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LEntanglement and Rényi Entropy

Entanglement entropy

m Measures amount of entanglement of subsystem A with rest
of the system (A°).

m Assume the total Hilbert space factorizes into the Hilbert
spaces of the subsystems A and A€

Hiot = Ha @ Hac

m EE defined as the von Neumann Entropy of reduced density
matrix for subsystem A:

See = —tr (palnpa).
m Density matrix of subsystem A is defined as

pA = trac (peot) = (iac| prot |iac)



Entanglement Entropy from Holography Part 1

LEntang;lemem: and Rényi Entropy

Entanglement Entropy

m {|iac)}; is a basis of Hae



Entanglement Entropy from Holography Part 1

LEntanglement and Rényi Entropy

Entanglement Entropy

m {|iac)}; is a basis of Hae
m Reduced density matrix given by pa = trf;‘A), defined with
total probability equal to 1.




Entanglement Entropy from Holography Part 1

LEntanglement and Rényi Entropy

Entanglement Entropy

m {|iac)}; is a basis of Hae

m Reduced density matrix given by pa = trf;‘A), defined with
total probability equal to 1.

m For the case of QFTs, H;o: is infinite dimensional and a
tensor product of Hilbert subspaces at each spatial point. A is
a spatial region.




Entanglement Entropy from Holography Part 1

LEntanglement and Rényi Entropy

Entanglement Entropy

{liac)}; is a basis of Hae

Reduced density matrix given by pa = trf;‘A), defined with
total probability equal to 1.

For the case of QFTs, H:ot is infinite dimensional and a
tensor product of Hilbert subspaces at each spatial point. A is
a spatial region.

For holographic CFTs, with AAdS gravity duals, EE can be
obtained using AdS/CFT tools from a geometric computation
in the bulk.
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LEntanglement and Rényi Entropy

Renyi Entropy

m Knowledge of all the Rényi entropies allows for reconstruction
of the entanglement spectrum (the eigenvalues of pa).

m m-th Rényi entropy defined as

Sm:—ml_lln(tr(ﬁf\’)).

m In general, it is easier to compute than the EE.

m Analytic continuation of m-th Rényi entropy can be used to
compute EE:

. 1 o
SEE:rLIml_m—lln(tr( A))
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LEntanglement and Rényi Entropy

Example, EE and EREs for a two spin system

m Consider two spin system in pure singlet state given by

1
V) = 1) - f )

m Intuitively, system exhibits entanglement. Measurement of left
spin determines right spin orientation.
m Density matrix of system given by:

p=[V) (V| = IN> <NI**IN> <¢TI**|¢T> <N|+ 1) (A

m The reduced den5|ty matrix for the left spin is glven by

R ) . 1
pL=trug (p) = >_ (irlplir) = 5 o el + 5 !TL) (T
ie{J,1}

m Reduced density matrix describes configuration that is not
pure state.
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Example, EE and EREs for a two spin system

m EE given by
Seg = —tr (ﬁL In ﬁL)

L)

In |2 =1In2
1

210 3

O NI

ee = —or |
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Example, EE and EREs for a two spin system

m EE given by
Seg = —tr (ﬁL In ﬁL)

10 10
5;_:‘5:—1.7({2 ]In [2 ]>:|n2
0 3] [0 3

m m-th Rényi entropy given by

Sm= T In(tr (7]))

1 = 0
_ om _
S, = _1In<tr<{0 21m]>>—|n2
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LEntanglement and Rényi Entropy

Example, EE and EREs for a two spin system

m EE given by
Seg = —tr (ﬁL In ﬁL)

10 10
5;_:‘5:—1.7({2 ]In [2 ]>:|n2
0 3] [0 3

m m-th Rényi entropy given by

Sm= T In(tr (7]))

1 = 0
_ om _
S, = _1In<tr<{0 21m]>>—|n2

m In this case, ERE is independent of m. Limit of m — 1 is
trivial. ldentity relating ERE and EE is satisfied.
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LSymmetries in QFT

QFT: Noether Theorem

Di Francesco, Mathieu and Senechal, Conformal Field Theory

m Consider an arbitrary action in field theory:
S[e] = /ddxﬁ(dD,aud))

m Consider a transformation that acts on the coordinates and
fields:
®’ (X/) = F (P (x))

m Infinitesimal version given by

XM = xF 4w,
0w,

1)
(D/ (X/) = (X) +wa(si

(x)
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QFT: Noether Theorem

m The Jacobian and Jacobian matrix of the coordinate
transformation is given by

Ox'* IxH
_ SH o
Hx? 5V + 0y (Wa &Ua)

y ox”
Oh = 5# — 8N (wa(swa>

OxH
=1 + 8” <wa5u)a>
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QFT: Noether Theorem

m The Jacobian and Jacobian matrix of the coordinate
transformation is given by

Ox'* IxH
_ SH o
Hx? 5V + 0y (Wa &Ua)

ox” y ox”
Oh = 5# — 8N (wa(swa>

Ox'H OxH
aXV =1 + 8H <wa5u)a>

m The transformed action is then given by

- forfien ()

oF |,
(o etZ 5z 0o

sa)] (o[l ])
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QFT: Noether Theorem

m The divergence of the Noether current is then defined in
terms of the difference between the transformed and original
actions as

5[0 - S[0] [ dtxar,t

m By replacing the form of the actions, and expanding to linear
order in the transformations, we find that

oL 5x 9L OF
n_— b — HH e —
fa ( % 5"£> dw?  9(0,0) 0w
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Then, we have that

V2N S

P’ (X') = o (x)
ox¥ L, OF

PR R
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LSymmetries in QFT

QFT: Energy-momentum tensor

m We consider translations as an example of transformation.
Then, we have that

V2N S

P’ (X') = o (x)
ox¥ ., OF

PR R

m We define the E-M tensor as the corresponding Noether
current, given by

oL

HA
T 0(0,9)

=0 — gL
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L= -5 (0,90"® + m*$?)
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LSymmetries in QFT

Example: E-M tensor of real scalar field

m We compute the E-M tensor of a real scalar field. The
Lagrangian is given by

1
L= -3 (0,90"® + m*$?)
m And the corresponding E-M tensor is
T = % (02000 + m20?) v — 20100"

m The 4-divergence of the E-M tensor is zero on-shell (when the
Klein-Gordon equation of motion is satisfied):
(0,0" —m?)® =09, T" =0

m Then, the E-M tensor is conserved and the theory has
translation symmetry.
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QFT: Ward ldentities

m Correlation function written in the (Euclidean) path integral
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LSymmetries in QFT

QFT: Ward ldentities

m Correlation function written in the (Euclidean) path integral
formulation. Transformed field as renamed integration

variable:
X 0 (x) - b (xn)
X) = 5 [ 10010 ()0 () 51

(X) = ;/ [DO] & (x1) - - - &' (x) e 51

m Definition of Noether current and transformed field product
qu:ﬂm+/ﬁww@ﬁ
X+6X =9 (x1) -9 (xn)
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LSymmetries in QFT

QFT: Ward ldentities

m Replacing into correlator definition to relate the transformtion
of the correlator to the Noether current:

(X) = % / [DO] (X + 6X) e (SIOIH[ dxwrdyis)
(X) ~ ;/ [DO] (X + 6X) (1 — / ddxwaayJQL) o—S19]
()= )+ 6%) - (X [ a0, i)

(5X) = / dxd), (71X) o
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LSymmetries in QFT

QFT: Ward ldentities

m Transformation of correlator written from the definition of the
generator using the product rule

P (x) = & (x) — iw? G, (x)
P (x) = —iw?G,9 (x)

n

6X = —Z (®(x1) - [IGa® (x))] -+ P (xn)) w?

i=1
(0X) = — / ddxwaz (P(x1)- - [IGa®P (x:)] -+ - P (xn)) d (x — x;)
i=1
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QFT: Ward ldentities

m Transformation of correlator written from the definition of the
generator using the product rule
P (x) = & (x) — iw? G, (x)
P (x) = —iw?G,9 (x)

n

6X = —Z (®(x1) - [IGa® (x))] -+ P (xn)) w?

i=1
(0X) = — / ddxwaz (P(x1)- - [IGa®P (x:)] -+ - P (xn)) d (x — x;)
i=1

m Ward identity obtained by comparing both expressions:

n

B GEX) = =D (0 (x1) -+ [iGa® (x:)] - -+ D (xn)) & (x — x})

i=1
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m Conformal transformation defined such that metric is rescaled.
l.e.,

g (X') = N(x) g (%)
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Conformal transformations

Di Francesco, Mathieu and Senechal, Conformal Field Theory

m Conformal transformation defined such that metric is rescaled.
l.e.,

gw (X') = Nx) gu (x)
m For infinitesimal coordinate transformation, metric transforms
as
X'H = xt 4 et (x)
Ox* Ox°
v = ng/\a

o
O 51— et ()

aX/l/

g/iy — uv — (auez/ + aueu)
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Conformal transformations
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2

(Ouew + Ovey) = dc(),\eAgW
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Conformal transformations

m Proportionality between original and transformed metric fixes
transformation to satisfy

2
(Ouew + Ovey) = EE)/\eAgW

m General solution is given by
e = a' + axt + mt x" + (2(x - b)x* — b (x?))

m Translations, Dilatations, Rotations and Special Conformal
Transformations.
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L Introduction to CFT

Generators and conformal algebra

m Define generators such that they implement the
transformation as

X" = (14 iw?G,) x*
m One obtains the following generators:
P, = —io,
D = —ix"9,
L = i(xu0, — x,0,)

Ky, = —i (2x,x"0, — X28N)
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L Introduction to CFT

Generators and conformal algebra

m Conformal algebra given by

D, Pu] = iP,

D, K#] = —iK,

[K/M 'DV] =2 (me - L;w)
[Kps L] = i (Npp Ky — npu Kiu)
[Po: Luv] = i (pu Py — 1pu Ppi)

— nllpL;w + nuaLup >
Ly, Lol =1
Ly L) ( —Nuplve = NvolLyp
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Quasi-primary fields

m For fields that have a particular spin and conformal dimension
(irreps), transformation given by

& (x) = =10, (x)
d(x) = —i(x“a +A)<D( )
Lw,d)(x):[( ) + S ] @ (x)
®(x)=[- (2XH ”3 +A)—x OM) — X" S| D (x)
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Quasi-primary fields

m For fields that have a particular spin and conformal dimension
(irreps), transformation given by

O (x) =—i0,® (x)
(X):fi(x“(? +A)<D( )
LWCD(X) [i (%, ) + S ] @ (x)
®()=[- <2xu 0k )~ x20,) ~ X' 5] ©(1)

m For spin zero, transformation written as

ox'|~

S'LLVZO—>¢/(X/): a

®(x)
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Quasi-primary fields

m For fields that have a particular spin and conformal dimension
(irreps), transformation given by

O (x) =—i0,® (x)
(X):fi(x“(? +A)<D( )
LWCD(X) [i (%, ) + S ] @ (x)
®()=[- <2xu 0k )~ x20,) ~ X' 5] ©(1)

m For spin zero, transformation written as

ox'|~

S'LLVZO—>¢/(X/): a

®(x)

m Definition of quasi-primary fields.
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Noether currents and Ward identities

m Noether currents for translation, dilatation and rotation
written in terms of E-M tensor as
Jg = Tul/
./g = THVXV
j,\‘j, = THxP — THPxY
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Noether currents and Ward identities

m Noether currents for translation, dilatation and rotation
written in terms of E-M tensor as

Jg =T",
./g = THVXV
j,\‘j, = THxP — THPxY
m Corresponding Ward identities given by
0
O, (TH,X) 0 (x —x; X
= -6 0x=x) g X
(TP = TP X) = —125 (x —xi) S (X)

<T“X 2(5 x — x;) A (X)
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L Introduction to CFT

Correlation functions

m By definition, correlator of 2 quasi-primary fields satisfies
ox'| & |ox'| ¢

X X
Ox <¢1 (Xi) ®2 (Xé)>

(f1 (x1) P2 (x2)) = I
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Correlation functions

m By definition, correlator of 2 quasi-primary fields satisfies

JAL L
ox'| @ |ox"|™

/ !
Ox Ox <¢1 (Xl) 2 (X2)>
m Invariance under rotations and translations fixes

(91 (x1) P2 (x2)) = f (|x1 — x2])

(f1 (x1) P2 (x2)) =
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Correlation functions

m By definition, correlator of 2 quasi-primary fields satisfies

m Invariance under rotations and translations fixes

(91 (x1) P2 (x2)) = f (|x1 — x2])

m For X' = \x:

(91 (x1) 2 (x2)) = X222 (61 (Ax1) d2 (Ax2))
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L Introduction to CFT

Correlation functions

m By definition, correlator of 2 quasi-primary fields satisfies

A1 By
d d

ox’ ox’'
Ox Ox
m Invariance under rotations and translations fixes

(91 (x1) P2 (x2)) = f (|x1 — x2])

(f1 (x1) P2 (x2)) =

~—

(61 (x1) D2 (x2)

m For X' = \x:

(91 (x1) 2 (x2)) = X222 (61 (Ax1) d2 (Ax2))

m Invariance under dilatation fixes

(¢1(x1) P2 (x2)) = G

|X1 . X2|A1+A2



Entanglement Entropy from Holography Part 1
L Introduction to CFT

Correlation functions

m Finally, invariance under special conformal transformations
fixes conformal dimensions to be equal:

o w281 if Ay = Ay

(f1(x1) P2 (x2)) = ¢ P~ X|If AL 4 A,
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Correlation functions

m Finally, invariance under special conformal transformations
fixes conformal dimensions to be equal:

o w281 if Ay = Ay

(f1(x1) P2 (x2)) = ¢ P~ X|If AL 4 A,

m Correlator of three quasi-primaries also fixed by conformal
symmetry:

Ci3
<¢1 (Xl) ®2 (X2) ¢3 (X3)> A1+A2 A3 Dot DA3—A; DA+ A -,
*23 X13
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Conformal transformations
Di Francesco, Mathieu and Senechal, Conformal Field Theory

Belavin, Polyakov and Zamolodchikov, Nucl. Phys. B 241, 333.

m Consider Euclidean (flat) metric and holomorphic coordinates
defined by

ds® = dx® + dy?

V4

X4+1iy; Z=x—1ly
ds® = dzdz
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m Consider Euclidean (flat) metric and holomorphic coordinates
defined by
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V4
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ds? = dzdz
m Conformal transformation of coordinates requires rescaling of
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dzdz = p (z’,?’) dz'dz'
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Conformal transformations
Di Francesco, Mathieu and Senechal, Conformal Field Theory

Belavin, Polyakov and Zamolodchikov, Nucl. Phys. B 241, 333.

m Consider Euclidean (flat) metric and holomorphic coordinates
defined by

ds® = dx® + dy?

V4

X4+1iy; Z=x—1ly
ds® = dzdz
m Conformal transformation of coordinates requires rescaling of
metric as
dzdz = p (z’,?’) dz'dz'
m Solution given by generic holomorphic (and anti-holomorphic)
transformation:

Z=((z) ;7 =((2)
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Generators and Witt algebra

m Holomorphic function admits Laurent expansion. Generators
of transformation obey Witt algebra, given by

7 =z+€(2)
o0
e(z) = Z €nz" 1
n=—oco
Z=1-¢€ly)z
L,=—z""15,

[Lny L] =(n—m)Lpym
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Quasi-primary fields

m Quasi-primary fields of specific conformal dimension (and
spin) transform as

2h

¢(2,2)

2h | gzt

dz

1Sl dfz/
o (7)) = |-

h:%(AH) ; ﬂ:%(A—s)
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Quasi-primary fields

m Quasi-primary fields of specific conformal dimension (and
spin) transform as

2h

¢(2,2)

2h | gzt

dz

1Sl dfz/
o (7)) = |-

h:%(AH) ; ﬂ:%(A—s)

m In 2D, spin of quasi-primaries can be non-zero and it modifies
the holomorphic and anti-holomorphic conformal dimensions.
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Ward identities

m Dirac delta has representation in 2D given by

5(X—W,-):18§ L le,:[
™
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Ward identities

m Dirac delta has representation in 2D given by

5(X—W,-):%8§ ! Zlaz,l

m Conformal Ward identity becomes

a;<<T(z)X> DN <X>+M<X>]> 0
i—p L4 Wi (zi — wi)

0; ((T ) X) - L' _1W.aw, (X) + Gy h"_)2 <x>]> =0
i—1 i i Z;i — Wi

m Definition of holomorphic and anti-holomorphic parts of E-M
tensor:

T(z)=—-27T,,
T(f) = —27TTZ
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Holomorphic energy-momentum tensor and Virasoro
algebra

m E-M tensor written in terms of generators of conformal
algebra as

T@= Y i TE- Y o

n=—oo n=—0oo
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m E-M tensor written in terms of generators of conformal
algebra as
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® In quantum case, there is central extension. Virasoro algebra:
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Holomorphic energy-momentum tensor and Virasoro
algebra

m E-M tensor written in terms of generators of conformal
algebra as

[e%} I 0

T@= Y i TE- Y o

n=—oo n=—0oo

® In quantum case, there is central extension. Virasoro algebra:

S N 1
Ly La| = (n = m) Lo+ 75¢ (n* = 1) Gnimo

m Transformation on quasi-primaries implemented by Virasoro
generators:

[T 0(2)] = 271 6(2) + h(m+1) 270 (2)
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energy

m Under conformal transformation, E-M tensor transforms as

dz

T(2)= <d2>2 T()+ {22}

O Gl (dzZ, /dzz>2

dZ//dz 2\ dZ'/dz
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Transformation of energy-momentum tensor and Casimir
energy

m Under conformal transformation, E-M tensor transforms as

T(z) = (Z)Q T()+ {22}

O Gl (dzZ, /dzz>2

dZ//dz 2\ dZ'/dz

m Schwarzian derivative gives rise to (vacuum) casimir energy.



Entanglement Entropy from Holography Part 1
L Introduction to 2D CFT

Correlation functions

m Two-point function fixed by conformal symmetry:

(01 (21,21) P2 (22,22)) = Cro _

(Zl o 22)2h (?1 . ?2)2/7




Entanglement Entropy from Holography Part 1
L Introduction to 2D CFT

Correlation functions

m Two-point function fixed by conformal symmetry:

(01 (21,21) P2 (22,22)) = Cro _

(Zl _ 22)2h (?1 . ?2)2/7

m Three-point function fixed by conformal symmetry:

C
(P1203) = ( > 123

(h1+h2—h3) _2(h2+hs—h1) _2(hs+h1—h2)
212 233 213 X

_2 (E1 +ha—hs3 ) _2 (52 +hs—hy )f2 (53 +h1—hy )
(Z 12 223 213
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