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P. Cartigny ∗, W. Gómez †and H. Salgado ‡

Abstract

In this paper the problem of spatially sharing a common fish resource
between two quite different harvesting activities is modelled. The problem
is studied from the viewpoint a of regulator in charge of deciding how to
share the resource. We assume that the regulator has to fix the percent of
the area opened to each of the agents and in this way design two patches.
One of the patches should be used only by small scale fisheries and plays
the role of a reserve that contains the reproduction area. In the second
patch a more efficient and intensive activity should be permitted. This
problem is motivated by a study case in Chile. The model is introduce
stepwise and takes into account the different impact of the activities and
a natural biomass transfer into the patches. We end up with an optimal
control problem that try to find social relevant solutions. The resulting
control problem is treated using a calculus of variation approach and some
conditions ensuring the existence of interior solutions are proposed. Fi-
nally some academical tests are done in order to see the feasibility of the
proposed conditions.

1 Introduction

The International Conference on the Economics of Marine Protected Areas
(MPA) held in July 2000 in Vancouver was one of the starting points in the
development of a new paradigm: the use of MPA as an instrument for the man-
agement of fisheries. Since then, different applications of these concepts have
been developed to analyze a wide number of conflicts currently presents in fish-
eries all around the world, see for instance [20, 21]. The increasing number of
studies on this area also shows a growing interest for the use of MPA as a valid
instrument for fisheries management [5, 7, 10, 11, 16, 20, 21].

The use of marine reserve as a fishery management tool is controversial, see
[2, 8, 10, 11, 13, 22]. This is understandable, since this tool combines conserva-
tion benefits with commercial gain.
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Sanchirico and Wilen [23] seem to be first on suggesting in the economic lit-
erature the possibility that MPA could be beneficial not only from an ecological
but also from a economic point of view. In their dynamic and spatial model of
a Marine Reserve Creation they analyze the idea that the transfer of biomass
from the reserve to areas where catch is allowed could create economics profit
from the MPA, since its creation could help to improve a depleted biomass and
increase catch outside of the reserve. They call this a double-payoff because
in this case the MPA will increase both the biomass and the economics profits
from the fishery. They considered several possibilities for the biomass transfer
mechanism between patches in their spatial model, and make use of differential
equations for modelling biomass change and effort change between patches.

As noted by Sumaila and Charles [25], the research on the use of MPA has
tend to focus in two areas. The first area is related to describe the potential
ecological benefits, in terms of ecosystem health, biodiversity and greater long-
term harvest, see for instance [14, 18, 19, 26]. The second area is devoted to
optimize the process by which an MPA is developed and implemented, see for
instance [11, 12, 23].

From the very first papers on the topic it was already clear that the design
and the management of a reserve area are crucial in order to meet the biological
or economical goals more effectively. Consequently, the design and management
of MPA have been an active area of research in the last years, see for instance
[2, 8, 9, 11, 15, 17, 24]

In this paper we develop an optimization model to analyze a fisheries man-
agement problem currently present in Chile. The problem consists on dividing
a marine space where pelagic fish is found, between two users of the resource.
The users are faced to quite different technologies, cost and regulatory systems
to develop their activities. In our case, the users are, on the one hand, the
small-scale fishermen who are allowed to develop their activities in places near
the coast (let us define it as the small-scale exclusive area). On the other hand
there are the large-scale fishermen who are not allowed to fish within the small-
scale exclusive area near to the coast. There exist certain biomass transfer
basically from the coast to the non exclusive are. However, the main part of
the population is found inside the small-scale exclusive area. In this sense the
large-scale users do not gain a significant benefit from the lower level of activity
in the exclusive area.

In this scenario an spatial externality can be clearly identified, since the
small-scale fishery does not have enough effort capacity to capture the biological
surplus of the biomass inside the exclusive area. There is, therefore, periodically
a political discussion whether (and to which scale) the industrial fishery should
be authorized to enter to the area reserved to the small-scale fishery. Due to the
difference in the effort capacities, and because this permission is spatial, allowing
the industrial fishery inside the exclusive area would maintain the similarity of
the situation with an MPA management tool. The most controversial design
problem remains to fix the percent of the whole exclusive area that should be
opened to industrial activity.

The general problem of identifying the optimal design of an MPA is consid-
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ered in many recent papers in the literature. For instance, in the work of Pezzey,
et.al. [17] the effect of a no-take reserve area on the catch of an outside area
is studied. Using the bioeconomic equilibrium for biomass growth and a zero
profit condition for the effort, they calculate the levels of the stock and catch
for different sizes of a reserve. With this information the problem of finding the
optimal size of the MPA is analyzed. However, they do not explicitly model the
optimal choice problem appearing by setting simultaneously the optimal size of
the reserve and effort level.

In more recent papers other authors also studied the double pay-off of a
marine reserve using a model to find a social optimal reserve, see for instance
Dubey et al. [9] or Ami et al. [2]. In the latter one the effort outside of the
reserve and a parameter that controls biomass transfer between patches are con-
sidered into a dynamic optimization model. The authors use then a calculus of
variation approach to look for an optimal steady state of the controlled system.
We closely follow the methodology in [2] but are faced with a more difficult case.

The aim of this paper is then to use the concepts on MPA for developing a
model to optimally design the exclusive access area for small-scale fishermen but
allowing to certain percent the industrial activity. The model should consider
both the lower impact of the small-scale fishermen and the biomass transfer
mechanisms and allows the industrial fishery to actually benefit from a net
increase of the biomass.

The paper is organized as follows. In the second section a detailed description
of the problem that motivated this study is given. In the third section the
dynamical system describing the biomass is discussed and its main properties
presented. The different items involved in the biomass modelling, as harvesting
and the shared growth region, are introduced separately.

The fourth section is devoted to the optimization problem. The calculus of
variation approach is briefly explained and the main results concerning the Euler
equations are given. Finally a short subsection presents a numerical example
of the results. The pape end with a short section of concluding remarks, an
appendix containing all the mathematical proofs.

2 The spatial distribution between fisheries.

The Chilean Act of Fishing and Acuiculture (”Ley General de Pesca y Acui-
cultura” in Spanish, [1]) recognize the existence of both small-scale fisher-
men (”pescadores artesanales”) and large-scale fishermen (”pescadores indus-
triales”). In the article 2nd.of the LGPA an operator of the large-scale fishery
is defined as an individual registered on the industrial registry, which develops
on his own behalf and risk a fishery extractive activity, using one or more fish-
ing vessels whatever its type, size, design or specialization. In the same second
article the small-scale fishermen are intended as the owners of up to two small-
scale vessels, which together can not exceed 50 tons of gross registered tonnage
(GRT). The LGPA also specify a small-scale vessel as one as such registered
and having a maximum length of 18 meters and up to 50 tons GRT. Even when
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these definitions are quite general, there exist also more specific rules distin-
guishing who can be registered as an artisanal or as an industrial fishermen in
the corresponding registry.

Additionally, the law establishes different regulatory mechanisms for small-
scale and large-scale fishery. The most important distinction is given in the
article 47 where an area of exclusive access to the small-scale fishermen is fixed.
The area corresponds to the first five nautical miles from the normal base lines
and covers around 6600 square nautical miles (Bernal, Oliva and Aliaga, [3]).
The same article 47 of the LGPA also mentions that nevertheless, in some spe-
cific cases the regulatory agency might authorize the industrial fleet to access to
a portion of the artisanal reserve area. This is the fact that generates continues
petitions form the large-scale fishermen to access this area and which motivates
the research that is the main goal of this paper.

Additionally both fisheries have different access rules and regulatory mech-
anisms. For example, while in the artisanal fishery the regulation is performed
mainly through effort and technological control and temporarily closure of some
areas, in the industrial fishery different regulatory schemes are applied. In this
case global quotas and Individual Quotas (IQs) can also be used to manage the
effort. We consider that this fact give more flexibility to fishermen to optimally
adjust the effort, especially when IQs are used on the industrial fisheries.

From a biological point of view, it has been argued that the first five nautical
miles have an important function as an area of primary and secondary repro-
duction, spawn and recruitment. This is increased because the phenomena
of coastal upwelling. Upwelling occurs in this zone when southeasterly trade
winds , produced by the South Pacific anti-cyclone, along with other factors
drive coastal waters out to sea, forcing deep nutrient-rich waters to rise.

This reason motivate us to model the biomass transfer process as one of the
Sink-Source type, where a net transfer of biomass is generated from the coast
to the open see where the industrial fishery activity is developed.

3 The basic biomass model

To model the problem we are facing and to be able to find corresponding solu-
tions we need to make some assumptions.

First we assume that the whole stock z obeys a logistic growth law.

ż = γz(1− z

K
), (1)

with K and γ denoting the total carrying capacity and instantaneous growth of
the stock. Now we assume the existence of two oceanographically determined
areas (near and far from the coast). In the area near to the coast occurs the
reproduction. The stock does not growth in the other area, but it receives
transfers of biomass from the first one. Let us then consider the whole stock
z = x1 + x2 as the sum of the stock in the first x1 and the second x2 area. We
assume that a net transfer of biomass exists from the growth to the other area.
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Assuming that the rate of biomass transfer is given by a constant parameter b
in [0, 1], we state the following model without harvesting:

ẋ1 = γ(x1 + x2)
(
1− 1

K (x1 + x2)
)
− bx1

ẋ2 = bx1
(2)

Note that adding both equalities lead us to the original model (1). This second
model (2) has the two equilibria (0, 0) and (0,K), where only the second one is
stable. It could be surely more realistic to assume a lower rate of growth in the
second area, but we desisted this way in order to simplify the technical analysis.

3.1 Sharing the growth area

Now we have that the historical access rights are given for the artisanal fishermen
in the first ”growth-area”. However we want to optimally determine the percent
of this area that should be opened to the industrial fleet. We will call artisanal
reserve to the area in which exclusive access rights will remain given to the
artisanal sector. We model the design of the artisanal reserve through the
parameter λ in [0,1] which represents the portion of the growth-area reserved
for artisanal use. To be consistent with the previous literature we call this λ
portion of the growth the artisanal patch. The remaining region, given by the
area far from the coast and the resting (1−λ) portion of the growth area, will be
then called the industrial patch. We keep the notation, such that, the variables
corresponding to the artisanal patch shall have the sub-index 1 and the variables
corresponding to industrial patch the sub-index 2.

For modeling the biomass growth we assume that in each patch the natural
growth is proportional to the size of the growth area assigned to each patch.
The implicit assumption here is that the biomass is homogeneously distributed
in the growth area. We stick assumming that the net transfer of biomass exists
only from the artisanal to the industrial patch and this to a constant rate b
in [0, 1]. Taking into account the above assumptions we obtain the model still
without harvesting:

ẋ1 = λγ(x1 + x2)
(
1− 1

K (x1 + x2)
)
− bx1

ẋ2 = (1− λ)γ(x1 + x2)
(
1− 1

K (x1 + x2)
)

+ bx1
(3)

In a more accurate model the rate of transfer would depend on the parameter
λ and also on the geometry of the portion selected. This geometrical dependence
would capture the spatial natural flow of the species inside the whole region and
the specific way the region is subdivided. Due to this spatial-geometric consid-
eration the rate of transfer can be different for equal values of the proportion
λ. It can, in fact, for some particular geometries even be independent of λ, and
equal, for instance, to zero. This analysis would lead to much more complex
models, which are far beyond the purposes of this work. Fortunately, our as-
sumption enormously simplify the tractability of the problem and allow us to
find reasonable solutions without affecting the main conclusions of our analysis.
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With this definitions, even if all the growth area is defined as artisanal reserve
(λ = 1) and therefore the industrial patch will not have any natural growth, it
still will have stock growth and fishing activity will be possible in a steady state
because the transfer of biomass from the artisanal patch. If otherwise λ < 1 the
stock under industrial fishing will present some natural growth corresponding
to the fraction of the growth area that is in the industrial patch and also will
present some transfer of biomass from the artisanal patch (see figure 1).

Figure 1: Ilustration of Growth-area, Industrial and Artisanal Patches

We want to underline that in our model the dynamics of the whole popu-
lations is recovered, when we add the two equations. This consistency is not
present in many models found in the literature of patchy environments.

3.2 Including the harvesting

Let us now introduce harvesting into the model. As expected the net growth of
biomass in each path would be then given by the natural growth plus/minus the
net transfer of biomass between patches minus the harvest from fishing activity.

We take the catch functions as the product of a constant technological pa-
rameter (qi), the efforts level (Ei) and the stock level (xi) in each patch. Since
the efforts level in the artisanal fishery is assumed to be very limited it shall
be considered constant over time (denoted by E1). The level of industrial effort
should be optimally determined and shall be denoted by E2. The biomass is
then supposed to obeys the following dynamical system:

ẋ1 = λγ(x1 + x2)
(
1− 1

K (x1 + x2)
)
− bx1 − q1E1x1

ẋ2 = (1− λ)γ(x1 + x2)
(
1− 1

K (x1 + x2)
)

+ bx1 − q2E2x2
(4)

Here the parameters q, b, E1 are positive and fixed. The variables λ ∈ [0, 1] and
E2(t) are to be determined later by the optimization modelling.

A basic assumption in the model is the following one

γ > q1E1 (5)

This inequality just ensures that the rate of harvesting in the artisanal patch
(playing the role of the reserve!) does not exceed the instantaneous growth of
the stock. This condition is in the above sense very natural and appears, for
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instance, in [6] as a necessary condition for the existence of a positive equilibria
in the simple Schaeffer model.

We are interested in the study of the above system in the case that the
control variables are fixed (and specially the effort E2 constant). This analysis
is specially important in order to consider interior solutions.

Let us therefore fix for a while E2(t) = Ē2 and λ = λ̄ as constant controls
satisfying

Ē2 > 0,
λ̄ ∈ [0, 1]. (6)

The above are just feasibility conditions over the controls. A more technical
assumption would be

γ > q2Ē2 (7)

This assumption however has the same flavor and meaning of the above con-
dition (5), i.e. in non of the patches the catch rate should exceed the natural
growth rate of the biomass.

Under the above three conditions the system (4) has only two stationary
points. One of them is the zero, which is not stable. The other one is strictly
positive, stable and given by

x̄1 =
K

γ
λ̄q2Ē2

(γ − q2Ē2)(b + q1E1)− λ̄γ(q1E1 − q2Ē2))
[(b + q1E1)− λ̄(q1E1 − q2Ē2)]2

(8)

x̄2 =
x̄1

λ̄q2Ē2
(b + (1− λ̄)q1E1) (9)

A proof of the above facts can be found in the Appendix (see Proposition 1).

4 The optimization problem

We assume for the rest of the paper a constant price of fish, denoted by p, and
constant costs of effort in both sectors given by ci.

Our objective is then to maximize the current value of the profits from both
artisanal and industrial fishery by choosing the size of the artisanal reserve
(given by the parameter λ) and the industrial effort (E2). This approach is
captured by the following model.

max
E2(.),λ

∫ +∞
0

e−δt [(pq2x2(t)− c2)E2(t) + (pq1x1(t)− c1) E1] dt

s.t.
ẋ1 = λγ(x1 + x2)

(
1− 1

K (x1 + x2)
)
− bx1 − q1E1x1

ẋ2 = (1− λ)γ(x1 + x2)
(
1− 1

K (x1 + x2)
)

+ bx1 − q2E2x2

0 ≤ E2(t);λ ∈ [0, 1]
(10)

where p, q, c, b, E1 are the above introduced real and positive constant parame-
ters.

This optimization problem can be reformulated using the Calculus of Varia-
tion Approach (see [2] for a similar construction). Adding up the two differential
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equations in (4) the variable λ disappears. If we further isolate the other con-
trol E2(t) variable and substitute it in the objective, the optimization model
transforms into the following:

max
x1(.),x2(.)

∫ +∞
0

e−δtl(x1(t), x2(t), ẋ1(t), ẋ2(t))dt (11)

where

l(x, ẋ) = (p− c2

q2x2
)[γ(x1 +x2)(1−

x1 + x2

K
)−q1E1x1− ẋ1− ẋ2]+(pq1x1−c1)E1

The theory of Calculus of variations is well established in the finite hori-
zon case. However, the situation is completely different in our infinite horizon
framework as (11). Nevertheless it is known that if the problem is considered
over the BC1 space (bounded curves defined on [0,+∞) with bounded deriva-
tives), then the first order conditions of optimality given by the Euler-Lagrange
equations holds true, see [4].

The Euler-Lagrange equations of the problem (11) are given by the following
dynamical system (see Proposition 2 in the Appendix):

ẋ1 = x2(pq2
c2

x2 − 1)[γ(1− 2x1+x2
K )− δ] + γ(x1 + x2)(1− x1+x2

K )− q1E1x1

ẋ2 = −x2(pq2
c2

x2 − 1)[γ(1− 2x1+x2
K )− δ]

(12)
The optimality conditions also include some constraints concerning the feasi-
bility of the controls E, λ, but we do not give them explicitely here. Since we
are mainly interested in constant solutions of the problem we want to study the
feasible stationary points of the above dynamics.

A fundamental step in our approach is to identify conditions ensuring that
the above Euler-Lagrange systems has exactly one stationary point with strictly
positive components. Under the assumption (5) we have different conditions
ensuring that. One of them is defined as follows:

0 <
q1E1

(γ + δ − 2q1E1)
<

(
p2q2K

c2

(γ − q1E1)
γ

− 1
)

(13)

Another sufficient system of inequalities is the following one:

2q1E1 < γ + δ (14)
c2

pq2K
<

(
1− q1E1

γ + δ − q1E1

) (
1− q1E1

γ

)
(15)

Both conditions are sufficient for the existence of a unique strictly positive sta-
tionary point of the Euler-Lagrange system (see Proposition 3 of the Appendix).
In both cases the unique stationary point x∗ = (x∗1, x

∗
2) is given by:

x∗1 =
K

γ
(γ − q1E1)−

c2(γ + δ − q1E1)
pq2(γ + δ − 2q1E1)

(16)

x∗2 =
c2(γ + δ − q1E1)

pq2(γ + δ − 2q1E1)
(17)
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The next step is to calculate which constant controls should be selected in
order to actually realize for the original system (4) the above solution x∗ as a
stationary point. It is not difficult to prove (see Proposition 4 in the Appendix),
that the right selection is to take

E∗2 =
q1E1

q2
(18)

λ∗ =
q1E1 + b

q1E1

(
1 + x∗2

x∗1

) (19)

and that both controls turn out to be positive.
The condition (18) suggest that the rate of harvesting should be identical on

both patches. Note also that this conditions together with (5) implies straight-
forwardely the technical condition (7) assumed in the above section.

Finally the feasibility of the above calculated controls should be analyzed. It
suffices in our case to ensure that λ ∈ [0, 1]. This is certainly true for sufficiently
small values of b.

This implies that in some cases the steady state of both industrial and arti-
sanal sectors can optimally subsist with positive levels of biomass and catches.
Notice that in the optimal steady state the biomass level in each patch does
not depends on the biomass transfer between patches. Moreover, even when
there does not exist any transfer between patches, an optimal reserve exists
with lambda in (0,1).

A simple condition for the feasibility of the calculated controls is the following

b < q1E1
x∗2
x∗1

. (20)

This implicitly gives a lower bound for the value of the transfer parameter, for
which protection of the complete growth-area as an artisanal reserve is justified.
For lower values of the transfer parameter, it can be better to some extend to
allow the industrial fleet to develop activities in the growth area.

4.1 Numerical example

In this short subsection we just want to test the feasibility of the model using
academical values for the parameters. Our main interest is to see that the con-
ditions stated theoretically are realizable. Another point to check is that the
values obtained for the controls are feasible and leading to reasonable trajecto-
ries and objective values.

Let us fix then the parameters associated to the dynamical systems in the
constraints as:

Biological quantities: Harvesting parameters:
Instantaneous growth γ = 0.16 Artisanal capturability q1 = 0.1
Carrying capacity K = 100 Industrial capturability q2 = 1
Biomass Transfer b = 0.2 Artisanal effort E1 = 1
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Finally the parameters to be used in the objective functions are the following
ones:

Economical parameters:
Price per unit harvest p = 100
Cost per unit of artisanal effort c1 = 50
Cost per unit of industrial effort c2 = 500
Discount factor δ = 0.06

For the above values for the parameters the assumptions (5),(14) and (15)
are satisfied. We obtain then the uniquely determined solution

x∗1 = 7.5
x∗2 = 30

Moreover the condition (20) also holds true, giving rise to the following
feasible constant controls.

E∗2 = 0.1
λ∗ = 0.6

Let us also note that the function involved in the objective function is also
positive in the stationary point (i.e. l(x∗1, x

∗
2, 0, 0) = 275 > 0).

Finally, the following figure shows the trajectories of the dynamical system
describing both populations for different start points.

Figure 2: Trajectories of the system (4) using the controls (18-19)
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5 Conclusions

We have considered a dynamical system for modelling a population distributed
near to a coastal area. The area is supposed to be legally separated into two
patches to be determined. It has been supposed that only one of the patches
shall contain the main reproduction area. Consequently a natural transfer to
the other patch can be assumed.

In our model the introduction of patches has been done preserving the natu-
ral properties of the whole population. In fact, adding both dynamical equations
results into a logistic law for the whole population (the sum of both patches)
and this, independently of how the patches were fixed.

The source patch plays the role of a quasi reserve since only artisanal activity
shall be allowed there. The second patch could then be used by a more efficient
fishery. The main issue is then to find which portion of the whole area should
be opened as the second patch.

For doing that we considered the viewpoint of the regulators (in charge to
fix the size of the patches). Using a calculus of variations approach we found
conditions ensuring the existence of a reasonable cut maximizing the economic
return.

The above presented results shows that it is possible to optimally distribute
the growth area of the fishery between artisanal and industrial fisheries, given
certain assumptions.

It is also observed that under certain conditions on biomass transfer it can
be optimal to completely close the access of the industrial fishery to the growth
area.

6 Appendix

We first present the results concerning the dynamical system for the biomass
including harvesting.

Proposition 1. Let the condition (5) be fulfilled and consider the dynamical
system (4) for constant controls Ē2 and λ̄ satisfying (6) and (7). There exist
then two stationary points of (4). One of them is the zero vector. The nonzero
one, x̄, has positive components and is given by the equations (8) and (9).
Furthermore, it holds that x̄ is an stable node, but zero is not.

Proof:
Let us denote z = x1 + x2. The stationary points of (4) can be equivalently

defined as the solutions of the algebraic system

γz(1− 1
K

z)− q1E1x1 − q2Ē2(z − x1) = 0 (21)

λ̄γz(1− 1
K

z)− (b + q1E1)x1 = 0 (22)
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Since by definition (b + q1E1) > 0 the following relation must hold

x1 =
λ̄γ

(b + q1E1)
z(1− 1

K
z) (23)

Using this in (21) leads to the following algebraic condition over z.

γz(1− 1
K

z)− q2E2z = (q1E1 − q2Ē2)
λ̄γ

(b + q1E1)
z(1− 1

K
z)

There exists then the trivial solution z = 0, which due to (23) leads to the first
solution x = 0. Taking into account the above algebraic condition over z it is
clear that there exists another stationary point if and only if

λ̄(q1E1 − q2Ē2) 6= (b + q1E1). (24)

In this case the other unique solution satisfies:

z =
K

γ

(γ − q2Ē2)(b + q1E1)− λ̄γ(q1E1 − q2Ē2)
(b + q1E1)− λ̄(q1E1 − q2Ē2)

(25)

Using this value in (23) leads easily to (8). This also implies the relationschip

z =
x1

λ̄q2Ē2
[(b + q1E1)− λ̄(q1E1 − q2Ē2)]

Now (9) holds trivially since x2 = z − x1.
The positivity of the nonzero solution requires that:

λ̄(q1E1 − q2Ē2) <
(γ − q2Ē2)

γ
(b + q1E1) (26)

which is equivalent to:

(γ − q2Ē2)(b + (1− λ̄)q1E1) + q2Ē2λ̄(γ − q1E1) > 0

and it follows directly from the assumption of the proposition.
Finally let us point out that the condition (26) implies (24) since (b + q1E1)

and Ē2 are strictly positive. Consequently in this case there are actually two
stationary points.

In order to prove the stability type of the two stationary points found let us
write the system (4) in the following form

ẋ1 = λ̄r(x1, x2)− (b + q1E1)x1

ẋ2 = (1− λ̄)r(x1, x2) + bx1 − q2Ē2x2

where
r(x1, x2) = γ(x1 + x2)(1−

x1 + x2

K
)
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A stationary point x = (x1, x2) is a stable one if and only if the matrix

C(x1, x2) =
[

λ̄ ∂r
∂x1

(x1, x2)− (b + q1E1) λ̄ ∂r
∂x2

(x1, x2)
(1− λ̄) ∂r

∂x1
(x1, x2) + b (1− λ̄) ∂r

∂x2
(x1, x2)− q2Ē2

]
has negative trace and positive determinant. Taking into account that ∂r

∂x1
and

∂r
∂x2

coincide the stability is then equivalent to the conditions:

∂r

∂x1
(x1, x2)− (b + q1E1 + q2Ē2) < 0 (27)

λ̄(q1E1 − q2Ē2)
∂r

∂x1
(x1, x2) + (b + q1E1)[q2Ē2 −

∂r

∂x1
(x1, x2)] > 0 (28)

From the definition of r it holds ∂r
∂x2

(0) = γ and therefore

det(C(0)) = λ̄γ(q1E1 − q2Ē2) + (b + q1E1)(q2Ē2 − γ).

This is strictly negative due to (26). Consequently 0 is not a stable node.
The other stationary point x̄ = (x̄1, x̄2) satisfies the relations (25) for z̄ =

x̄1 + x̄2. Using that in the expression of the Trace

ᾱ = Trace(C(x̄)) = γ(1− 2
K

z̄)− (b + q1E1 + q2Ē2)

leads to:

ᾱ =
B̄γ − 2(γ − q2Ē2)(b + q1E1)− λ̄γ(q1E1 − q2Ē2)− B̄(b + q1E1 + q2Ē2)

B̄
(29)

where B̄ = (b + q1E1)− λ̄(q1E1 − q2Ē2). Due to (7) it holds

λ̄(q1E1 − q2Ē2) <
(γ − q2Ē2)

γ
(b + q1E1) < (b + q1E1) (30)

and therefore B̄ > 0. Consequently the sign of Trace(C(x̄)) only depends on
the numerator of ᾱ in (29). This numerator is equal to

−(b+q1E1)[(γ−q2Ē2)+(b+q1E1)− λ̄(q1E1−q2Ē2)]+(γ+q2Ē2)λ̄(q1E1−q2Ē2)
(31)

which due to (7), (30) and the feasibility of the controls is negative in the case
q1E1 − q2Ē2 ≤ 0. It remains then only to prove that (31) is also negative when

q1E1 − q2Ē2 > 0 (32)

Using the first inequality of (30) it can be easily seen that (31) is smaller than

−(b+q1E1)[(γ−q2Ē2)+(b+q1E1)−λ̄(q1E1−q2Ē2)]+(γ+q2Ē2)
(γ − q2Ē2)

γ
(b+q1E1)

13



and therefore it suffices to show

−γ[(γ − q2Ē2) + (b + q1E1)− λ̄(q1E1 − q2Ē2)] + γ2 − (q2Ē2)2 < 0

This follows but inmediatly from (32) and the feasibility of λ̄ since the left hand
side redudes to −(q2Ē2)2 − γ[b + (1− λ̄)(q1E1 − q2Ē2)].

Finally we have to prove that (28) holds true at x̄. Note that

β̄ = Det(C(x̄)) = λ̄γ(1− 2
K

z̄)(q1E1 − q2Ē2) + (b + q1E1)[q2Ē2 − γ(1− 2
K

z̄)],

or equivalently

β̄ = q2Ē2(b + q1E1)− γ(1− 2
K

z̄)[(b + q1E1)− λ̄(q1E1 − q2Ē2)].

Using (25) for z̄ gives then

β̄ = (γ − q2Ē2)(b + q1E1)− λ̄γ(q1E1 − q2Ē2).

This is but strictly positive due to (30). �

The next proposition deals with the optimality condition to the underlying
calculus of variation problem.

Proposition 2. First order optimal conditions of the problem (11) are given
by the following system corresponding to the Euler-Lagrange equations.

ẋ1 = x2(pq2
c2

x2 − 1)[γ(1− 2x1+x2
K )− δ] + γ(x1 + x2)(1− x1+x2

K )− q1E1x1

ẋ2 = −x2(pq2
c2

x2 − 1)[γ(1− 2x1+x2
K )− δ]

(33)

Proof: Consider the Euler-Lagrange optimality condition:

lx −
d

dt
lẋ + δlẋ = 0

First we need the partial derivatives of l(x, ẋ) with respect to x:

lx1 = (p− c2
q2x2

)[γ(1− 2x1+x2
K

)− q1E1] + pq1E1

lx2 = c2
q2x2

2
[γ(x1 + x2)(1− x1+x2

K
)− q1E1x1 − ẋ1 − ẋ2] + (p− c2

q2x2
)γ(1− 2x1+x2

K
)

and with respect to ẋ:

lẋ1 = −(p− c2

q2x2
)

lẋ2 = lẋ1

Therefore
d

dt
lẋ1 =

d

dt
lẋ2 = −c2ẋ2

q2x2
2

14



Stating the Euler-Lagrange equation for x1 we obtain:

(p− c2

q2x2
)[γ(1− 2

x1 + x2

K
)− q1E1] + pq1E1 +

c2ẋ2

q2x2
2

− δ(p− c2

q2x2
) = 0

or equivalently

(p− c2

q2x2
)[γ(1− 2

x1 + x2

K
)− q1E1 − δ] + pq1E1 = −c2ẋ2

q2x2
2

This leads to

−ẋ2 = x2(
pq2

c2
x2 − 1)[γ(1− 2

x1 + x2

K
)− q1E1 − δ] +

pq1q2E1

c2
x2

2

and finally

ẋ2 = −x2(
pq2

c2
x2 − 1)[γ(1− 2

x1 + x2

K
)− δ]

The Euler-Lagrange Equation for x2 gives:

0 =
c2

q2x2
2

[γ(x1 + x2)(1−
x1 + x2

K
)− q1E1x1 − ẋ1 − ẋ2] +

+(p− c2

q2x2
)γ(1− 2

x1 + x2

K
) +

c2ẋ2

q2x2
2

− δ(p− c2

q2x2
)

which transforms into

0 = γ(x1 +x2)(1−
x1 + x2

K
)− q1E1x1− ẋ1 +x2(

pq2

c2
x2−1)[γ(1−2

x1 + x2

K
)− δ]

and finally

ẋ1 = x2(
pq2

c2
x2−1)[γ(1−2

x1 + x2

K
)−δ]+γ(x1 +x2)(1−

x1 + x2

K
)−q1E1x1 �

Let us now study the existence of strictly positive stationary points of the
Euler-Lagrange system (12).

Proposition 3. If the condition (5) is satisfied and any of the two conditions
(13) or (14 - 15) holds true, then there exists exactly one stationary point x∗ =
(x∗1, x

∗
2) of (12) such that x∗1 > 0 and x∗2 > 0. These levels are given by (16)

and (17).

Proof:
Let us first note that from any of the both sufficient conditions proposed

follows easily the existence of some α > 0 satisfying:

q1E1 <
γ + δ

(2 + α)
(34)

pq2K

c2
>

(
1 +

1
α

) (
γ

γ − q1E1

)
(35)
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To localize the stationary points means nothing else but solving the following
algebraic equations.

0 = x2(
pq2

c2
x2 − 1)[γ(1− 2

x1 + x2

K
)− δ] + γ(x1 + x2)(1−

x1 + x2

K
)− q1E1x1

0 = −x2(
pq2

c2
x2 − 1)[γ(1− 2

x1 + x2

K
)− δ]

Adding up the equations deal to the condition

0 = γ(x1 + x2)(1−
x1 + x2

K
)− q1E1x1

or equivalently
(x1 + x2)[(γ − q1E1)−

γ

K
(x1 + x2)] = 0

From the above equation follows that x1 + x2 equals zero or K
γ (γ − q1E1).

We are interested only in positive solutions and therefore must take

x1 + x2 =
K

γ
(γ − q1E1). (36)

Since we are interested only on positive solutions, it is sufficient to consider
the case in which:

γ − δ − 2γ

K
(x1 + x2) = − q1E1

(pq2
c2

x2 − 1)
. (37)

Since the expression obtained for x1 + x2 does not depend on x2, equation
(37) becomes linear in x2 giving rise to:

x∗2 =
c2(γ + δ − q1E1)

pq2(γ + δ − 2q1E1)

and according to (36)

x∗1 =
K

γ
(γ − q1E1)−

c2(γ + δ − q1E1)
pq2(γ + δ − 2q1E1)

The assumption (34) implies that

γ + δ − 2q1E1 > αq1E1 > 0 (38)

and consequently x∗2 > 0.
Taking into account the hypothesis (5) the condition (35) can be stated as

K

γ
(γ − q1E1) >

c2

pq2

(
1 +

1
α

)
But from (38) it follows immediately

1
α

>
q1E1

γ + δ − 2q1E1
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Combining the last two inequalities leads to

K

γ
(γ − q1E1) >

c2

p2q2

(
1 +

q1E1

γ + δ − 2q1E1

)
=

c2

pq2

(γ + δ − q1E1)
(γ + δ − 2q1E1)

This is finally equivalent to x∗1 > 0 and we are done. �

Proposition 4. The values of the two controls associated to the steady states
x∗1, x

∗
2 are positive and given by the expressions (18) and (19).

Proof: Let x∗ = (x∗1, x
∗
2) be the unique positive stationary point of the

Euler-Lagrange system of equation (12) described in the above section. If we
want this point to be a stationary solution of the original system (4) using
constant controls E∗2 (t) = E∗2 , λ∗(t) = λ∗, then the constants must satisfy the
following relations.

E∗2 =
1

q2x∗2

[
γz∗

(
1− 1

K
z∗

)
− q1E1x

∗
1

]
(39)

λ∗ =
bx∗1 + q1E1x

∗
1

γz∗
(
1− 1

K z∗
) (40)

Here z∗ denotes the sum of both componetns (i.e. z∗ = x∗1 +x∗2). These are then
the constant controls associated with the unique feasible stationary point of the
Euler-Lagrange equation. If the above values are feasible we can construct an
interior solutions for the controls satisfying first order optimality.

If we define B∗ = (γ − q1E1)2, then z∗ can be also written as

z∗ =
K

2γ
[(γ − q1E1) +

√
B∗].

Using that in (39) leads to

E∗2 =
1

q2x∗2

[
K

2
[(γ − q1E1) +

√
B∗]

(
1− 1

2γ
[(γ − q1E1) +

√
B∗]

)
− q1E1x

∗
1

]
=

1
q2x∗2

[
K

4γ
[γ − q1E1 +

√
B∗]

(
γ − q1E1 −

√
B∗ + 2q1E1

)
− q1E1x

∗
1

]
=

1
q2x∗2

[
K

4γ
[(γ − q1E1)2 −B∗] + q1E1z

∗ − q1E1x
∗
1

]
.

Now from the definition of B∗ and z∗ = x∗1 + x∗2 it follows

E∗2 =
q1E1

q2

The expression (19) follows straightforwardly from (40) and (18) taking into
account that γz∗

(
1− 1

K z∗
)

= q1E1x
∗
1 + q2E

∗
2x∗2. �
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