UNIVERSIDAD DE CONCEPCIÓN FACULTAD DE INGENIERÍA AGRÍCOLA DEPTO. DE AGROINDUSTRIAS

Juan Carlos Sandoval Avendaño

Junio 2022

LISTADO 2 DE EJERCICIOS DE ÁLGEBRA LINEAL INGENIERÍA AMBIENTAL — INGENIERÍA CIVIL AGRÍCOLA

- 1) Responda V (Verdadero) o F (Falso), justificando su respuesta. a) $\underline{\hspace{1cm}}$ [2, 1, -1] $\in \langle \{[1, 1, 1], [2, 1, 3]\} \rangle$ b) _____ El conjunto $\{(\boldsymbol{a} \cdot \boldsymbol{b}) \, \boldsymbol{a} \times \boldsymbol{b}, 2\boldsymbol{a} - \boldsymbol{b}, proy_{\boldsymbol{b}} \, \boldsymbol{a}\}$ es base de \mathbb{R}^3 , si a = [1, -2, 3] y b = [2, -3, 1]c) _____ El conjunto $\{a, b, a \times b\}$ es una base ortogonal de \mathbb{R}^3 , si $a \vee b$ son vectores no nulos. d) _____ $B = \{ [sen(x), cos(x)], [-cos(x), sen(x)] \}$ es una base ortonormal de \mathbb{R}^2 , para cualquier $x \in \mathbb{R}$ e) _____ La función $f: \mathbb{R}^3 \to \mathbb{R}^3, f[x,y,z] = [3x-2y,x+y,z-y+x]$ posee inversa. f) _____ La matriz asociada al operador $P: \mathbb{R}^2 \to \mathbb{R}^2, P[a,b] = [a+b,a-b]$ es simétrica. g) _____ Los valores propios de $T: \mathbb{R}^2 \to \mathbb{R}^2$, T[x,y] = [3x-2y, -x+5y] son todos positivos. h) _____ Si $\{a,b,c\}$ es l.i., entonces $\{a+b,b+c,a+c\}$ también lo es. i) ______ Si $S = \{ [x, y, z] \in \mathbb{R}^3 / 3x - y + z = 0 \}$, entonces dim(S) = 2j) ______ $\{1, x, x^2, x^3,, x^n\}$ es base de $\mathcal{P}_n(\mathbb{R})$ [k] $S \perp P(S \text{ ortogonal con } P) \text{ si } \forall a \in S, \forall b \in P, \langle a, b \rangle = 0.$ Entonces los conjuntos $S = \{[x,y,z] \in \mathbb{R}^3/2x - 3y + z = 0\}$ y $P = \{[x,y,z] \in \mathbb{R}^3/\frac{x}{2} = -\frac{y}{3} = z\}$ son ortogonales
- 2) Calcule los valores y vectores propios asociados a la matriz $A=\begin{bmatrix}2&-1\\-1&4\end{bmatrix}$
- **3)** Obtenga $[R]_{B_1}^{B_2}$ si se sabe que $B_1=\{[1,1],[2,3]\}$ y $B_2=\{1,x,x^2\}$ con $R[a,b]=(a+b)x^2-bx+a$
- **4)** Obtenga una base ortonormal para $\mathcal{P}_2(\mathbb{R}),$ distinta de la canónica y sus derivadas.

1