Justificación:

Juan Carlos Sandoval Avendaño

PAUTA TEST N° 2 ÁLGEBRA LINEAL INGENIERÍA AMBIENTAL — INGENIERÍA CIVIL AGRÍCOLA

NOMBRE:	CARRERA:
TIEMPO MÁXIMO : 30 MINUTOS	FECHA: Ju 07/04/22
Responda V (Verdadero) o F (Falso), justificando	su respuesta.
1)F Si $A \in \mathcal{M}_2(\mathbb{R})$ es una matriz simétriantisimétrica , entonces $det(A^T+B^T)=det(A)$ Justificación:	· · · · · · · · · · · · · · · · · · ·
$A = \left(\begin{array}{cc} 1 & -1 \\ -1 & 2 \end{array} \right)$ es una matriz simétrica	
$B=\left(egin{array}{cc} 0 & 3 \\ -3 & 0 \end{array} ight)$ es una matriz antisimétrica	
$A^{T} + B^{T} = \begin{pmatrix} 1 & -1 \\ -1 & 2 \end{pmatrix} + \begin{pmatrix} 0 & -3 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$\begin{pmatrix} -4 \\ 2 \end{pmatrix}$
Luego $det(A^T + B^T) = 2 + 8 = 10$	
Por otro lado, $det(A) = 2 - 1 = 1$ y $det(B) = 9$,	$luego\ \det(A)\det(B)=9$
Finalmente, notamos que $det(A^T+B^T)=10\neq a$	det(A) det(B) = 9
2)F Los valores de x de modo que la posea inversa, son todos positivos.	matriz $A = \begin{pmatrix} 1 & x & -1 \\ x & 1 & x \\ 0 & -1 & 1 \end{pmatrix}$

Para que una matriz posea inversa, su determinante debe ser distinto de cero.

$$\begin{vmatrix} 1 & x & -1 \\ x & 1 & x \\ 0 & -1 & 1 \end{vmatrix} = 1 + x + x - x^2 = -x^2 + 2x + 1 = 0 \Rightarrow x^2 - 2x - 1 = 0 \Rightarrow$$

$$x = \frac{2 \pm \sqrt{4+4}}{2} \Rightarrow x = \frac{2 \pm \sqrt{8}}{2} \Rightarrow \begin{cases} x_1 = 1 + \frac{\sqrt{8}}{2} \approx 2.41 > 0\\ x_2 = 1 - \frac{\sqrt{8}}{2} \approx -0.41 < 0 \end{cases}$$

Esto muestra que existe un valor de $x=x_1$ positivo, para el cual la inversa de A no existe.

(60 puntos)