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Kounterterm Renormalization

Kounterterms

Kounterterms is an alternative counterterm series whose main
characteristic is its explicit dependence on the extrinsic
curvature Kij . [Olea, hep-th/0610230 and hep-th/0504233].

In even dimensions, they originate from the addition of a
topological invariant to the Einstein- Hilbert action ⇒
Topological Renormalization

An analogous renormalization scheme is defined in
odd-dimensions

The Kounterterm expansion can be written in closed form.
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Kounterterms in even dimensions

Topological Renormalization in even dimensions

EH action+Euler term:

Iren =
1

16πG

∫
M
d2nx

√
−G (R − 2Λ

+ α2nδ
[ν1...ν2n]
[µ1...µ2n

]R
µ1µ2
ν1ν2
· · ·Rµ2n−1µ2n

ν2n−1ν2n

)
for

α2n = (−1)n
`2n−2

2nn (2n − 2)!

Euler theorem in D = 2n dimensions:∫
M
d2nxE2n = (4π)n n!χ (M) +

∫
∂M

d2n−1xB2n−1

Renormalized action:

Iren = IEH +
c2n−1

16πG

∫
∂M

d2n−1xB2n−1 (h,K ,R)
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Kounterterms in even dimensions

Surface term: n-th Chern form

The n-th Chern form is given by

B2n−1 =2n
√
h

∫ 1

0
dtδ

[i1...i2n−1]
[j1...j2n−1]K

j1
i1

(
1

2
Rj2j3

i2i3
(h)− t2K j2

i2
K j3
i3

)
×

. . .×
(

1

2
Rj2n−2j2n−1

i2n−2i2n−1
(h)− t2K

j2n−2

i2n−2
K

j2n−1

i2n−1

)
and the coefficient

c2n−1 =
(−1)n `2n−2

n (2n − 2)!

The surface term B2n−1 is the boundary correction of the
Euler theorem.
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Kounterterms in odd dimensions

Kounterterms in odd dimensions

Kounterterm-renormalized Einstein-AdS action in odd-D given
by

I renEH = IEH +
c2n

16πG

∫
∂M

B2n

c2n =
(−1)n `2(n−1)

22(n−1)n [(n − 1)!]2

The extrinsic counterterm B2n is

B2n = −2nd2nx
√
−hδ[j1···j2n]

[i1···i2n]

1∫
0

dt

t∫
0

dsδi1j1K
i2
j2

(
1

2
Ri3i4

j3j4
− t2K i3

j3
K i4
j4

+
s2

`2
δi3j3δ

i4
j4

)
· · ·
(

1

2
Ri2n−1i2n

j2n−1j2n
− t2K

i2n−1

j2n−1
K i2n
j2n

+
s2

`2
δ
i2n−1

j2n−1
δi2nj2n

)
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Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

We consider

ds2
Sch =

dr2

f 2 (r)
− f 2 (r) dt2 + r2σmn (y) dymdyn

f 2 = k +
r2

`2
− µ

r2
;
(
f 2
)′

=
2r

`2
+

2µ

r3
;
(
f 2
)′′

=
2

`2
− 6µ

r4

Riemann and extrinsic curvature (radial foliation) are

K i
j = − 1

2N
hik∂rhkj =

[
−f ′ 0

0 − f
r δ

m
n

]
Rtr
tr = −1

2

(
f 2
)′′

; Rtn
tm = R rn

rm = − 1

2r

(
f 2
)′
δnm

Rmn
kl =

1

r2

(
k − f 2

)
δ

[mn]
[kl ] ; Rn1n2

m1m2
=

k

r2
δ

[n1n2]
[m1m2]



Entanglement Entropy from Holography Part 3

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

We consider

ds2
Sch =

dr2

f 2 (r)
− f 2 (r) dt2 + r2σmn (y) dymdyn

f 2 = k +
r2

`2
− µ

r2
;
(
f 2
)′

=
2r

`2
+

2µ

r3
;
(
f 2
)′′

=
2

`2
− 6µ

r4

Riemann and extrinsic curvature (radial foliation) are

K i
j = − 1

2N
hik∂rhkj =

[
−f ′ 0

0 − f
r δ

m
n

]
Rtr
tr = −1

2

(
f 2
)′′

; Rtn
tm = R rn

rm = − 1

2r

(
f 2
)′
δnm

Rmn
kl =

1

r2

(
k − f 2

)
δ

[mn]
[kl ] ; Rn1n2

m1m2
=

k

r2
δ

[n1n2]
[m1m2]



Entanglement Entropy from Holography Part 3

Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Euclidean E-H action gives

IEH =
1

16πG

∫
M

d5x
√
−G

(
R +

12

`2

)

IEEH =
1

16πG

β∫
0

dτ

∫
Σk,3

√
σd3y

∞∫
rh

drr3

[(
f 2
)′′

+
3
(
f 2
)′

r

]

And considering the form of f 2(r),

IEEH =
βVol (Σk,3)

16πG

[(
f 2
)′
r3
]∣∣∣∞

rh
= −S +

2

3
βM +

βVol (Σk,3)

16πG
lim
r→∞

[
2r4

`2

]
S =

Vol (Σk,3) r3
h

4G
=

Area [H]

4G
; M =

3Vol (Σk,3)µ

16πG
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Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Euclidean Einstein-Hilbert part missing 1
3 of the mass, it also has a

volume divergence. B3 fixes both issues. Explicitly:

Iren = IEH + IB4 ; IB4 =
c4

16πG

∫
∂M

B4 ; c4 =
`2

8

B4 = −4d4x
√
−h

1∫
0

dt

t∫
0

dsδ
[j1···j4]
[i1···i4]δ

i1
j1
K i2
j2

(
1

2
Ri3i4

j3j4
− t2K i3

j3
K i4
j4

+
s2

`2
δi3j3δ

i4
j4

)

IEB4
=

1

16πG

3`2

2
βVol (Σk,3) lim

r→∞

 r3
(
f 2
)′ (k−f 2

r2 + 1
3`2

)
+(

2f 2 − r
(
f 2
)′)(k

2 −
f 2

4 + r2

4`2

) 
IEB4

=
βVol (Σk,3)

16πG
lim
r→∞

[
µ+

3

2
`2k2 − 2r4

`2

]
+ [vanishing terms]
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Kounterterms in odd dimensions

Example, thermodynamics of 5D Schwarzschild-AdS

Therefore, we have

IEB4
=

1

3
βM −

βVol (Σk,3)

16πG
lim
r→∞

[
2r4

`2

]
+ βE0

E0 =
Vol (Σk,3)

16πG

(
3

2
`2k2

)
IEren = IEEH + IEB4

= −S + β (M + E0) = βF

The extrinsically renormalized Euclidean action then
reproduces the correct thermodynamics including the vacuum
energy (Miskovic and Olea, [1012.4867])
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Entanglement and Rényi Entropy in the AdS/CFT context

Holographic Entanglement Entropy

Using AdS/CFT, EE of spatial subregions in Holographic
CFTs can be obtained by geometric computation on bulk
gravity dual.

Holographic EE for Einstein-AdS bulk gravity is computed
using area prescription of Ryu-Takayanagi [hep-th/0603001]:

SEE =
Vol(Σ)

4G
.

Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary
B is required to be conformally cobordant to entangling
surface ∂A at conformal boundary C .

Covariant version of prescription constructed by Hubeni,
Rangamani and Takayanagi [0705.0016].
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Entanglement and Rényi Entropy in the AdS/CFT context

Holographic Entanglement Entropy

Using AdS/CFT, EE of spatial subregions in Holographic
CFTs can be obtained by geometric computation on bulk
gravity dual.

Holographic EE for Einstein-AdS bulk gravity is computed
using area prescription of Ryu-Takayanagi [hep-th/0603001]:

SEE =
Vol(Σ)

4G
.

Σ is minimal surface in AdS bulk. ∂Σ at spacetime boundary
B is required to be conformally cobordant to entangling
surface ∂A at conformal boundary C .

Covariant version of prescription constructed by Hubeni,
Rangamani and Takayanagi [0705.0016].



Entanglement Entropy from Holography Part 3
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Entanglement and Rényi Entropy in the AdS/CFT context

Ryu-Takayanagi Construction

Σ

ρ = 0 B

A
C

∂A

∂Σ

(A)AdS2n

CFT2n−1
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Entanglement and Rényi Entropy in the AdS/CFT context

Extremization of area functional

Area functional given by integral over codimension-2 surface
Σ of determinant of induced metric.

Consider an embedding function for Σ . I.e, write one
coordinate in terms of the others, at t = const.

Impose the extremization condition on the area functional and
derive the corresponding E-L equation.

Embedding has to satisfy resulting differential equation.

Explicit computation in [1712.09099, Appendix A].
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Entanglement and Rényi Entropy in the AdS/CFT context

Example: HEE of an interval in AdS3/CFT2

We consider global AdS3 in Poincaré coordinates which is dual
to a CFT2 in flat Minkowski spacetime, and an interval of
length L as the entangling region A:

ds2 =
dz2

z2
+

1

z2

(
−dt2 + dx2

)
A :

{(
t = const, x ∈

[
−L

2
,
L

2

])}
From the RT formula, EE of L is given by length of minimal
arc cobordant to A:

SEE =
1

4G

∫
Σ

dξ

√
1

z2
(z ′2 + x ′2)

z ′ =
dz

dξ
; x ′ =

dx

dξ
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Entanglement and Rényi Entropy in the AdS/CFT context

Example: HEE of an interval in AdS3/CFT2

Minimal arc given by geodesic in the bulk. Parametrized by:

Σ : {(x (ξ) , z (ξ))}ξ∈[0,π]

x (ξ) =
L

2
cos ξ ; z (ξ) =

L

2
sin ξ

Computing the length, we obtain

SEE = lim
ε→0

1

4G
2

π
2∫

2ε
L

dξ(
L
2

)
sin ξ

(
L

2

)√
sin2 ξ + cos2 ξ

= lim
ε→0

1

2G

π
2∫

2ε
L

dξ

sin ξ
= lim

ε→0

1

2G
ln

∣∣∣∣∣1 + cos
(

2ε
L

)
sin
(

2ε
L

) ∣∣∣∣∣ = lim
ε→0

1

2G
ln

∣∣∣∣Lε
∣∣∣∣
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Entanglement and Rényi Entropy in the AdS/CFT context
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Entanglement and Rényi Entropy in the AdS/CFT context

Example: HEE of an interval in AdS3/CFT2

The holographic dictionary for AdS3/CFT2 relates the central
charge of the CFT to the 3D Newton’s constant in the bulk.
The previous result for the EE computed in the CFT is
recovered:

c =
3

2G

SEE =
c

3
ln

∣∣∣∣Lε
∣∣∣∣

Computation reduced to a simple geometry problem!
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Entanglement and Rényi Entropy in the AdS/CFT context

Example: Spherical entangling surface

When ∂Σ is a sphere, embedding given by:

Σ :
{
t = const ; r2 + `2ρ = R2

}
Substitute in extremization condition. Verify that it is
satisfied.

Compute area integral explicitly. Split integral into radial part
and boundary part.

Integral diverges. Expand in powers of the radial coordinate.
For d=odd, universal part is finite. For d=even, universal part
is log-divergent.

Later: How to obtain the universal part directly (Kounterterm
renormalization).
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is log-divergent.

Later: How to obtain the universal part directly (Kounterterm
renormalization).
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Entanglement and Rényi Entropy in the AdS/CFT context

Example: Spherical entangling surface

When ∂Σ is a sphere, embedding given by:

Σ :
{
t = const ; r2 + `2ρ = R2

}
Substitute in extremization condition. Verify that it is
satisfied.

Compute area integral explicitly. Split integral into radial part
and boundary part.

Integral diverges. Expand in powers of the radial coordinate.
For d=odd, universal part is finite. For d=even, universal part
is log-divergent.

Later: How to obtain the universal part directly (Kounterterm
renormalization).



Entanglement Entropy from Holography Part 3

Entanglement Entropy and Replica Trick

HEE and RT prescription

We had the RT formula (for Einstein-AdS) [hep-th/0603001]:

SEE =
Vol(Σ)

4G
.

We motivate this formula by using the Replica Trick,
considering conically singular manifolds and following
Lewkowycz and Maldacena [1304.4926].

SEE can be expressed in terms of derivatives on on-shell
gravity actions. Useful for considering other theories of gravity
and for renormalizing the EE.
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Entanglement Entropy and Replica Trick

Replica Trick

EE can be computed as

SEE = lim
m→1
− 1

m − 1
ln(tr (ρ̂mA )).

For evaluating tr (ρ̂mA ), construct branched cover manifold Cm

from m copies of CFT, cyclically permuted by 2π rotations
along complexified time. Define orbifold Ĉm = Cm/Zm as
quotient of cover manifold by the permutation symmetry.
(Cardy and Calabrese [0905.4013])

In saddle-point approximation, AdS bulk orbifold M̂m is
constructed from boundary orbifold Ĉm on-shell. Then,

ln (tr (ρ̂mA )) = m
(
ln(Z (Ĉm))− ln(Z (Ĉ1))

)
, and

ln(Z (Ĉm)) = −IE (M̂m).
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ln(Z (Ĉm))− ln(Z (Ĉ1))
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Entanglement Entropy and Replica Trick

Replica Trick

Therefore,

SEE = lim
m→1

m

m − 1
(IE (M̂m)− IE (M̂1)) = m2∂mIE

(
M̂m

)∣∣∣
m=1

.

Orbifold M̂m has conical singularity at fixed point set of Zm.
It is a squashed-cone (no U(1) isometry). Angular deficit of
2π(1− α) = 2π(1− 1

m ).

M̂m sourced by codimension-2 cosmic brane with tension
T (m) = (m−1)

4mG coupled through NG action (Xi Dong
[1601.06788]; Lewkowycz and Maldacena [1304.4926]).

We consider
SEE = −∂αIE

(
M̂

(α)
D

)∣∣∣
α=1

.

Computation of SEE reduced to evaluating a derivative of

Euclidean action IE

(
M̂

(α)
D

)
.
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Entanglement Entropy and Replica Trick

Euclidean Einstein-Hilbert Action and Ryu-Takayanagi

Consider Euclidean EH action evaluated in orbifold M̂
(α)
D ,

IEHE =
1

16πG

 ∫
M̂

(α)
D

dDx
√
G
(
R(α) − 2Λ

) .

Using that
R(α) = R + 4π (1− α) δΣ

(Fursaev, Patrushev and Solodukhin [1306.4000]), SEE is then
given by area prescription of RT.

SEE is divergent. Have to use renormalized action to obtain
universal part.
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Going to codimension-2

Euler density and Chern form for 4D squashed cones

For manifolds with a squashed-cone singularity (no U(1)
isometry), in D = 4, we have (Fursaev, Patrushev and
Solodukhin [1306.4000])∫

M
(α)
4

E(α)
4 =

∫
M4

E(r)
4 + 8π (1− α)

∫
Σ

E2.

Then, by the Euler theorem, we also have∫
∂M

(α)
4

B
(α)
3 =

∫
∂M4

B
(r)
3 + 8π (1− α)

∫
∂Σ

B1.
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Going to codimension-2

Generalization to higher even-dimensional manifolds

We assume that, for arbitrary even-dimensional
squashed-cones,∫

M
(α)
2n

E(α)
2n =

∫
M2n

E(r)
2n + 4nπ (1− α)

∫
Σ

E2n−2,

and ∫
∂M

(α)
2n

B
(α)
2n−1 =

∫
∂M2n

B
(r)
2n−1 + 4nπ (1− α)

∫
∂Σ

B2n−3.



Entanglement Entropy from Holography Part 3

Going to codimension-2

Generalization to odd-dimensional manifolds

By analogy with the even-dimensional case, we also assume
that ∫

∂M
(α)
2n+1

B
(α)
2n =

∫
∂M2n+1

B
(r)
2n + 4πn (1− α)

∫
∂Σ

B2n−2

Then, the extrinsically renormalized Euclidean action on the
Replica orbifold can be easily evaluated.
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Going to codimension-2

Euclidean action on replica orbifold

In particular, we find that

I renE

[
M̂

(α)
2n

]
= I renE

[
M̂

(α)
2n \ Σ

]
+

(1− α)

4G
Arearen [Σ]

Arearen [Σ] =


Area [Σ] + (−1)n`2(n−1)

[2(n−1)!]

∫
∂Σ

B2n−3 ; D = 2n

Area [Σ] + (−1)n`2(n−1)

22(n−1)[(n−1)!]2

∫
∂Σ

B2n−2 ; D = 2n + 1

Arearen [Σ] is the renormalized area of the cosmic brane with
tension T (the RT surface for T → 0).
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EE as the renormalized area of the RT surface

We considering the replica definition of renormalized EE given
by

S ren
EE = −∂αI renE

(
M̂

(α)
2n

)∣∣∣
α=1

.

Then, we obtain

S ren
EE =

Arearen(Σ)

4G
.

Renormalized EE is then obtained from the RT formula but
considering the renormalized area of the extremal surface.
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EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D
CFT)

EE can be written as

S ren
EE = − `2

8G(2n−3)

∫
Σ

d2n−2y
√
γ`2(n−2)P2n−2 [F ]−

c2n−2 (4π)n−1 (n − 1)!χ [Σ]
)
.

For D = 4, the renormalized EE entropy is given by

S̃ ren
m =

`2

16G

∫
ΣT

d2y
√
γδ

[b1b2]
[a1a2] FAdS

a1a2
b1b2
− π`2

2G
χ [ΣT ] ,

in agreement with Alexakis and Mazzeo’s formula
[math/0504161] for renormalized area of extremal surfaces.



Entanglement Entropy from Holography Part 3

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D
CFT)

EE can be written as

S ren
EE = − `2

8G(2n−3)

∫
Σ

d2n−2y
√
γ`2(n−2)P2n−2 [F ]−

c2n−2 (4π)n−1 (n − 1)!χ [Σ]
)
.

For D = 4, the renormalized EE entropy is given by

S̃ ren
m =

`2

16G

∫
ΣT

d2y
√
γδ

[b1b2]
[a1a2] FAdS

a1a2
b1b2
− π`2

2G
χ [ΣT ] ,

in agreement with Alexakis and Mazzeo’s formula
[math/0504161] for renormalized area of extremal surfaces.



Entanglement Entropy from Holography Part 3

EE as the renormalized area of the RT surface

Topological interpretation of renormalized EE (for odd-D
CFT)

EE is separated into a geometric part (
∫
P2n−2 [F ]) and a

purely topological part (χ [Σ]).

Geometric part is zero when extremal surface has constant
curvature.

Topological part is robust against continuous deformations of
the entangling surface.

Power of result illustrated in case of renormalized EE for
spherical entangling surface.
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EE as the renormalized area of the RT surface

Example: Ball-shaped Entangling Region in
AdS2n/CFT2n−1

Minimal RT surface Σ, parametrized by
Σ :
{
t = const ; r2 + `2ρ = R2

}
, is a constant curvature

manifold → FAdS = 0.

Σ is topologically equivalent to a (2n − 2)-ball → χ [Σ] = 1.

Therefore,

S ren
EE =

(−1)n+1 (4π)(n−1) (n − 1)!`2(n−1)

4G (2n − 2)!
.

Result agrees with the calculation by Kawano, Nakaguchi and
Nishioka [1410.5973].

The renormalized Rényi entropy is computed in [1806.10708],
using CHM map.
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Interpretation of renormalized EE (in even-dimensional
CFT)

For even-D CFTs, the renormalized EE is logarithmically
divergent and it corresponds to the universal part.

It contains the information about the conformal anomaly of
the CFT.

In particular, for ball-shaped entangling regions, we have

S ren
EE = 2 (−1)n log (ε)A

A =
`(2n−1)π(n−1)

8G (n − 1)!
,

in agreement with Myers and Sinha [1006.1263].
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Interpretation of Results

Renormalized EE equal to the universal part of EE. Related to
parameters of CFT, e.g., a∗-charge (odd-d CFT) or
A-anomaly coefficient (even-d CFT).

a∗ and the A-anomaly coefficient are conjectured to be
C -function candidates (e.g., Myers and Sinha [1006.1263]).

Renormalized EE is renormalized volume of codimension-2 RT
surface. Einstein-AdS action is renormalized volume of bulk.

Renormalized volume of the (even-D) bulk written as Euler
characteristic plus (Einstein sector of) conformal invariant.
May give hints for higher-dimensional conformal gravity.
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Future Work

To finish and publish the analysis for even-D Einstein-AdS
dual to odd-d CFTs.

To generalize the method to higher curvature theories like
Lovelock Gravity.

To study the application of the procedure to other Quantum
Information Theoretic (QIT) measures like complexity (see
[1710.01327] for the particular case of AdS3).

To investigate the possible relation of the form of the
renormalized volume with higher-dimensional conformal
gravity.

This work is funded by FONDECYT grant No. 3180620 “Entanglement

Entropy and AdS gravity”.
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