Compute area integral explicitly. Split integral into radial part and boundary part.
- Integral diverges. Expand in powers of the radial coordinate.
 For d=odd, universal part is finite. For d=even, universal part is log-divergent.
- Later: How to obtain the universal part directly (Kounterterm renormalization).

Entanglement Entropy and Replica Trick

HEE and RT prescription

We had the RT formula (for Einstein-AdS) [hep-th/0603001]:

$$S_{EE}=rac{Vol(\Sigma)}{4G}.$$

- We motivate this formula by using the Replica Trick, considering conically singular manifolds and following Lewkowycz and Maldacena [1304.4926].
- S_{EE} can be expressed in terms of derivatives on on-shell gravity actions. Useful for considering other theories of gravity and for renormalizing the EE.

Entanglement Entropy and Replica Trick

HEE and RT prescription

We had the RT formula (for Einstein-AdS) [hep-th/0603001]:

$$S_{EE}=rac{Vol(\Sigma)}{4G}.$$

- We motivate this formula by using the Replica Trick, considering conically singular manifolds and following Lewkowycz and Maldacena [1304.4926].
- S_{EE} can be expressed in terms of derivatives on on-shell gravity actions. Useful for considering other theories of gravity and for renormalizing the EE.

Entanglement Entropy and Replica Trick

HEE and RT prescription

We had the RT formula (for Einstein-AdS) [hep-th/0603001]:

$$S_{EE}=rac{Vol(\Sigma)}{4G}.$$

- We motivate this formula by using the Replica Trick, considering conically singular manifolds and following Lewkowycz and Maldacena [1304.4926].
- S_{EE} can be expressed in terms of derivatives on on-shell gravity actions. Useful for considering other theories of gravity and for renormalizing the EE.

Entanglement Entropy and Replica Trick

HEE and RT prescription

We had the RT formula (for Einstein-AdS) [hep-th/0603001]:

$$S_{EE} = rac{Vol(\Sigma)}{4G}.$$

- We motivate this formula by using the Replica Trick, considering conically singular manifolds and following Lewkowycz and Maldacena [1304.4926].
- S_{EE} can be expressed in terms of derivatives on on-shell gravity actions. Useful for considering other theories of gravity and for renormalizing the EE.

Entanglement Entropy and Replica Trick

Replica Trick

EE can be computed as

$$S_{EE} = \lim_{m \to 1} -\frac{1}{m-1} \ln(tr\left(\widehat{\rho}_A^m\right)).$$

- For evaluating $tr(\hat{\rho}_A^m)$, construct branched cover manifold C_m from m copies of CFT, cyclically permuted by 2π rotations along complexified time. Define orbifold $\hat{C}_m = C_m/Z_m$ as quotient of cover manifold by the permutation symmetry. (Cardy and Calabrese [0905.4013])
- In saddle-point approximation, AdS bulk orbifold \hat{M}_m is constructed from boundary orbifold \hat{C}_m on-shell. Then, $ln(tr(\hat{\rho}_A^m)) = m(ln(Z(\hat{C}_m)) - ln(Z(\hat{C}_1)))$, and $ln(Z(\hat{C}_m)) = -l_E(\hat{M}_m)$.

Entanglement Entropy and Replica Trick

Replica Trick

EE can be computed as

$$S_{EE} = \lim_{m \to 1} - \frac{1}{m-1} \ln(tr\left(\widehat{
ho}_{A}^{m}
ight)).$$

- For evaluating $tr(\hat{\rho}_A^m)$, construct branched cover manifold C_m from m copies of CFT, cyclically permuted by 2π rotations along complexified time. Define orbifold $\hat{C}_m = C_m/Z_m$ as quotient of cover manifold by the permutation symmetry. (Cardy and Calabrese [0905.4013])
- In saddle-point approximation, AdS bulk orbifold \widehat{M}_m is constructed from boundary orbifold \widehat{C}_m on-shell. Then, $ln(tr(\widehat{\rho}_A^m)) = m\left(ln(Z(\widehat{C}_m)) - ln(Z(\widehat{C}_1))\right)$, and $ln(Z(\widehat{C}_m)) = -l_E(\widehat{M}_m)$.

Entanglement Entropy and Replica Trick

Replica Trick

EE can be computed as

$$S_{EE} = \lim_{m \to 1} - \frac{1}{m-1} \ln(tr\left(\widehat{
ho}_{A}^{m}
ight)).$$

- For evaluating $tr(\hat{\rho}_A^m)$, construct branched cover manifold C_m from m copies of CFT, cyclically permuted by 2π rotations along complexified time. Define orbifold $\hat{C}_m = C_m/Z_m$ as quotient of cover manifold by the permutation symmetry. (Cardy and Calabrese [0905.4013])
- In saddle-point approximation, AdS bulk orbifold \widehat{M}_m is constructed from boundary orbifold \widehat{C}_m on-shell. Then, $ln(tr(\widehat{\rho}_A^m)) = m(ln(Z(\widehat{C}_m)) - ln(Z(\widehat{C}_1)))$, and $ln(Z(\widehat{C}_m)) = -I_E(\widehat{M}_m).$

Entanglement Entropy and Replica Trick

Replica Trick

Therefore,

$$S_{EE} = \lim_{m \to 1} \frac{m}{m-1} (I_E(\widehat{M}_m) - I_E(\widehat{M}_1)) = m^2 \partial_m I_E\left(\widehat{M}_m\right)\Big|_{m=1}.$$

- Orbifold \dot{M}_m has conical singularity at fixed point set of Z_m . It is a squashed-cone (no U(1) isometry). Angular deficit of $2\pi(1-\alpha) = 2\pi(1-\frac{1}{m})$.
- \widehat{M}_m sourced by codimension-2 cosmic brane with tension $T(m) = \frac{(m-1)}{4mG}$ coupled through NG action (Xi Dong [1601.06788]; Lewkowycz and Maldacena [1304.4926]).
- We consider

$$S_{EE} = -\partial_{\alpha} I_E \left(\widehat{M}_D^{(\alpha)} \right) \Big|_{\alpha=1}$$

Sac

Entanglement Entropy and Replica Trick

Replica Trick

Therefore,

$$S_{EE} = \lim_{m \to 1} \frac{m}{m-1} (I_E(\widehat{M}_m) - I_E(\widehat{M}_1)) = m^2 \partial_m I_E\left(\widehat{M}_m\right)\Big|_{m=1}.$$

- Orbifold \widehat{M}_m has conical singularity at fixed point set of Z_m . It is a squashed-cone (no U(1) isometry). Angular deficit of $2\pi(1-\alpha) = 2\pi(1-\frac{1}{m})$.
- *M_m* sourced by codimension-2 cosmic brane with tension
 T (*m*) = (*m*-1)/(4*mG*) coupled through NG action (Xi Dong
 [1601.06788]; Lewkowycz and Maldacena [1304.4926]).

 We consider

$$S_{EE} = -\partial_{\alpha} I_E \left(\widehat{M}_D^{(\alpha)} \right) \Big|_{\alpha=1}$$

Entanglement Entropy and Replica Trick

Replica Trick

Therefore,

$$S_{EE} = \lim_{m \to 1} \frac{m}{m-1} (I_E(\widehat{M}_m) - I_E(\widehat{M}_1)) = m^2 \partial_m I_E\left(\widehat{M}_m\right) \Big|_{m=1}$$

- Orbifold \widehat{M}_m has conical singularity at fixed point set of Z_m . It is a squashed-cone (no U(1) isometry). Angular deficit of $2\pi(1-\alpha) = 2\pi(1-\frac{1}{m})$.
- *M̂_m* sourced by codimension-2 cosmic brane with tension
 T (*m*) = ^(m-1)/_{4mG} coupled through NG action (Xi Dong [1601.06788]; Lewkowycz and Maldacena [1304.4926]).
- We consider

$$S_{EE} = -\partial_{\alpha} I_E \left(\widehat{M}_D^{(\alpha)} \right) \Big|_{\alpha=1}$$

Entanglement Entropy and Replica Trick

Replica Trick

Therefore,

$$S_{EE} = \lim_{m \to 1} \frac{m}{m-1} (I_E(\widehat{M}_m) - I_E(\widehat{M}_1)) = m^2 \partial_m I_E\left(\widehat{M}_m\right) \Big|_{m=1}$$

- Orbifold \widehat{M}_m has conical singularity at fixed point set of Z_m . It is a squashed-cone (no U(1) isometry). Angular deficit of $2\pi(1-\alpha) = 2\pi(1-\frac{1}{m})$.
- \widehat{M}_m sourced by codimension-2 cosmic brane with tension $T(m) = \frac{(m-1)}{4mG}$ coupled through NG action (Xi Dong [1601.06788]; Lewkowycz and Maldacena [1304.4926]).
- We consider

$$S_{EE} = -\partial_{\alpha}I_{E}\left(\widehat{M}_{D}^{(\alpha)}\right)\Big|_{\alpha=1}$$

Entanglement Entropy and Replica Trick

Euclidean Einstein-Hilbert Action and Ryu-Takayanagi

• Consider Euclidean EH action evaluated in orbifold $\widehat{M}_D^{(\alpha)}$,

$$I_{E}^{EH} = \frac{1}{16\pi G} \left(\int_{\hat{M}_{D}^{(\alpha)}} d^{D}x \sqrt{G} \left(R^{(\alpha)} - 2\Lambda \right) \right)$$

٠

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Using that

$$R^{(\alpha)} = R + 4\pi \left(1 - \alpha\right) \delta_{\Sigma}$$

(Fursaev, Patrushev and Solodukhin [1306.4000]), *S_{EE}* is then given by area prescription of RT.

 S_{EE} is divergent. Have to use renormalized action to obtain universal part. Entanglement Entropy and Replica Trick

Euclidean Einstein-Hilbert Action and Ryu-Takayanagi

• Consider Euclidean EH action evaluated in orbifold $\widehat{M}_D^{(\alpha)}$,

$$I_{E}^{EH} = \frac{1}{16\pi G} \left(\int_{\hat{M}_{D}^{(\alpha)}} d^{D}x \sqrt{G} \left(R^{(\alpha)} - 2\Lambda \right) \right)$$

Using that

$$R^{(\alpha)} = R + 4\pi \left(1 - \alpha\right) \delta_{\Sigma}$$

(Fursaev, Patrushev and Solodukhin [1306.4000]), S_{EE} is then given by area prescription of RT.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 S_{EE} is divergent. Have to use renormalized action to obtain universal part. Entanglement Entropy and Replica Trick

Euclidean Einstein-Hilbert Action and Ryu-Takayanagi

• Consider Euclidean EH action evaluated in orbifold $\widehat{M}_D^{(\alpha)}$,

$$I_{E}^{EH} = \frac{1}{16\pi G} \left(\int_{\hat{M}_{D}^{(\alpha)}} d^{D} x \sqrt{G} \left(R^{(\alpha)} - 2\Lambda \right) \right)$$

Using that

$$R^{(\alpha)} = R + 4\pi \left(1 - \alpha\right) \delta_{\Sigma}$$

(Fursaev, Patrushev and Solodukhin [1306.4000]), S_{EE} is then given by area prescription of RT.

 S_{EE} is divergent. Have to use renormalized action to obtain universal part.

Euler density and Chern form for 4D squashed cones

For manifolds with a squashed-cone singularity (no U(1) isometry), in D = 4, we have (Fursaev, Patrushev and Solodukhin [1306.4000])

$$\int_{M_4^{(\alpha)}} \mathcal{E}_4^{(\alpha)} = \int_{M_4} \mathcal{E}_4^{(r)} + 8\pi \left(1 - \alpha\right) \int_{\Sigma} \mathcal{E}_2.$$

Then, by the Euler theorem, we also have

$$\int_{\partial M_4^{(\alpha)}} B_3^{(\alpha)} = \int_{\partial M_4} B_3^{(r)} + 8\pi (1-\alpha) \int_{\partial \Sigma} B_1.$$

Euler density and Chern form for 4D squashed cones

For manifolds with a squashed-cone singularity (no U(1) isometry), in D = 4, we have (Fursaev, Patrushev and Solodukhin [1306.4000])

$$\int_{M_4^{(\alpha)}} \mathcal{E}_4^{(\alpha)} = \int_{M_4} \mathcal{E}_4^{(r)} + 8\pi \left(1 - \alpha\right) \int_{\Sigma} \mathcal{E}_2.$$

Then, by the Euler theorem, we also have

$$\int_{\partial M_4^{(\alpha)}} B_3^{(\alpha)} = \int_{\partial M_4} B_3^{(r)} + 8\pi (1-\alpha) \int_{\partial \Sigma} B_1.$$

Generalization to higher even-dimensional manifolds

We assume that, for arbitrary even-dimensional squashed-cones,

$$\int_{\mathcal{M}_{2n}^{(\alpha)}} \mathcal{E}_{2n}^{(\alpha)} = \int_{\mathcal{M}_{2n}} \mathcal{E}_{2n}^{(r)} + 4n\pi \left(1 - \alpha\right) \int_{\Sigma} \mathcal{E}_{2n-2},$$

and

$$\int_{\partial M_{2n}^{(\alpha)}} B_{2n-1}^{(\alpha)} = \int_{\partial M_{2n}} B_{2n-1}^{(r)} + 4n\pi (1-\alpha) \int_{\partial \Sigma} B_{2n-3}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Generalization to odd-dimensional manifolds

 By analogy with the even-dimensional case, we also assume that

$$\int_{\partial M_{2n+1}^{(\alpha)}} B_{2n}^{(\alpha)} = \int_{\partial M_{2n+1}} B_{2n}^{(r)} + 4\pi n (1-\alpha) \int_{\partial \Sigma} B_{2n-2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Then, the extrinsically renormalized Euclidean action on the Replica orbifold can be easily evaluated.

Generalization to odd-dimensional manifolds

 By analogy with the even-dimensional case, we also assume that

$$\int_{\partial M_{2n+1}^{(\alpha)}} B_{2n}^{(\alpha)} = \int_{\partial M_{2n+1}} B_{2n}^{(r)} + 4\pi n (1-\alpha) \int_{\partial \Sigma} B_{2n-2}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Then, the extrinsically renormalized Euclidean action on the Replica orbifold can be easily evaluated.

Euclidean action on replica orbifold

In particular, we find that

$$I_{E}^{ren}\left[\widehat{M}_{2n}^{(\alpha)}\right] = I_{E}^{ren}\left[\widehat{M}_{2n}^{(\alpha)} \setminus \Sigma\right] + \frac{(1-\alpha)}{4G} Area_{ren}\left[\Sigma\right]$$

$$Area_{ren}\left[\Sigma\right] = \begin{cases} Area\left[\Sigma\right] + \frac{(-1)^{n}\ell^{2(n-1)}}{[2(n-1)!]} \int B_{2n-3}; \ D = 2n \\ \partial \Sigma \\ Area\left[\Sigma\right] + \frac{(-1)^{n}\ell^{2(n-1)}}{2^{2(n-1)}[(n-1)!]^{2}} \int B_{2n-2}; \ D = 2n+1 \end{cases}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Area_{ren} [Σ] is the renormalized area of the cosmic brane with tension T (the RT surface for T → 0).

Euclidean action on replica orbifold

In particular, we find that

$$I_{E}^{ren}\left[\widehat{M}_{2n}^{(\alpha)}\right] = I_{E}^{ren}\left[\widehat{M}_{2n}^{(\alpha)} \setminus \Sigma\right] + \frac{(1-\alpha)}{4G} Area_{ren}\left[\Sigma\right]$$

$$Area_{ren}\left[\Sigma\right] = \begin{cases} Area\left[\Sigma\right] + \frac{(-1)^{n}\ell^{2(n-1)}}{[2(n-1)!]} \int\limits_{\partial\Sigma} B_{2n-3} ; D = 2n \\ Area\left[\Sigma\right] + \frac{(-1)^{n}\ell^{2(n-1)}}{2^{2(n-1)}[(n-1)!]^{2}} \int\limits_{\partial\Sigma} B_{2n-2} ; D = 2n+1 \end{cases}$$

 Area_{ren} [Σ] is the renormalized area of the cosmic brane with tension T (the RT surface for T → 0). EE as the renormalized area of the RT surface

EE as the renormalized area of the RT surface

 We considering the replica definition of renormalized EE given by

$$S_{EE}^{ren} = -\partial_{\alpha} I_{E}^{ren} \left(\widehat{M}_{2n}^{(\alpha)} \right) \Big|_{\alpha=1}$$

Then, we obtain $S_{EE}^{ren} = \frac{Area_{ren}(\Sigma)}{4G}.$

Renormalized EE is then obtained from the RT formula but considering the renormalized area of the extremal surface.

EE as the renormalized area of the RT surface

EE as the renormalized area of the RT surface

 We considering the replica definition of renormalized EE given by

$$S_{EE}^{ren} = -\partial_{\alpha} I_{E}^{ren} \left(\widehat{M}_{2n}^{(\alpha)} \right) \Big|_{\alpha=1}$$

Then, we obtain

$$S_{EE}^{ren} = rac{Area_{ren}(\Sigma)}{4G}$$

Renormalized EE is then obtained from the RT formula but considering the renormalized area of the extremal surface. EE as the renormalized area of the RT surface

EE as the renormalized area of the RT surface

 We considering the replica definition of renormalized EE given by

$$S_{EE}^{ren} = -\partial_{\alpha} I_{E}^{ren} \left(\widehat{M}_{2n}^{(\alpha)} \right) \Big|_{\alpha=1}$$

Then, we obtain

$$S_{EE}^{ren} = rac{Area_{ren}(\Sigma)}{4G}.$$

Renormalized EE is then obtained from the RT formula but considering the renormalized area of the extremal surface.

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D CFT)

EE can be written as

$$S_{EE}^{ren} = -\frac{\ell^2}{8G(2n-3)} \left(\int_{\Sigma} d^{2n-2} y \sqrt{\gamma} \ell^{2(n-2)} P_{2n-2} \left[\mathcal{F} \right] - c_{2n-2} \left(4\pi \right)^{n-1} (n-1)! \chi \left[\Sigma \right] \right).$$

For D = 4, the renormalized EE entropy is given by

$$\widetilde{S}_{m}^{ren} = \frac{\ell^{2}}{16G} \int_{\Sigma_{T}} d^{2}y \sqrt{\gamma} \delta^{[b_{1}b_{2}]}_{[a_{1}a_{2}]} \mathcal{F}_{AdS}{}^{a_{1}a_{2}}_{b_{1}b_{2}} - \frac{\pi\ell^{2}}{2G} \chi \left[\Sigma_{T}\right],$$

in agreement with Alexakis and Mazzeo's formula [math/0504161] for renormalized area of extremal surfaces.

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D CFT)

EE can be written as

$$S_{EE}^{ren} = -\frac{\ell^2}{8G(2n-3)} \left(\int_{\Sigma} d^{2n-2} y \sqrt{\gamma} \ell^{2(n-2)} P_{2n-2} \left[\mathcal{F} \right] - c_{2n-2} \left(4\pi \right)^{n-1} (n-1)! \chi \left[\Sigma \right] \right).$$

• For D = 4, the renormalized EE entropy is given by

$$\widetilde{S}_{m}^{ren} = \frac{\ell^2}{16G} \int\limits_{\Sigma_{T}} d^2 y \sqrt{\gamma} \delta^{[b_1 b_2]}_{[a_1 a_2]} \mathcal{F}_{AdS}{}^{a_1 a_2}_{b_1 b_2} - \frac{\pi \ell^2}{2G} \chi \left[\Sigma_T \right],$$

in agreement with Alexakis and Mazzeo's formula [math/0504161] for renormalized area of extremal surfaces.

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D CFT)

- EE is separated into a geometric part (∫ P_{2n-2} [F]) and a purely topological part (χ [Σ]).
- Geometric part is zero when extremal surface has constant curvature.
- Topological part is robust against continuous deformations of the entangling surface.

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D CFT)

- EE is separated into a geometric part (∫ P_{2n-2} [F]) and a purely topological part (χ [Σ]).
- Geometric part is zero when extremal surface has constant curvature.
- Topological part is robust against continuous deformations of the entangling surface.

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D CFT)

- EE is separated into a geometric part (∫ P_{2n-2} [F]) and a purely topological part (χ [Σ]).
- Geometric part is zero when extremal surface has constant curvature.
- Topological part is robust against continuous deformations of the entangling surface.

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D CFT)

- EE is separated into a geometric part (∫ P_{2n-2} [F]) and a purely topological part (χ [Σ]).
- Geometric part is zero when extremal surface has constant curvature.
- Topological part is robust against continuous deformations of the entangling surface.

EE as the renormalized area of the RT surface

Example: Ball-shaped Entangling Region in AdS_{2n}/CFT_{2n-1}

- Minimal RT surface Σ , parametrized by $\Sigma : \{t = const; r^2 + \ell^2 \rho = R^2\}$, is a constant curvature manifold $\rightarrow \mathcal{F}_{AdS} = 0$.
- Σ is topologically equivalent to a (2n-2)-ball $\rightarrow \chi[\Sigma] = 1$. • Therefore,

$$S_{EE}^{ren} = \frac{(-1)^{n+1} (4\pi)^{(n-1)} (n-1)! \ell^{2(n-1)}}{4G (2n-2)!}.$$

- Result agrees with the calculation by Kawano, Nakaguchi and Nishioka [1410.5973].
- The renormalized Rényi entropy is computed in [1806.10708], using CHM map.

EE as the renormalized area of the RT surface

Example: Ball-shaped Entangling Region in AdS_{2n}/CFT_{2n-1}

- Minimal RT surface Σ , parametrized by $\Sigma : \{t = const; r^2 + \ell^2 \rho = R^2\}$, is a constant curvature manifold $\rightarrow \mathcal{F}_{AdS} = 0$.
- Σ is topologically equivalent to a (2n-2)-ball $\rightarrow \chi[\Sigma] = 1$. • Therefore,

$$S_{EE}^{ren} = \frac{(-1)^{n+1} (4\pi)^{(n-1)} (n-1)! \ell^{2(n-1)}}{4G (2n-2)!}.$$

- Result agrees with the calculation by Kawano, Nakaguchi and Nishioka [1410.5973].
- The renormalized Rényi entropy is computed in [1806.10708], using CHM map.
EE as the renormalized area of the RT surface

Example: Ball-shaped Entangling Region in AdS_{2n}/CFT_{2n-1}

- Minimal RT surface Σ , parametrized by $\Sigma : \{t = const ; r^2 + \ell^2 \rho = R^2\}$, is a constant curvature manifold $\rightarrow \mathcal{F}_{AdS} = 0$.
- Σ is topologically equivalent to a (2n-2)-ball $\rightarrow \chi[\Sigma] = 1$.
- Therefore,

$$S_{EE}^{ren} = \frac{\left(-1\right)^{n+1} \left(4\pi\right)^{\left(n-1\right)} \left(n-1\right)! \ell^{2(n-1)}}{4G \left(2n-2\right)!}.$$

- Result agrees with the calculation by Kawano, Nakaguchi and Nishioka [1410.5973].
- The renormalized Rényi entropy is computed in [1806.10708], using CHM map.

EE as the renormalized area of the RT surface

Example: Ball-shaped Entangling Region in AdS_{2n}/CFT_{2n-1}

- Minimal RT surface Σ , parametrized by $\Sigma : \{t = const; r^2 + \ell^2 \rho = R^2\}$, is a constant curvature manifold $\rightarrow \mathcal{F}_{AdS} = 0$.
- Σ is topologically equivalent to a (2n-2)-ball $\rightarrow \chi[\Sigma] = 1$.
- Therefore,

$$S_{EE}^{ren} = \frac{(-1)^{n+1} (4\pi)^{(n-1)} (n-1)! \ell^{2(n-1)}}{4G (2n-2)!}.$$

- Result agrees with the calculation by Kawano, Nakaguchi and Nishioka [1410.5973].
- The renormalized Rényi entropy is computed in [1806.10708], using CHM map.

EE as the renormalized area of the RT surface

Example: Ball-shaped Entangling Region in AdS_{2n}/CFT_{2n-1}

- Minimal RT surface Σ , parametrized by $\Sigma : \{t = const; r^2 + \ell^2 \rho = R^2\}$, is a constant curvature manifold $\rightarrow \mathcal{F}_{AdS} = 0$.
- Σ is topologically equivalent to a (2n-2)-ball $\rightarrow \chi[\Sigma] = 1$.
- Therefore,

$$S_{EE}^{ren} = \frac{(-1)^{n+1} (4\pi)^{(n-1)} (n-1)! \ell^{2(n-1)}}{4G (2n-2)!}.$$

- Result agrees with the calculation by Kawano, Nakaguchi and Nishioka [1410.5973].
- The renormalized Rényi entropy is computed in [1806.10708], using CHM map.

EE as the renormalized area of the RT surface

Interpretation of renormalized EE (in even-dimensional CFT)

- For even-D CFTs, the renormalized EE is logarithmically divergent and it corresponds to the universal part.
- It contains the information about the conformal anomaly of the CFT.
- In particular, for ball-shaped entangling regions, we have

$$S_{EE}^{ren} = 2 \left(-1\right)^n \log\left(\varepsilon\right) A$$
$$A = \frac{\ell^{(2n-1)} \pi^{(n-1)}}{8G \left(n-1\right)!},$$

in agreement with Myers and Sinha [1006.1263]

EE as the renormalized area of the RT surface

Interpretation of renormalized EE (in even-dimensional CFT)

- For even-D CFTs, the renormalized EE is logarithmically divergent and it corresponds to the universal part.
- It contains the information about the conformal anomaly of the CFT.
- In particular, for ball-shaped entangling regions, we have

$$S_{EE}^{ren} = 2 \left(-1\right)^n \log\left(\varepsilon\right) A$$
$$A = \frac{\ell^{(2n-1)} \pi^{(n-1)}}{8G \left(n-1\right)!},$$

in agreement with Myers and Sinha [1006.1263]

EE as the renormalized area of the RT surface

Interpretation of renormalized EE (in even-dimensional CFT)

- For even-D CFTs, the renormalized EE is logarithmically divergent and it corresponds to the universal part.
- It contains the information about the conformal anomaly of the CFT.
- In particular, for ball-shaped entangling regions, we have

$$S_{EE}^{ren} = 2 \left(-1\right)^n \log\left(\varepsilon\right) A$$
$$A = \frac{\ell^{(2n-1)} \pi^{(n-1)}}{8G(n-1)!},$$

in agreement with Myers and Sinha [1006.1263].

Outlook

- Renormalized EE equal to the universal part of EE. Related to parameters of CFT, e.g., a*-charge (odd-d CFT) or A-anomaly coefficient (even-d CFT).
- a* and the A-anomaly coefficient are conjectured to be C-function candidates (e.g., Myers and Sinha [1006.1263]).
- Renormalized EE is renormalized volume of codimension-2 RT surface. Einstein-AdS action is renormalized volume of bulk.
- Renormalized volume of the (even-D) bulk written as Euler characteristic plus (Einstein sector of) conformal invariant. May give hints for higher-dimensional conformal gravity.

- Outlook

- Renormalized EE equal to the universal part of EE. Related to parameters of CFT, e.g., a*-charge (odd-d CFT) or A-anomaly coefficient (even-d CFT).
- a* and the A-anomaly coefficient are conjectured to be C-function candidates (e.g., Myers and Sinha [1006.1263]).
- Renormalized EE is renormalized volume of codimension-2 RT surface. Einstein-AdS action is renormalized volume of bulk.
- Renormalized volume of the (even-D) bulk written as Euler characteristic plus (Einstein sector of) conformal invariant. May give hints for higher-dimensional conformal gravity.

Outlook

- Renormalized EE equal to the universal part of EE. Related to parameters of CFT, e.g., a*-charge (odd-d CFT) or A-anomaly coefficient (even-d CFT).
- a* and the A-anomaly coefficient are conjectured to be C-function candidates (e.g., Myers and Sinha [1006.1263]).
- Renormalized EE is renormalized volume of codimension-2 RT surface. Einstein-AdS action is renormalized volume of bulk.
- Renormalized volume of the (even-D) bulk written as Euler characteristic plus (Einstein sector of) conformal invariant. May give hints for higher-dimensional conformal gravity.

Outlook

- Renormalized EE equal to the universal part of EE. Related to parameters of CFT, e.g., a*-charge (odd-d CFT) or A-anomaly coefficient (even-d CFT).
- a* and the A-anomaly coefficient are conjectured to be C-function candidates (e.g., Myers and Sinha [1006.1263]).
- Renormalized EE is renormalized volume of codimension-2 RT surface. Einstein-AdS action is renormalized volume of bulk.
- Renormalized volume of the (even-D) bulk written as Euler characteristic plus (Einstein sector of) conformal invariant. May give hints for higher-dimensional conformal gravity.

- To finish and publish the analysis for even-D Einstein-AdS dual to odd-d CFTs.
- To generalize the method to higher curvature theories like Lovelock Gravity.
- To study the application of the procedure to other Quantum Information Theoretic (QIT) measures like complexity (see [1710.01327] for the particular case of AdS₃).
- To investigate the possible relation of the form of the renormalized volume with higher-dimensional conformal gravity.

- To finish and publish the analysis for even-D Einstein-AdS dual to odd-d CFTs.
- To generalize the method to higher curvature theories like Lovelock Gravity.
- To study the application of the procedure to other Quantum Information Theoretic (QIT) measures like complexity (see [1710.01327] for the particular case of AdS₃).
- To investigate the possible relation of the form of the renormalized volume with higher-dimensional conformal gravity.

- To finish and publish the analysis for even-D Einstein-AdS dual to odd-d CFTs.
- To generalize the method to higher curvature theories like Lovelock Gravity.
- To study the application of the procedure to other Quantum Information Theoretic (QIT) measures like complexity (see [1710.01327] for the particular case of AdS₃).
- To investigate the possible relation of the form of the renormalized volume with higher-dimensional conformal gravity.

- To finish and publish the analysis for even-D Einstein-AdS dual to odd-d CFTs.
- To generalize the method to higher curvature theories like Lovelock Gravity.
- To study the application of the procedure to other Quantum Information Theoretic (QIT) measures like complexity (see [1710.01327] for the particular case of AdS₃).
- To investigate the possible relation of the form of the renormalized volume with higher-dimensional conformal gravity.