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Entanglement and Rényi Entropy

Entanglement entropy

Measures amount of entanglement of subsystem A with rest
of the system (Ac).

Assume the total Hilbert space factorizes into the Hilbert
spaces of the subsystems A and Ac

Htot = HA ⊗HAc

EE defined as the von Neumann Entropy of reduced density
matrix for subsystem A:

SEE = −tr (ρ̂A ln ρ̂A) .

Density matrix of subsystem A is defined as

ρA = trAc (ρtot) = 〈iAc | ρtot |iAc 〉
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Entanglement and Rényi Entropy

Entanglement Entropy

{|iAc 〉}i is a basis of HAc

Reduced density matrix given by ρ̂A = ρA
tr(ρA) , defined with

total probability equal to 1.

For the case of QFTs, Htot is infinite dimensional and a
tensor product of Hilbert subspaces at each spatial point. A is
a spatial region.

For holographic CFTs, with AAdS gravity duals, EE can be
obtained using AdS/CFT tools from a geometric computation
in the bulk.
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Entanglement and Rényi Entropy

Renyi Entropy

Knowledge of all the Rényi entropies allows for reconstruction
of the entanglement spectrum (the eigenvalues of ρ̂A).

m-th Rényi entropy defined as

Sm = − 1

m − 1
ln (tr (ρ̂mA )) .

In general, it is easier to compute than the EE.

Analytic continuation of m-th Rényi entropy can be used to
compute EE:

SEE = lim
m→1
− 1

m − 1
ln (tr (ρ̂mA )) .
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Renyi Entropy
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Entanglement and Rényi Entropy

Example, EE and EREs for a two spin system

Consider two spin system in pure singlet state given by

|Ψ〉 =
1√
2
|↑↓〉 − 1√

2
|↓↑〉

Intuitively, system exhibits entanglement. Measurement of left
spin determines right spin orientation.

Density matrix of system given by:

ρ = |Ψ〉 〈Ψ| =
1

2
|↑↓〉 〈↑↓|−1

2
|↑↓〉 〈↓↑|−1

2
|↓↑〉 〈↑↓|+1

2
|↓↑〉 〈↓↑|

The reduced density matrix for the left spin is given by

ρ̂L = trHR
(ρ) =

∑
i∈{↓,↑}

〈iR | ρ |iR〉 =
1

2
|↓L〉 〈↓L|+

1

2
|↑L〉 〈↑L|

Reduced density matrix describes configuration that is not
pure state.
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Entanglement and Rényi Entropy

Example, EE and EREs for a two spin system

EE given by
SEE = −tr (ρ̂L ln ρ̂L)

SEE = −tr
([

1
2 0
0 1

2

]
ln

[
1
2 0
0 1

2

])
= ln 2

m-th Rényi entropy given by

Sm = − 1

m − 1
ln (tr (ρ̂mL ))

Sm = − 1

m − 1
ln

(
tr

([
1

2m 0
0 1

2m

]))
= ln 2

In this case, ERE is independent of m. Limit of m → 1 is
trivial. Identity relating ERE and EE is satisfied.
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m-th Rényi entropy given by

Sm = − 1

m − 1
ln (tr (ρ̂mL ))

Sm = − 1

m − 1
ln

(
tr

([
1

2m 0
0 1

2m

]))
= ln 2

In this case, ERE is independent of m. Limit of m → 1 is
trivial. Identity relating ERE and EE is satisfied.



Entanglement Entropy from Holography Part 1

Symmetries in QFT

QFT: Noether Theorem
Di Francesco, Mathieu and Senechal, Conformal Field Theory

Consider an arbitrary action in field theory:

S [Φ] =

∫
ddxL (Φ, ∂µΦ)

Consider a transformation that acts on the coordinates and
fields:

Φ′
(
x ′
)

= F (Φ (x))

Infinitesimal version given by

x ′µ = xµ + ωa
δxµ

δωa

Φ′
(
x ′
)

= Φ (x) + ωa
δF
δωa

(x)
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Symmetries in QFT

QFT: Noether Theorem

The Jacobian and Jacobian matrix of the coordinate
transformation is given by

∂x ′µ

∂xν
= δµν + ∂ν

(
ωa
δxµ

δωa

)
∂xν

∂x ′µ
= δνµ − ∂µ

(
ωa
δxν

δωa

)
∣∣∣∣∂x ′µ∂xν

∣∣∣∣ = 1 + ∂µ

(
ωa
δxµ

δωa

)
The transformed action is then given by

S ′
[
Φ′
]

=

∫
ddx

(
1 + ∂µ

(
ωa
δxµ

δωa

))
×

L
(

Φ + ωa
δF
δωa

,

[
δνµ − ∂µ

(
ωa
δxν

δωa

)](
∂νΦ + ∂ν

[
ωa
δF
δωa

]))
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Symmetries in QFT

QFT: Noether Theorem

The divergence of the Noether current is then defined in
terms of the difference between the transformed and original
actions as

S ′
[
Φ′
]
− S [Φ]

def.
=

∫
ddxωa∂µj

µ
a

By replacing the form of the actions, and expanding to linear
order in the transformations, we find that

jµa =

(
∂L

∂ (∂µΦ)
∂νΦ− δµνL

)
δxν

δωa
− ∂L
∂ (∂µΦ)

δF
δωa
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Symmetries in QFT

QFT: Energy-momentum tensor

We consider translations as an example of transformation.
Then, we have that

x ′λ = xλ + ελ

Φ′
(
x ′
)

= Φ (x)

δxν

δελ
= δνλ ;

δF
δελ

= 0

We define the E-M tensor as the corresponding Noether
current, given by

Tµλ =
∂L

∂ (∂µΦ)
∂λΦ− gµλL
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Symmetries in QFT

Example: E-M tensor of real scalar field

We compute the E-M tensor of a real scalar field. The
Lagrangian is given by

L = −1

2

(
∂µΦ∂µΦ + m2Φ2

)
And the corresponding E-M tensor is

Tµν =
1

2

(
∂λΦ∂λΦ + m2Φ2

)
ηµν − 2∂µΦ∂νΦ

The 4-divergence of the E-M tensor is zero on-shell (when the
Klein-Gordon equation of motion is satisfied):(

∂µ∂
µ −m2

)
Φ = 0→ ∂µT

µν = 0

Then, the E-M tensor is conserved and the theory has
translation symmetry.
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Symmetries in QFT

QFT: Ward Identities

Correlation function written in the (Euclidean) path integral
formulation. Transformed field as renamed integration
variable:

X
def.
= Φ (x1) · · ·Φ (xn)

〈X 〉 =
1

Z

∫
[DΦ] Φ (x1) · · ·Φ (xn) e−S[Φ]

〈X 〉 =
1

Z

∫ [
DΦ′

]
Φ′ (x1) · · ·Φ′ (xn) e−S[Φ′]

Definition of Noether current and transformed field product

S
[
Φ′
]

= S [Φ] +

∫
ddxωa∂µj

µ
a

X + δX = Φ′ (x1) · · ·Φ′ (xn)
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Symmetries in QFT

QFT: Ward Identities

Replacing into correlator definition to relate the transformtion
of the correlator to the Noether current:

〈X 〉 =
1

Z

∫
[DΦ] (X + δX ) e−(S[Φ]+

∫
ddxωa∂µj

µ
a )

〈X 〉 ' 1

Z

∫
[DΦ] (X + δX )

(
1−

∫
ddxωa∂µj

µ
a

)
e−S[Φ]

〈X 〉 ' 〈X 〉+ 〈δX 〉 −
〈
X

∫
ddxωa∂µj

µ
a

〉
〈δX 〉 =

∫
ddx∂µ 〈jµa X 〉ωa
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Symmetries in QFT

QFT: Ward Identities

Transformation of correlator written from the definition of the
generator using the product rule

Φ′ (x) = Φ (x)− iωaGaΦ (x)

δΦ (x) = −iωaGaΦ (x)

δX = −
n∑

i=1

(Φ (x1) · · · [iGaΦ (xi )] · · ·Φ (xn))ωa

〈δX 〉 = −
∫

ddxωa
n∑

i=1

〈Φ (x1) · · · [iGaΦ (xi )] · · ·Φ (xn)〉 δ (x − xi )

Ward identity obtained by comparing both expressions:

∂µ 〈jµa X 〉 = −
n∑

i=1

〈Φ (x1) · · · [iGaΦ (xi )] · · ·Φ (xn)〉 δ (x − xi )
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Conformal transformations
Di Francesco, Mathieu and Senechal, Conformal Field Theory

Conformal transformation defined such that metric is rescaled.
I.e.,

g ′µν
(
x ′
)

= Λ (x) gµν (x)

For infinitesimal coordinate transformation, metric transforms
as

x ′µ = xµ + εµ (x)

gµ′ν′ =
∂xλ

∂x ′µ
∂xσ

∂x ′ν
gλσ

∂xµ

∂x ′ν
= δµν − ∂νεµ (x)

g ′µν → gµν − (∂µεν + ∂νεµ)
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Conformal transformations

Proportionality between original and transformed metric fixes
transformation to satisfy

(∂µεν + ∂νεµ) =
2

d
∂λε

λgµν

General solution is given by

εµ = aµ + αxµ + mµ
νx

ν +
(
2 (x · b) xµ − bµ

(
x2
))

Translations, Dilatations, Rotations and Special Conformal
Transformations.
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Generators and conformal algebra

Define generators such that they implement the
transformation as

x ′µ = (1 + iωaGa) xµ

One obtains the following generators:

Pµ = −i∂µ
D = −ixµ∂µ

Lµν = i (xµ∂ν − xν∂µ)

Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)
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Generators and conformal algebra

Conformal algebra given by

[D,Pµ] = iPµ

[D,Kµ] = −iKµ
[Kµ,Pν ] = 2i (ηµνD − Lµν)

[Kρ, Lµν ] = i (ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i (ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i

(
ηνρLµσ + ηµσLνρ
−ηµρLνσ − ηνσLµρ

)
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Quasi-primary fields

For fields that have a particular spin and conformal dimension
(irreps), transformation given by

PµΦ (x) = −i∂µΦ (x)

DΦ (x) = −i (xµ∂µ + ∆) Φ (x)

LµνΦ (x) = [i (xµ∂ν − xν∂µ) + Sµν ] Φ (x)

KµΦ (x) =
[
−i
(
2xµ (xν∂ν + ∆)− x2∂µ

)
− xνSµν

]
Φ (x)

For spin zero, transformation written as

Sµν = 0→ Φ′
(
x ′
)

=

∣∣∣∣∂x ′∂x

∣∣∣∣−∆
d

Φ (x)

Definition of quasi-primary fields.
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Noether currents and Ward identities

Noether currents for translation, dilatation and rotation
written in terms of E-M tensor as

jµP = Tµ
ν

jµD = Tµ
νx

ν

jµM = Tµνxρ − Tµρxν

Corresponding Ward identities given by

∂µ 〈Tµ
νX 〉 = −

∑
i

δ (x − xi )
∂

∂xνi
〈X 〉

〈(T ρν − T νρ)X 〉 = −i
∑
i

δ (x − xi ) S
νρ
i 〈X 〉〈

Tµ
µX
〉

= −
∑
i

δ (x − xi ) ∆i 〈X 〉
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Correlation functions

By definition, correlator of 2 quasi-primary fields satisfies

〈φ1 (x1)φ2 (x2)〉 =

∣∣∣∣∂x ′∂x

∣∣∣∣
∆1
d
∣∣∣∣∂x ′∂x

∣∣∣∣
∆2
d 〈

φ1

(
x ′1
)
φ2

(
x ′2
)〉

Invariance under rotations and translations fixes

〈φ1 (x1)φ2 (x2)〉 = f (|x1 − x2|)

For x ′ = λx :

〈φ1 (x1)φ2 (x2)〉 = λ∆1+∆2 〈φ1 (λx1)φ2 (λx2)〉

Invariance under dilatation fixes

〈φ1 (x1)φ2 (x2)〉 =
C12

|x1 − x2|∆1+∆2
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Correlation functions

Finally, invariance under special conformal transformations
fixes conformal dimensions to be equal:

〈φ1 (x1)φ2 (x2)〉 =

{
C12

|x1−x2|2∆1
if ∆1 = ∆2

0 if ∆1 6= ∆2

Correlator of three quasi-primaries also fixed by conformal
symmetry:

〈φ1 (x1)φ2 (x2)φ3 (x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
13
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Conformal transformations
Di Francesco, Mathieu and Senechal, Conformal Field Theory

Belavin, Polyakov and Zamolodchikov, Nucl. Phys. B 241, 333.

Consider Euclidean (flat) metric and holomorphic coordinates
defined by

ds2 = dx2 + dy2

z = x + iy ; z = x − iy

ds2 = dzdz

Conformal transformation of coordinates requires rescaling of
metric as

dzdz = ρ
(
z ′, z ′

)
dz ′dz ′

Solution given by generic holomorphic (and anti-holomorphic)
transformation:

z ′ = ζ (z) ; z ′ = ζ (z)

dzdz =

(
dζ−1

dz ′

)(
dζ
−1

dz ′

)
dz ′dz ′
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Generators and Witt algebra

Holomorphic function admits Laurent expansion. Generators
of transformation obey Witt algebra, given by

z ′ = z + ε (z)

ε (z) =
∞∑

n=−∞
εnz

n+1

z ′ = (1− εnLn) z

Ln = −zn+1∂z

[Ln, Lm] = (n −m) Ln+m
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Quasi-primary fields

Quasi-primary fields of specific conformal dimension (and
spin) transform as

φ′
(
z ′, z ′

)
=

∣∣∣∣dz ′dz

∣∣∣∣2h ∣∣∣∣dz ′dz

∣∣∣∣2h φ (z , z)

h =
1

2
(∆ + s) ; h =

1

2
(∆− s)

In 2D, spin of quasi-primaries can be non-zero and it modifies
the holomorphic and anti-holomorphic conformal dimensions.
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Ward identities

Dirac delta has representation in 2D given by

δ (x − wi ) =
1

π
∂z

1

z − wi
=

1

π
∂z

1

z − wi

Conformal Ward identity becomes

∂z

(
〈T (z)X 〉 −

n∑
i=1

[
1

zi − wi
∂wi 〈X 〉+

hi

(zi − wi )
2
〈X 〉
])

= 0

∂z

(〈
T (z)X

〉
−

n∑
i=1

[
1

z i − w i
∂w i 〈X 〉+

hi

(z i − w i )
2
〈X 〉
])

= 0

Definition of holomorphic and anti-holomorphic parts of E-M
tensor:

T (z) = −2πTzz

T (z) = −2πTzz
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Holomorphic energy-momentum tensor and Virasoro
algebra

E-M tensor written in terms of generators of conformal
algebra as

T (z) =
∞∑

n=−∞

L̂n
zn+2

; T (z) =
∞∑

n=−∞

L̂n
zn+2

In quantum case, there is central extension. Virasoro algebra:[
L̂m, L̂n

]
= (n −m) L̂n+m +

1

12
c
(
n3 − n

)
δn+m,0

Transformation on quasi-primaries implemented by Virasoro
generators:[

L̂m, φ (z)
]

= zm+1 ∂

∂z
φ (z) + h (m + 1) zmφ (z)
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Transformation of energy-momentum tensor and Casimir
energy

Under conformal transformation, E-M tensor transforms as

T (z) =

(
dz ′

dz

)2

T
(
z ′
)

+
c

12

{
z ′, z

}
{
z ′, z

}
=

(
d3z ′/dz3

)
dz ′/dz

− 3

2

(
d2z ′/dz2

dz ′/dz

)2

Schwarzian derivative gives rise to (vacuum) casimir energy.



Entanglement Entropy from Holography Part 1

Introduction to 2D CFT

Transformation of energy-momentum tensor and Casimir
energy

Under conformal transformation, E-M tensor transforms as

T (z) =

(
dz ′

dz

)2

T
(
z ′
)

+
c

12

{
z ′, z

}
{
z ′, z

}
=

(
d3z ′/dz3

)
dz ′/dz

− 3

2

(
d2z ′/dz2

dz ′/dz

)2

Schwarzian derivative gives rise to (vacuum) casimir energy.



Entanglement Entropy from Holography Part 1

Introduction to 2D CFT

Correlation functions

Two-point function fixed by conformal symmetry:

〈φ1 (z1, z1)φ2 (z2, z2)〉 =
C12

(z1 − z2)2h (z1 − z2)2h

Three-point function fixed by conformal symmetry:

〈φ1φ2φ3〉 =
C123

(
z

2(h1+h2−h3)
12 z

2(h2+h3−h1)
23 z

2(h3+h1−h2)
13

)
×(

z
2(h1+h2−h3)
12 z

2(h2+h3−h1)
23 z

2(h3+h1−h2)
13

) 
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Correlation functions

Two-point function fixed by conformal symmetry:

〈φ1 (z1, z1)φ2 (z2, z2)〉 =
C12

(z1 − z2)2h (z1 − z2)2h

Three-point function fixed by conformal symmetry:

〈φ1φ2φ3〉 =
C123
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