Juan Carlos Sandoval Avendaño

PAUTA CERTAMEN Nº 1 CÁLCULO 1 CÁLCULO DIFERENCIAL INGENIERÍA AMBIENTAL — INGENIERÍA CIVIL AGRÍCOLA

NOMBRE :	CARRERA:
TIEMPO MÁXIMO : 1 HORA 30 MINUTOS	FECHA: Mi 19/04/23
1) Responda V (Verdadero) o F (Falso), justific	cando todas sus respuestas.

a) <u>F</u> El triángulo con vértices (2,-1), (3,2) y (1,-1) es isósceles **Justificación:** Sean A=(2,-1), B=(3,2) y C=(1,-1)

Sean
$$A=(2,-1), B=(3,2)$$
 y $C=(1,-1)$ $d(A,B)=\sqrt{(3-2)^2+(2-(-1))^2}=\sqrt{1^2+3^2}=\sqrt{10}$ $d(A,C)=\sqrt{(1-2)^2+(-1-(-1))^2}=\sqrt{1^2+0^2}=\sqrt{1}=1$ $d(B,C)=\sqrt{(3-1)^2+(2-(-1))^2}=\sqrt{2^2+3^2}=\sqrt{4+9}=\sqrt{13}$

Los tres lados del triángulo tienen distintas dimensiones por lo que no es isósceles.

$$b) \underline{ \quad \quad } \underline{ \quad } \underline{ \quad } \underline{ \quad }$$
 Existen dos puntos de intersección entre $y=x-1$ y $x^2+y^2-3x+2y=1$

Justificación:

Reemplazando $y=x-1\,$ en la ecuación $\,x^2+y^2-3x+2y=1\,$, se tiene

$$x^{2} + y^{2} - 3x + 2y = 1 \Rightarrow x^{2} + (x - 1)^{2} - 3x + 2(x - 1) = 1 \Rightarrow$$

$$x^{2} + x^{2} - 2x + 1 - 3x + 2x - 2 = 1 \Rightarrow 2x^{2} - 3x - 2 = 0 \Rightarrow x = \frac{3 \pm \sqrt{9 + 16}}{4} \Rightarrow$$

$$x = \frac{3 \pm \sqrt{25}}{4} \Rightarrow x = \frac{3 \pm 5}{4} \Rightarrow \begin{cases} x_{1} = \frac{3 + 5}{4} = \frac{8}{4} = 2\\ x_{2} = \frac{3 - 5}{4} = -\frac{2}{4} = -\frac{1}{2} \end{cases}$$

El haber obtenido dos valores para x reales, significa que existen dos puntos de intersección. \square

c) <u>V</u> Las rectas ax-y=2 y x+ay=7 son perpendiculares, no importando el valor de la constante $a\in\mathbb{R}$

Justificación:

Obtengamos la pendiente de la recta ax - y = 2

$$ax - y = 2 \Rightarrow y = ax - 2$$

La pendiente de esta primera recta es $m_1 = a$

Obtengamos ahora la pendiente de la segunda recta x+ay=7

$$x + ay = 7 \Rightarrow ay = 7 - x \Rightarrow y = \frac{7}{a} - \frac{1}{a}x$$

Esta última expresión es válida para $a \neq 0$

Para $a \neq 0$, se tiene que $m_2 = -\frac{1}{a}$

Luego
$$m_1 \cdot m_2 = a \cdot \left(-\frac{1}{a}\right) = -1$$

Esto muestra que las rectas son perpendiculares si $a \neq 0$

Ahora, si a=0, entonces las rectas son $y=-2\,$ y x=7, que también son perpendiculares.

Lo anterior muestra que las rectas ax-y=2 y x+ay=7 son perpendiculares, no importando el valor de la constante $a\in\mathbb{R}$

d) _____ F___ La circunferencia con centro en (1,2) y que es tangente a la recta 4x=-3y+6 posee radio igual a $\frac{1}{\sqrt{17}}$

Justificación:

El radio de la circunferencia coincide con la distancia desde el centro a la recta tangente.

La recta tangente es L: 4x + 3y = 6

$$d(L,(1,2)) = \frac{|4(1)+(3)(2)-6|}{\sqrt{4^2+3^2}} = \frac{|4+6-6|}{\sqrt{16+9}} = \frac{4}{\sqrt{25}} = \frac{4}{5} \neq \frac{1}{\sqrt{17}} \square$$

(40 puntos)

2) Obtenga el vértice, el foco y la directriz de $3x + 2y^2 = 5y$

(10 puntos)

Solución:

Completemos cuadrados

$$3x + 2y^{2} = 5y \Rightarrow 3x + 2y^{2} - 5y = 0 \Rightarrow 3x + 2(y^{2} - \frac{5}{2}y) = 0 \Rightarrow 3x + 2(y - \frac{5}{4})^{2} = \frac{25}{8}$$
$$\Rightarrow 2(y - \frac{5}{4})^{2} = \frac{25}{8} - 3x \Rightarrow 2(y - \frac{5}{4})^{2} = -3x + \frac{25}{8} \Rightarrow 2(y - \frac{5}{4})^{2} = -3(x - \frac{25}{24})$$
$$\Rightarrow$$

$$(y - \frac{5}{4})^2 = -\frac{3}{2}(x - \frac{25}{24})$$

De la ecuación canónica se tiene que el vértice es $V=\left(\frac{25}{24},\frac{5}{4}\right)$ y además $4p=\frac{3}{2},$ es decir, $p=\frac{3}{8}$

La parábola se orienta hacia la izquierda, es decir, el eje de simetría es paralelo al eje horizontal.

Las coordenadas del foco son $F=\left(\frac{25}{24}-\frac{3}{8},\frac{5}{4}\right)=\left(\frac{2}{3},\frac{5}{4}\right)$

La ecuación de la directriz es $x=\frac{25}{24}+\frac{3}{8}=\frac{17}{12}$

3) Obtenga el conjunto solución de $\left|\frac{x+3}{x-1}\right| \geq 5$

(10 puntos)

Solución:

$$\frac{\left|\frac{x+3}{x-1}\right| \ge 5 \Rightarrow \frac{x+3}{x-1} \ge 5 \lor \frac{x+3}{x-1} \le -5$$

Parte 1:
$$\frac{x+3}{x-1} \ge 5 \Rightarrow \frac{x+3}{x-1} - 5 \ge 0 \Rightarrow \frac{x+3-5x+5}{x-1} \ge 0 \Rightarrow \frac{-4x+8}{x-1} \ge 0$$

$$-4x + 8 = 0 \Rightarrow 4x = 8 \Rightarrow x = 2$$
$$x - 1 = 0 \Rightarrow x = 1$$

	x < 1	x = 1	1 < x < 2	x = 2	x > 2
-4x + 8	+	4	+	0	_
x-1	_	0	+	1	+
$\frac{-4x+8}{x-1}$	_	indet.	+	0	_

$$S_1 = (1, 2]$$

Parte 2:
$$\frac{x+3}{x-1} \le -5 \Rightarrow \frac{x+3}{x-1} + 5 \le 0 \Rightarrow \frac{x+3+5x-5}{x-1} \le 0 \Rightarrow \frac{6x-2}{x-1} \le 0$$

$$6x - 2 = 0 \Rightarrow 6x = 2 \Rightarrow x = \frac{2}{6} = \frac{1}{3}$$
$$x - 1 = 0 \Rightarrow x = 1$$

	$x < \frac{1}{3}$	$x = \frac{1}{3}$	$\frac{1}{3} < x < 1$	x = 1	x > 1
6x-2	_	0	+	4	+
x-1	_	$-\frac{2}{3}$	_	0	+
$\frac{6x-2}{x-1}$	+	0	_	indet.	+

$$S_2 = \left[\frac{1}{3}, 1\right)$$

Finalmente el conjunto solución es $S=S_1\cup S_2=(1,2]\cup\left[\frac{1}{3},1\right)$