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Abstract

I estimate a dynamic cost function involving Learning-by-doing in the

Personal Computer Processor industry. Learning-by-doing is an important

characteristic of semiconductor manufacturing, but no previous empirical

study of learning in the processor market exists. Using a new econometric

method, I estimate parameters of a cost function under a Markov perfect

equilibrium. I �nd learning rates between 2.54% and 24.86%, and higher

production costs for AMD compared to INTEL, the two �rms in the market.

Around 12% of the di�erences in costs between �rms is explained by the

lower learning that AMD obtains given its lower production levels. These

learning rates are lower than those of other semiconductors products and

they indicate that when the �rms begin the production in the fabs they

have already advanced in their learning curve and most of the learning occurs

before-doing in the development facilities.

∗This paper is a draft of the third chapter of my dissertation. In the �rst chapter I
estimate a random coe�cient model of demand and analyze the importance of the Intel
brand in demand for CPU. In the second chapter I analyze di�erent measures of market
power in a dynamic model of �rm behavior. Please do not cite or circulate. All comments
are welcome.
†PhD. Candidate, Department of Agricultural and Resource Economics, University of

California at Berkeley. e-mail: salgado@berkeley.edu
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1 Introduction.

The Central Processing Unit (CPU) is the brain of the personal computer

(PC), performs all of the information processing tasks required for comput-

ing. The technological development of the CPU, the most important PC

component, has been one of the keys to growth in the PC industry over the

last three decades. Two of the clearest trends in the CPU and the PC mar-

kets are the sustained increase in product quality and a steep decrease in

price over time. Several reasons have been cited for these trends, the most

important of which are strategic interactions between �rms, a continuous in-

troduction of new, improved products, and the existence of learning-by-doing

in the production process.

The evidence for learning-by-doing in the semiconductor industry is abun-

dant. It has been well documented that learning plays an important role in

the semiconductor industry due to signi�cant reductions in failure rates.

When a new product is introduced, the proportion of units that passes qual-

ity and performance tests (yield) could be as low as 10% of the output.

Production experience and adjustment in the process over time decrease

failure rates, increasing yields up to 90%, which reduces unitary production

costs over the lifetime of a product (Irwin and Klenow, 1994). The empirical

applications of learning in the semiconductor industry have concentrated on

memory manufacturing (Baldwin and Krugman 1988; Dick 1991; Irwin and

Klenow 1994; Gruber, 1996, 1999; Hatch and Mowery, 1999; Cabral and

Leiblein, 2001; Macher and Mowery, 2003; Siebert, 2008), and even though

memory and CPU production processes are subject to the same type of
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learning economies, no evidence exists of the importance of learning in CPU

manufacturing. Surprisingly, while most of the studies in the PC CPU in-

dustry recognize the existence of learning in the manufacturing process, they

have focused on other characteristics of the market and ignored cost deter-

minants and learning-by-doing as a key component of the industry (Aizcorbe

2005, 2006; Gordon 2008; Song 2006, 2007).

In this paper I estimate the extent of learning-by-doing in the PC CPU

industry using a new econometric method by Bajari, Benkard and Levin

(2007). Compared to previous emprirical studies of learning-by-doing, this

method requires weaker assumptions regarding �rms dynamic behavior. The

method employs a closed loop approach, which allows me to control for how

the �rms think their rivals will react in the future to changes in their current

behavior. Additionally, the method has several computational advantages

because it makes use of simulations that (1) do not require neither to �nd

an algebraic solution for the equilibrium of the game, and (2) do not require

me to choose amongst possible multiple equilibria. Instead, the method as-

sumes that the observed behavior is the equilibrium that �rms decide to play.

This method makes it feasible to estimate learning rates while controlling for

strategic interactions among �rms, heterogeneous preferences of consumers,

and periodic introduction of new, di�erentiated products, into the market.

I use a proprietary dataset from In-Stat/MDR, a research company special-

izing in the CPU Industry that is the data source for all the analysis and

forecasting done in the PC CPU market. It contains detailed quarterly ship-

ment estimates and prices for 29 products by AMD and INTEL over 48 time

periods from 1993 to 2004.
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The analysis in this paper di�ers from the previous literature in several

ways. Most previous studies have assumed that products are homogeneous

and that �rms are symmetric; in most cases, they have also taken demand

elasticity as a parametric assumption (one exception is Siebert, 2008). In

this paper I use estimates from a random coe�cient demand model (Salgado,

2008) which allows me to control for the existence of di�erentiated products

and for heterogeneity of preferences among consumers. This also makes it

possible to analyze strategic interactions among �rms in a complicated game

in which �rms choose prices for each of their available di�erentiated products

under dynamics given by learning-by-doing.

The results show that there are large di�erences between �rms' estimated

production costs, with AMD's average costs more than twice Intel's average

costs. These di�erences are explained by both a higher production cost upon

introduction of a product and a lower learning gain due to lower production.

The average estimated learning rates �uctuate between 2.54% and 17.01%

for AMD and between 4.74% and 24.86% for Intel, which are lower than

those found in other empirical studies of semiconductor products, which

have found average learning rates of 20%. This di�erence in learning rates

suggests that in the CPU market, �rms transfer the production process from

the development facilities to the production fabs succesfully once they have

already advanced in their learning curve.

The structure of the paper is as follows. Section 2 reviews the most

relevant studies, both theoretical and empirical, in the learning-by-doing

literature. Section 3 describes a structural model that captures the charac-

teristics of the market I am interested in analyzing. Section 4 presents the
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econometric method and explain how can it be applied to estimate the rates

of learning in CPU manufacturing. Section 5 presents the results and the

�ndings and section 6 concludes.

2 Literature Review

The learning-by-doing hypothesis states that in some manufacturing pro-

cesses, cost are reduced as �rms gain production experience. This hypothesis

originated with Wright (1936), who observed that direct labor costs of air-

frame manufacturing fell by 20% with every doubling of cumulative output.

Since then, many empirical studies have analyzed the existence of learning-

by-doing in a variety of industrial settings, and a number of theoretical pa-

pers have analyzed di�erent implications of learning for endogenous growth,

market concentration, and �rms' strategic interactions (Lee 1975, Spence

1981, Gilbert and Harris 1981, Fudenberg and Tirole 1983, Ghemawat and

Spence 1985, Ross 1986, Dasgupta and Stiglitz 1988, Mookherjee and Ray

1991,Habermeier 1992, Cabral and Riordan 1994, Cabral and Leiblein 2001).

Theoretical analyses have shown that learning-by-doing could create en-

try barriers and strategic advantages for existing �rms (Lee 1975, Spence

1981, Ghemawat and Spence 1985, Ross 1986, Gilbert and Harris 1981) and

facilitate oligopoly collusion (Mookherjee and Ray, 1991). Gruber (1992)

presents a model in which learning-by-doing could generate stability in mar-

ket share patterns over a sequence of product innovations, given the existence

of leaders and followers in the market. Cabral and Riordan (1994) show that

learning-by-doing creates equilibria with increasing dominance of one �rm
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in the market and might generate predatory pricing behavior by the leaders

who use their cost advantage to prevent new �rms from entering the market.

Besanko, et.al. (2007) analyze a model of learning-by-doing to explain the

incentives that �rms have to price strategically, showing that �rms might

price more aggressively in order to learn more quickly and gain dominance

over competitors, as well as to prevent their competitors from learning.

The existence of learning-by-doing in the semiconductor manufacturing

process has been widely analyzed. The source of learning has been attributed

to the adjustments that are necessary to obtain high productivity during

fabrication. The semiconductor production process is based on hundreds

of steps in which circuit patterns from photomasks are imprinted in silicon

wafers and then washed and baked in several layers, thus forming the millions

of transistors that allow the chip to function as an information processing

device. These steps must be performed under precise environmental condi-

tions that are controlled and adjusted continuously. When a product is �rst

transfered from the development labs to full production in the fabs, the num-

ber of units that pass control quality tests (yield) is very small, and several

�ne-tuning steps need to be taken in order to obtain high yields. Given that

the production cost of a wafer is independent of the number of working chips

at the end of the product line, low yields mean higher production cost per

working unit. It is the increase in the yield rates that generates reduction in

the production cost of the �nal products. Hatch and Mowery (1998) analyze

detailed production data on unitary yields for a number of semiconductor

chips and conclude that both cumulative production and engineering analy-

sis of the production output are the sources of improvements in yield rates
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over the lifetime of the products.

The most common speci�cation in the empirical analysis of learning-by-

doing is based on a constant learning-elasticity

log ct = α+ η logEt−1 + εt (1)

Where ct represents unitary production costs, usually assumed constant

within a period, and Et−1 re�ects some measure of production experience,

usually proxied by cumulative production. Using this speci�cation, the goal

of the empirical analysis is to estimate the constant experience-elasticity η

and use it to measure a learning rate, which measures the percentage reduc-

tion in average cost when cumulative production doubles, de�ned by:

rt ≡
c(Et)− c(2Et)

c(Et)
= 1− 2η (2)

In a seminal empirical paper on learning-by-doing in the semiconductor

industry, Irwin and Klenow (1994) construct a structural model of learning-

by-doing and estimate learning spillovers among seven generations of DRAM1.

They focus the analysis on estimating how the cumulative production of each

product, as well as the cumulative production of all other products, a�ects

unitary average costs. Using quarterly data from 1974 to 1992, they �nd

average learning rates of 20% for the di�erent products. They also �nd that

�rms learn three times more from internal cumulative production than from

spillovers from other �rms experience and that cumulative production of

1Dynamic Random Access Memory, one of the volatile memory devices used in com-
puters.
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previous generations has weak e�ects on the costs of new products. In their

model, they assume that products are homogeneous and �rms are symmet-

ric, and they solve for the Cournot equilibrium of the dynamic game under

an open-loop assumption. This assumption means that �rms commit to a

path of production over the future in an initial time period and that they

do not modify this path in the future. This implies that �rms will not ad-

just their plans over time depending on how the game evolves, nor will they

react to changes in their competitors' behavior. If the game under analy-

sis has some random components, as in our application, this assumption is

clearly not valid. The authors estimate the parameters of the cost function

with a GMM method using instruments and the �rst order conditions of the

dynamic problem. They also propose the use of a non-linear least squares

(NLLS) method that assumes a functional form for the dynamic cost2, which

facilitates the estimation process and avoid the need of valid instruments.

Gruber (1998) applies the NLLS method to the production of EPROM3 chips

and �nds learning rates between 23% and 30%.

More recently, Siebert (2008) explore learning-by-doing recognizing that

di�erent generations of products are competitors in the demand side of the

market. He estimates a dynamic oligopoly model under a Markov perfect

equilibrium, in which �rms choose quantities of each available product. He

assumes that �rms base their decisions only on industry total cumulative

production; furthemore, he assumes that products are homogeneous within

2The dynamic cost is the sum of current period marginal cost and the shadow value of
learning

3Erasable Programmable Read-only Memory, one of the memory chips that can keep
information even when the source of power is interrupted. They were used as BIOS chips
in old PC and other electronics.
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a generation, but that sales of other generations have di�erentiated e�ects

on prices. He also implicitly assumes that the demand function is common

across generations of products and assumes a functional form for the dynamic

marginal cost. As in Irwin and Klenow (1994), he uses the �rst order condi-

tions of the dynamic game in a GMM approach to estimate the parameters

of the cost function. The author recognizes the externality that production

decisions generates over the demand of the other �rm' products and �nd that

ignoring this e�ect generates biased estimates of learning rates. He found

learning rates of 34% when taking into account multiproduct e�ects and 20%

when ignoring these e�ects.

As stated in the introduction, all of the empirical evidence of learning-

by-doing in the semiconductor industry comes from memory chips manufac-

turing. This has been mainly because the market in memory chips is more

competitive, and market data have been readily available since the 1970s.

Based on new data availability for the PC CPU market, a more recent litera-

ture has studied di�erent characteristics of the CPU market. Aizcorbe (2005)

analyzes a vintage model of new product introduction; Aizcorbe (2006) ex-

amines price indices during the 1990s; and Song (2007), Gordon (2008) and

Salgado (2008) analyze di�erent models of demand to measure consumer wel-

fare, demand for durable products and the e�ects of advertising and brand

loyalty on demand, respectively. All these papers have ignored the existence

of learning-by-doing as a key component of the manufacturing process.
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3 The Model

This section presents a structural econometric model that captures the most

important characteristics of the PC CPU industry. There are two �rms in

the market, AMD (A) and INTEL (I), with ntA and ntI products available in

period t. Products are di�erentiated in terms of their quality, which evolves

stochastically over time, where quality of product i in period t is given by

kit. Products enter and exit the market exogenously to the �rms' pricing

decision. It is common knowledge that product i enters the market at time

ti0 and exits the market at time tiT . Firms choose prices for each one of the

available products i ∈ Ijt (the set of products available for �rm j at time t).

In the remainder of this section, I present details of the three main com-

ponents of the model: demand, cost functions, and the equilibrium concept

of the dynamic game.

3.1 The model of demand

Demand is modeled using a random coe�cient model with quality being the

only relevant product characteristic. As in Salgado (2008), I use a CPU

performance benchmark that measures the speed at which each CPU can

complete a number of tasks. Even though a more detailed characterization

of the products is possible (using for example clock speed, amount of cache

memory, front speed bus and other characteristics) there is a strong corre-

lation between all of these characteristics and the index of performance. I

prefer to use a single characteristic to reduce the number of state variables

and facilitate the estimation of the dynamic game.
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Following Nevo (2000), I present the main components of a random co-

e�cient demand model for the CPU industry. We observe the CPU market

in t = 1...T time periods. The market has L potential consumers that must

decide either buy one of the available products or not. We observe aggre-

gate quantities, prices, and a measure of quality (kit) for each product. The

indirect utility of consumer l from choosing product i at time t is given by

ulit = αl(yl − pit) + βlkit + ξit + εlit

l = 1 . . . L, i = 1 . . . It, t = 1 . . . T
(3)

where yl is the income of consumer l, pit is the price of product i at time

t, kit is the measure of quality of product i in time t, ξit is a product charac-

teristic observed by consumers and �rms but unobserved by the researcher,

εlit is a random term with a type I extreme value distribution, αl is con-

sumer l's marginal utility from income and βl is consumer l's marginal utility

from product quality. Additionally, we assume that the taste coe�cients are

independent and normally distributed among the population. Under this

assumption, the preferences over income and quality of a randomly chosen

consumer can be expresed as:

 αl

βl

 =

 α+ σαvαl

β + σβvβl


vαl, vβl ∼ N(0, 1)

The demand speci�cation also includes an outside good, which captures

the preferences of consumers who decide not to buy any of the available
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products. The indirect utility from this outside good, which is normalized

to zero, is:

ul0t = αlyl + ξ0t + εl0t = 0

The indirect utility function in (3) can be written as

ulit = αlyl + δit(pit, kit, ξit;α, β) + µlit(pit, kit, vl;σ) + εlit (4)

δit ≡ βkit − αpit + ξit (5)

µlit ≡ σαvαlpit + σβvβlkit (6)

where δit is constant among consumers and is called the mean utility of

product i at time t, and µlit captures the portion of the utility from product

i that di�ers among consumers.

Consumers are assumed to buy one unit of the good that gives them

the highest utility. This de�nes the set of characteristics of consumers that

choose good i:

Ait = {(vl, εl0t, ..., εlJtt)|ulit ≥ ulst∀s = 0, 1..Jt} (7)

The market share for good i in time t correspond to the mass of individ-

uals over the set Ait, which can be expressed as

sit(kt, pt, δt;σ) =
∫
Ait

dP (v, ε) (8)

Given the assumption over the distribution of ε, it is possible to integrate
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algebraically over ε, so we can rewrite equation (8) as:

sit(kt, pt, δt;σ) =
∫

exp(δit(pit, kit, ξit;α, β) + µijt(pit, kit, vl;σ))

1 +
∑Jt

s=1 exp(δst(pit, kit, ξit;α, β) + µist(pit, kit, vl;σ))
dP (vl)

The demand function for a set of parameters θd = (α, β, σα, σβ) is given

by

qit(pit, kit; θd) = sit(kt, pt, δt(α, β);σα, σβ)Mt (9)

where Mt is the market size at time t.

The estimation of the demand requires to use a GMM method to control

for endogeneity of prices. For this, cost determinants like product charac-

teristics that shift the supply but not the demand and that are uncorrelated

with product quality (Die Size, Number of Transistors in the chip and pro-

duction experience) are used. All the details of the estimation are given in

Salgado (2008).

3.2 Evolution of quality

The high rate of increase in quality is an important characteristic of the PC

CPU market. Product quality increase over time due to the introduction of

improvements to existing product and new characteristics that contribute to

a higher performance. However, the main determinant of quality evolution

in the market is the continuous introduction of new products over time. I

model this characteristic of the market as described below.

There is a quality frontierKF (t), which represents the maximum possible

quality for a new product and that evolves exogenously over time. New
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products are introduced into the market at a quality level (1−αn) ∗KF (t),

where αn ∼ Uniform[αn, αn]. For old products, there is a probability po

that the product quality increases in a given period. If the product quality

increases, it does so in a proportion αo, being the new quality kt = (1 +

αo)kt−1, where log(αo) ∼ N(αo, σo). Table 1 summarize these processes.

Table 1: Characteristics of Quality Evolution

Quality Frontier KF(t)

Distance from the frontier (%)
of a new product

0 < αn < 1, αn Uniform[αn, αn]

Probability that an old prod-
uct increases its quality at time
t

po

Increase in quality (%) if this
is positive

αo > 0, log(αo) ∼ N(αo, σo)

It is assumed that both �rms know the data generating process that

generates the evolution of quality, and that they observe the quality of all

the products currently available before making their pricing decisions, they

do not know the realization of the random variables αn, po, and αo for future

periods; therefore, when making decisions, they need to take expectations

over future realizations of these variables.

3.3 Cost Function

Firms face learning-by-doing in the production process, and therefore the

unitary cost decreases with production experience. I assume that learning

is given entirely by the cumulative production of each product, and that
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learning spillovers do not exist.4 Individual production cost di�ers across

products depending on two main characteristics: the die size (size of the

surface of the chip in the wafer) and the number of transistors in the CPU.

The cost function that captures this characteristic of the production process

is the following, where i denotes an speci�c product5

cit = θc0j + θc1DSi + θc2TRi + θc3 log(Eit) + εit (10)

εit ∼ N(0, σ2
ε)

In this speci�cation I allow the constant term θc0j to be �rm speci�c to

control for potential di�erences in production cost between �rms, DSi is the

die size and TRi is the number of transistors in the chip. For higher DS,

fewer chips are produced per wafer; the higher TR the more complicated the

production process is and therefore the individual cost per chip is higher.

These characteristics are �xed for a particular product over its life. Given

that I don't have data on production experience in the development facilities

before the product is transfered to the fabs, I assume that for all products

at the time of their introduction Eit0 = 1. Hence, the expected cost of

production when a product is �rst introduced is θc0j + θc1DSi + θc2TRi, and

it is reduced, at a decreasing rate, with production experience. For this

speci�cation of the cost function, the elasticity of production experience and

4Hatch and Mowery (1999) �nd that learning could be the result not only of cummula-
tive production, but also of management e�orts to analyze production data and discover
the sources of failures.

5I use a cost function that is linear in parameters to simplify the estimation algorithm.
The use of a log-log function, as is usual in the learning-by-doing literature, increases
notoriously the computation burden of the algorithm.
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the learning rate, de�ned in equation (2), are given by:

ηit =
θc3
cit

rit = −θc3
log(2)
cit

(11)

Production experience is given by cumulative production of each product,

and its equation of motion is given by

Eit =
t−1∑
τ=ti0

qiτ

Eit+1 = Eit + qit

3.4 Single Period pro�t function

The demand and cost functions previously presented de�ne the per-period

pro�t function for �rm j as

πjt(pjt, p−jt, st) =
∑
i∈Ijt

qit(pjt,p−jt,kt)(pit − c(Eit))

Where pjt and p−jt are the vector of prices for �rm j and its competitor

(−j), st = [kt,Et] is the vector of pro�t-relevant state variables for �rm j at

time t, which is composed of the vector of quality for all products available

in the market at time t (kt) and the vector of production experience (Et).

Notice that the quality of each product in the market enters the demand

function of every other product in a non-linear way through the random

coe�cient demand model, while experience enters only the cost function of

the corresponding product.
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3.5 The Game and the Equilibrium Concept

In every period �rms simultaneously choose the price for each of their avail-

able products i ∈ Ijt to maximize

Πjt(pjt, p−jt, st) = Et[
∞∑
τ=t

βτ−tπjτ (pjτ , p−jτ , sτ )] (12)

where the expectation operator is applied over the realization of present

and future cost shocks and the evolution of quality for each product.

Following Benkard, Bajari and Levin (2007), I focus the equilibrium anal-

ysis on pure strategy Markov perfect equilibria (MPE). In an MPE each

�rm's equilibrium strategy depends only on the pro�t-relevant state vari-

ables. A Markov strategy is de�ned as a function σj : S → Aj where S

represents the state space and Aj represents the set of actions for �rm j. A

Markov strategy pro�le is a vector σ = (σj(s), σ−j(s)).

If �rms' behavior is given by a Markov strategy pro�le σ, the maximized

payo� function at a given state s can be written as

Vj(s;σ) = Et[
∞∑
τ=t

βτ−tπjτ (σj(sτ ), σ−j(sτ ), sτ )] (13)

The strategy pro�le σ is a Markov Perfect Equilibrium if, given its opponents

pro�le σ−j , each �rm does not have any alternative Markov strategy σ′j that

increases the value of the game. This means that σ is an MPE if for all �rms

j, states s and Markov strategies σ′j

Vj(s;σj , σ−j) ≥ Vj(s;σ′j , σ−j) (14)
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The estimation method consist on minimize a loss function based on ob-

servations that violate the rationallity constraint (14). The details of this

optimization problem are discussed in the next section.

4 Estimation Method

To estimate the model I follow the econometric method of Bajari, Benkard

and Levin 2007 (BBL). These authors propose the use of a two-step algorithm

to estimate parameters of dynamic models of imperfect competition. In the

�rst stage all parameters that do not involve dynamics are estimated (the

demand parameters, the evolution of quality and the policy function); in the

second stage, using the estimates of the �rst stage, the game is simulated into

the future to obtain estimates of the value function. Then, the value function

estimates are used to estimate the dynamic parameters (cost parameters).

In this section I present details of these estimation procedures.

4.1 Demand Function

The demand function is estimated using a random coe�cient model of de-

mand (Berry, Levinsohn and Pakes, 1995; Nevo 2000). The relative perfor-

mance of a product, compared to the fastest available product, is used as a

measure of quality, and a dummy for the Intel brand is included to control for

the high premium that consumers are willing to pay for Intel products. Cost

determinants (die size, number of transistors and production experience) are

used as instruments to control for the endogeneity of prices and are employed

in a GMM framework to obtain unbiased estimates of the demand function.
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All estimation details are presented in Salgado (2008).

4.2 The policy function

The policy function re�ects the equilibrium behavior of the �rms as a func-

tion of the state of the game, which can be estimated from the data using the

observed prices and the value of the state variables (quality and production

experience). The exact functional form of the policy function is the result of

the unknown (and possibly multiple) equilibrium of the game. As proposed

by BBL, I let the data talk and assume that the observed prices at every

state of the game re�ects the equilibrium chosen by the �rms.

I make two functional form assumptions in order to estimate the policy

function. First, I assume that the policy function is quadratic in the observed

state variables and linear in the unobserved cost shock. Therefore, it is

assumed that the prediction error from a quadratic regression of prices on

the observed state variables corresponds to the realization of the cost shocks.

These error terms are used to estimate the distribution of the cost shocks ,

which will in turn be used during the forward simulation of the game. Second,

I focus on a subset of the observed state variables. If I consider the pro�t-

relevant state variables to be the quality and experience of all the products

available in each period, the dimensionality of the state space changes over

time as the number of available products changes. To avoid this problem and

to make use of the best possible approximation given the limitations in the

size of the dataset, I de�ne three state variables that capture the e�ects of

the main components of the model on the �rms' equilibrium pricing decision.

The variables considered are:
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• The relative quality of each product with respect to the quality frontier

(kit), which a�ects the demand function.

• The experience of product i (Eit), which determines production cost,

as previously de�ned. This variable captures the e�ect of learning on

the pricing decision6.

• The total experience of the competitor for its available products (E−jt =∑
k∈I−jt Ekt). This variable captures the e�ect on a �rm pricing deci-

sion when its competitor faces a lower production cost due to learning.

With these three variables I construct a quadratic approximation of the

policy function:

p̂it = p(kit, Eit, E−jt) + εit (15)

This function is used in the computation of the expected discounted value

(EDV) of �rms pro�ts using a forward simulation of the game as proposed

by BBL.

4.3 Linearization of the value function

The value function is the expected discounted value of �rms' pro�ts, evalu-

ated at the equilibrium policy function. Given the assumption that �rms use

Markov strategies, the value function depends on pro�t-relevant state vari-

ables and not on the history of the game. To obtain an estimate of the value

function, I must �rst compute the EDV of �rms pro�ts, taking into account

6I could have also included the die size and the number of transistors as state variables,
but to simplify the analysis and to concentrate in the e�ects of learning on pricing, I assume
that equilibrium pricing does not depend on these characteristics.
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how the �rms expect the game to evolve from the current state. The game

evolves stochastically over time, due to the random changes in quality of the

products, which also a�ect demand and production experience. Therefore,

to compute the EDV of pro�ts, I need to predict the evolution of the game

over time. The policy and demand functions were previously estimated so I

can use these estimates to predict prices and quantities at any given state of

the game. However, I can not predict �rms' pro�ts because the parameters

of the cost function are unknown. Nevertheless, I can take advantage of the

linearity of the cost and pro�ts functions on the unknown cost parameters to

predict these linear terms and compute the EDV of them. Here I present how

the value function is linearized and how I obtain a prediction of the EDV of

these linear terms using a Montecarlo forward simulation of the game. These

predictions will be then used to estimate the cost parameters as I describe

below.

As presented in equation (4) the value function is given by

Vj(s;σ, θc) = Et[
∞∑
τ=t

βτ−tπjτ (σ(sτ ), sτ ; θ)]

Where σ(s) is the policy function representing the equilibrium prices as

a function of the state of the game. For notation simplicity, let p∗it be the

equilibrium price of product i at time t (given the observed value of the state

variables) and let p∗τ and k∗τ be the vectors of prices and quality of all the

products available at time τ . Then we can rewrite the value function as

Vj(st;σ, θ) = Et[
∞∑
τ=t

∑
i∈Ijτ

βτ−t(p∗iτ − ciτ (Eiτ ; θc))q(p∗τ ,kτ )] (16)
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Replacing the cost function in equation (10) and applying the linear expec-

tation operator, we obtain

Vj(st; s, θc) = v0j + θc0jv1j + θc1v2j + θc2v3j + θc3v4j (17)

Where

v0j =
∞∑
τ=t

∑
i∈Ijτ

βτ−tEt[qi(p∗τ ,kτ )(p∗iτ − εiτ )]

v1j = −
∞∑
τ=t

∑
i∈Ijτ

βτ−tEt[qi(p∗τ ,kτ )]

v2j = −
∞∑
τ=t

∑
i∈Ijτ

βτ−tEt[qi(p∗τ ,kτ )DSi]

v3j = −
∞∑
τ=t

∑
i∈Ijτ

βτ−tEt[qi(p∗τ ,kτ )TRi]

v4j = −
∞∑
τ=t

∑
i∈Ijτ

βτ−tEt[qi(p∗τ ,kτ ) log(1 + Eiτ )]

Notice that to obtain an estimate of these terms v for a given initial value

of the state variables and a given path of random terms of the model, I only

need to know the policy and demand functions, which were previously esti-

mated. In the next subsection I explain the method used to obtain estimates

of the terms in equation (17).

4.4 Simulation of the linear terms of the value function.

To estimate the dynamic cost parameters, the method uses the MPE con-

straints in (14), which require the evaluation of the value functions at ob-
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served choices as well as at one-step deviations from observed choices.7 BBL

propose the use of Montecarlo integration over the random terms of the game

to obtain an estimate of the linear terms v, which are then used to construct

an estimate of the value function at any given value of the cost parameters.

The Montecarlo procedure requires a forward simulation of the game, which

is performed by taking random draws of the stochastic variables and calcu-

lating the average over the resulting discounted value of the linear terms for

di�erent sequences of draws. The same procedure is used to calculate the

value function for the observed equilibrium policy and from small one-step

deviations.

The computation of the EDV of the v terms is performed using the

following algorithm:

1. Starting at a time t, at which a value for state s0 is given, values for

the corresponding random variables (the cost shock ε and the quality

shocks αf and αo) are drawn from their corresponding distributions.

2. In the �rst period (time t) the observed price (or a deviation) is taken

as the choice. For the following periods (τ > t) the equilibrium price

is predicted using the estimated policy function.

3. Given vectors of prices and quality, the demand for each available prod-

uct is predicted and the terms v are updated accordingly. Using the

law of motion for each state variable and the random draws, a new

state for the next period, st+1, is determined.

7It su�ces to assume that �rms deviate in period t=0 and that they price using their
policy functions in subsequent periods
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4. In the following period, prices are predicted again given the new values

of the state variables (st+1). Steps (1) to (3) are repeated, and the

values of the v terms are updated. I continue to update the value of

the v terms for a large number of periods, until a time T in which βT

is small enough that the reminder of the in�nite sum is approximately

zero.

These steps generate a single path of the linear terms v in the expectation

operator, given a single realization of the series of random shocks over time.

To compute the expected value over those shocks a Montecarlo method is

employed by repeating this procedure many times and taking the average

over the results. For a given value of the unknown cost parameters, this

procedure allows me to calculate the value function for the observed choice

and also for deviations from the observed choice, so I am able to estimate

the terms V̂jt(σ1(s), σ2(s)) and V̂jt(σ′1(s), σ2(s)) involved in equation (14).

The EDV of the linear terms of the value function are used to estimate the

unknown cost parameters as explained below.

4.5 Estimating the Dynamic Cost Parameters

Using the EDVs previously calculated, the BBL procedure constructs a loss

function from the MPE constraint in equation (14). This equilibrium con-

dition requires that, if a strategy pro�le is an MPE, then any one-step de-

viation, keeping the rival's strategy constant, must be unpro�table. This

requirement is that for all j and all possible deviations σ′j(s):

Vj(s;σj(s), σ−j(s); θc) ≥ Vj(s;σ′j(s), σ−j(s); θc)
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De�ne gj(θc) ≡ Vj(s;σj(s), σ−j(s); θc)−Vj(s;σ′j(s), σ−j(s); θc); then the pre-

vious condition can be written as

gj(θc) ≥ 0 (18)

Then for a given value of θ and a sample of size n we de�ne a quadratic

loss function based on the observations that violate that condition

Q(θc|n) =
1
n

2∑
j=1

n∑
k=1

(
min{gkj (θc), 0}

)2
(19)

Where k is an index for every observation in the sample. This quadratic

function measures how far the observed behavior is from representing a

Markov perfect equilibrium at a given value of θ. To bring the observed

behavior as close as possible to an MPE I minimize the value of Qj(θc|n).

Therefore, the estimated value of the dynamic cost parameters is given by

θ̂c = argmin
θc

Q(θc|n)

5 Data and Results

The main data set was obtained from In-Stat/MDR, a research company

that specializes in the CPU market8. It includes estimates of quarterly sales

for CPUs aggregated into 29 product categories for the period 1993-2004 (48

quarters) and due to entry and exit of products over time I have a total of

8This dataset is proprietary material belonging to In-Stat/MDR.
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291 observations9. The dataset also contains information on prices10. In-

Stat obtains �gures on list prices of Intel products and adjusts them for

volume discounts o�ered to their major customers. Their main sources are

the 10K Financial Statements reports and the World Semiconductor Trade

Statistics elaborated by the Semiconductor Industry Association (SIA). They

use this information to estimate unit shipments for each product by Intel

and AMD, based on engineering relationships and the production capacity

of each plant. The In-Stat/MDR data set is complemented with two other

sources. The �rst is �rm-level advertising expenditures. These data have

been obtained from the 10K and 10Q �nancial statements. The second

supplementary source consists of information about CPU performance from

The CPU Scorecard, a company that measures on a comparative basis the

performance of di�erent CPU products. The In-Stat database has been

previously used by Song (2006, 2007) to estimate consumer welfare in the

CPU market and investment in research and development, and by Gordon

(2008) to estimate a demand model for durable goods.

5.1 Demand estimation

The demand estimation method is presented in detail in Salgado (2008).

Table 5 shows the results of the demand model that are used in the simulation

of the dynamic model.

9An observation is one product in a given time period.
10In the In-Stat/MDR dataset, prices for AMD products are available only for the

period 1999 to 2004. Therefore, the dataset was complemented with several other sources,
including printed publications and on-line historical databases. Also, it contains 9 AMD
CPUs and 20 Intel CPUs in the sample period.
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Table 2: Results of Demand Estimation
Var. Coe�. St. Error t-value p-value

Price 19.6622 4.1766 4.7077 0.0000
Quality 5.8358 2.3671 2.4654 0.0195
Intel brand 3.3579 0.7899 4.2510 0.0000
σprice 13.2787 3.1019 4.2808 0.0000
σquality 7.9928 3.0003 2.6640 0.0118

Average Price Elasticity -2.43

5.2 Evolution of Quality

The quality frontier was estimated using a logistic curve of the following

form:

FK(t) = κ0
1 + κ1exp(−κ2t)
1 + κ3exp(−κ2t)

(20)

The frontier was estimated as the envolvent of the observed quality data.

To estimate it, I calculate the parameters of the logistic function that mini-

mize the sum of the errors from the frontier to the observed data, constraining

the errors to be positive. The estimated parameter are presented in table 3.

Table 3: Parameters of Quality Frontier
Parameter Value

κ0 11839
κ1 7.4993
κ2 0.1544
κ3 321.1430

Recall that I assume that new products enter the market with quality

(1 − αn)FK(t) with αn ∼Uniform[αn, αn]. In the dataset I observe prod-

ucts that are introduced at a quality very close to the frontier and that

are designated to compete in a high-performance segment; however, there
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are also some products that are destinated to a value-segment and they are

introduced at a quality signi�cantly below the quality frontier. For this rea-

son I di�erentiate between frontier products, for which αfn ∼ U(αfn, α
f
n) and

non-frontier products, for which αnfn ∼ U(αnfn , αnfn ). In sucessive periods fol-

lowing the introduction of a product, its quality increases with probability

po, which I assume is common between frontier and non-frontier products.

If a product increases its quality, it does so in a proportion αo, so that

kt = (1 + αo)kt−1, with log(αo) ∼ N(µo, σ2
o). The estimated parameters are

presented in Table 4.

Table 4: Parameters of Quality Evolution

Parameter Value

(αfn, α
f
n) (0.00,0.06)

(αnfn , αnfn ) (0.13,0.71)
po 0.6770
µo -2.8948
σo 0.7256

Figure 1 presents the observed evolution of quality of the products in

the dataset and the estimated quality frontier. The individuals colored lines

show the obsreved index of quality for a given product over its life and the

doted blue line shows the estimated logistic quality frontier.

5.3 Policy function

I estimate the policy function using a quadratic polynomial approximation.

Prices are predicted using pro�t-relevant state variables as explanatory vari-

albes. The variables used to predict product prices are the relative quality of

the good compared to the quality of the best product available in the mar-
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Figure 1: Evolution of Quality and Quality Frontier

ket (which enters the demand function) the production experience (which

determines production costs) and the total experience of the competitor

(which captures the e�ect of a �rm' choices over the competitor response

in the MPE). Figure 2 shows the observed and predicted prices using the

estimated quadratic approximation to the policy function. The di�erences

between observed and predicted are assumed to be the realized cost shocks.

5.4 Cost Parameters

I estimate two models of the cost function. In the �rst model I assume that

the cost function is common to both �rms. Firms face the same cost func-

tion, but they have di�erent costs because they have products with di�erent

characteristics (die size and number of transistors) and di�erent production
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Figure 2: Policy Function

levels, and therefore are at di�erent locations along the learning curve. In

the second model, I incorporate a dummy variable for AMD to control for

other potential cost di�erences between the two �rms. The estimated cost

parameters are presented in Table 5. All of the parameters are statistically

signi�cant at a 5% con�dence level, except for the die size, which becomes

insigni�cant in Model 2.

The Table 6 shows estimated average learning rates and average cost for

each time period, for each �rm, and for both cost models. Learning rates

�uctuate between 2.54% and 24.86%. On average, Model 1 yields higher

learning rates, with an average of 11.46% for AMD and 14.40% for Intel.

Model 2 yields lower learning rates, with an average of 3.33% for AMD and

8.07% for Intel. Also, in Model 2 AMD's average costs is more than twice

the average cost of Intel, while in Model 1 AMD's average cost is just 23.5%
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Table 5: Estimated Cost Parameters
Model 1

Var. Coe�. St. Error t-value p-value

Constant 142.6800 11.8530 12.0375 0.0000
Die Size 0.0758 0.0270 2.8027 0.0082
Transistors 0.2564 0.0609 4.2118 0.0000
Experience 10.7329 0.8126 13.2077 0.0000

Model 2

Var. Coe�. St. Error t-value p-value

Constant 49.9756 0.9564 52.25 0.0000
Die Size 0.0602 0.1390 0.43 0.3633
Transistors 0.2607 0.0670 3.89 0.0002
Experience 4.5174 0.4199 10.76 0.0000
Dummy AMD 49.2492 0.3593 137.07 0.0000

higher than Intel's cost. The di�erences in cost between �rms in Model 2

are explained mostly (88%) by the constant term and the remaining 12% is

explained by lower learning due to lower production volumes by AMD.

6 Conclusions

In this paper I have estimated a dynamic cost function with learning-by-

doing in the PC CPU industry. The results shows that there exists impor-

tant di�erences in �rms' estimated production costs, with AMD's average

costs being more than twice Intel's average costs in a model in which the cost

function is allowed to di�er between �rms. These di�erences in production

costs are explained by both higher production costs when products are intro-

duced, as well as lower learning due to lower production volumes by AMD.

The average estimated learning rates �uctuate between 2.18% and 22.01%.

These rates are lower when compared to previous studies for other semicon-
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Table 6: Average Learning Rates and Production Costs by Firm
Model 1 Model 2

Learning Rates Prouduction Costs Learning Rates Prouduction Costs

Quarter AMD INTEL AMD INTEL AMD INTEL AMD INTEL

1 5.00% 4.99% 148.89 149.06 2.72% 4.74% 115.14 66.1
2 10.93% 5.37% 68.06 138.44 3.66% 4.98% 85.6 62.84
3 10.12% 11.27% 73.51 66.03 3.57% 8.70% 87.62 35.99
4 9.21% 12.98% 80.77 57.32 3.47% 9.39% 90.31 33.35
5 9.82% 12.83% 75.79 58 3.54% 9.44% 88.5 33.16
6 10.75% 12.60% 69.21 59.05 3.64% 8.51% 86.1 36.77
7 11.70% 12.54% 63.58 59.34 3.73% 8.17% 84.05 38.31
8 12.32% 11.59% 60.4 64.2 3.78% 7.50% 82.9 41.77
9 13.22% 11.99% 56.28 62.05 3.85% 7.75% 81.39 40.4
10 14.04% 11.78% 52.99 63.14 3.90% 8.26% 80.19 37.89
11 14.79% 12.64% 50.29 58.84 3.95% 8.65% 79.21 36.2
12 15.40% 13.69% 48.3 54.36 3.99% 9.06% 78.48 34.55
13 16.01% 14.03% 46.46 53.02 4.02% 9.22% 77.81 33.98
14 16.50% 14.33% 45.08 51.91 4.05% 8.66% 77.33 36.16
15 16.91% 16.95% 44 43.89 4.07% 9.90% 76.99 31.64
16 17.11% 13.78% 43.48 53.97 4.07% 8.50% 76.94 36.82
17 9.73% 12.87% 76.46 57.8 3.29% 7.35% 95.06 42.6
18 5.71% 11.54% 130.27 64.45 2.54% 6.63% 123.28 47.21
19 7.91% 10.84% 94 68.63 2.84% 5.62% 110.21 55.69
20 9.33% 10.27% 79.77 72.42 2.98% 5.37% 105.01 58.29
21 10.36% 9.35% 71.79 79.57 3.07% 6.21% 102.09 50.44
22 10.83% 11.82% 68.69 62.94 3.11% 7.11% 100.84 44.04
23 8.88% 14.40% 83.82 51.65 3.13% 7.81% 100.14 40.09
24 11.22% 17.27% 66.3 43.07 3.37% 8.53% 92.97 36.72
25 13.10% 13.80% 56.8 53.91 3.51% 7.71% 89.32 40.63
26 13.42% 14.65% 55.44 50.78 3.52% 7.94% 88.86 39.46
27 6.76% 14.74% 110.02 50.48 2.77% 7.96% 113.02 39.33
28 9.61% 10.26% 77.38 72.5 3.12% 6.79% 100.27 46.09
29 9.59% 13.62% 77.56 54.6 3.08% 8.68% 101.65 36.06
30 10.24% 17.68% 72.62 42.07 3.13% 9.98% 100.12 31.36
31 10.95% 21.74% 67.94 34.23 3.18% 10.99% 98.4 28.48
32 11.73% 24.86% 63.45 29.93 3.24% 11.61% 96.6 26.98
33 12.04% 22.64% 61.77 32.86 3.25% 10.41% 96.3 30.08
34 12.08% 24.41% 61.59 30.48 3.24% 10.58% 96.6 29.61
35 12.78% 20.97% 58.23 35.47 3.32% 9.87% 94.18 31.73
36 13.39% 21.28% 55.58 34.95 3.37% 10.04% 93 31.2
37 13.85% 15.35% 53.7 48.46 3.37% 8.76% 92.89 35.72
38 14.28% 11.72% 52.09 63.47 3.37% 7.22% 92.92 43.4
39 14.46% 15.08% 51.44 49.34 3.36% 8.24% 93.13 38.01
40 14.63% 14.37% 50.87 51.79 3.36% 7.16% 93.09 43.73
41 15.07% 16.17% 49.36 46 3.39% 7.53% 92.4 41.58
42 14.73% 16.97% 50.51 43.84 3.37% 7.30% 92.99 42.89
43 9.30% 18.09% 80.02 41.13 2.93% 7.32% 106.96 42.77
44 7.48% 19.35% 99.49 38.44 2.67% 7.47% 117.39 41.92
45 7.35% 13.84% 101.28 53.74 2.62% 6.70% 119.55 46.73
46 7.85% 11.55% 94.82 64.4 2.66% 6.55% 117.64 47.82
47 8.81% 12.16% 84.43 61.17 2.77% 6.89% 113 45.47
48 8.62% 13.98% 86.33 53.23 2.73% 7.49% 114.8 41.82

Min 5.00% 4.99% 43.48 29.93 2.54% 4.74% 76.94 26.98
Average 11.46% 14.40% 70.23 56.88 3.33% 8.07% 95.69 40.29
Max 17.11% 24.86% 148.89 149.06 4.07% 11.61% 123.28 66.1
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ductor products that have found average learning rates around 20%. This is

an indication that �rms are more successful in transfering the products from

the development to fabrication facilities and have already advanced in their

learning curve when the products are introduced into the market. Neverthe-

less, given the importance of CPU products for the industry this result is

not surprising.
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