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Abstract

In this paper I estimate a dynamic index of market structure to
investigate the extent of competition in the personal computer proces-
sor industry. The dynamics of the game are given by the existence of
learning-by-doing in the production process. Under learning-by-doing
future production costs are reduced with cumulative production. A
behavioral parameter that nest different market structures is incorpo-
rated in the objective function for each firm in the dynamic game and
identified in a Markov perfect equilibrium. The results suggest that
the biggest firm (Intel) behaves between Nash-Cournot and Perfect
Collusion, and the smallest firm (AMD) behaves as a Nash-Cournot
competitor. The estimated parameter fails to reject the existence of
Nash-Cournot competition, while rejecting both social welfare maxi-
mization and perfect collusion between firms.
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1 Introduction

The CPU is the chip that processes data instructions -the brain of the per-

sonal computer- and it is therefore the most important component of a Per-

sonal Computer (PC). Given the importance that PC have for modern life,

the way the CPU market is organized is of great importance for consumer

welfare. The market for computer CPU is one of the most concentrated world

markets. Two firms, Intel Corporation and Advanced Micro Devices (AMD),

have historically had more than 95% of the market share in the whole planet1.

Intel, the inventor of the PC CPU, has captured between 70% and 90% of the

market. Because of the extent of this market the existence of market power

could cause a big impact in the world economy and over consumer welfare.

Estimating the degree of competitiveness and its effects over the market is

therefore an important task.

Previous literature that have analyzed this market have assumed that

firms behave in a Nash-Cournot equilibrium (Gordon 2006; Song 2006a,

2006b). In this proposal I analyze the validity of that assumption and explore

the possibility that firms may have behaving more or less competitively than

in a Nash-Cournot equilibrium.

The dynamic characteristics of the industry make non adequate to use

traditional static equilibrium techniques to analyze competitiveness. As pre-

vious literature have shown (Pindick 1995, Corts 1999 and others) static

measures of market power are misleading when firms play a dynamic game.

In the PC CPU industry the firms’ decision-making process includes sev-

1These market shares consider just CPUs for IBM compatible PCs and not CPUs for
small electronic devices nor MAC computers.
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eral dynamic elements that need to be incorporated into the modeling and

estimation strategies to correctly measure the degree of market power.

One of the important sources of dynamics in this industry is the existence

of learning-by-doing in the production process. It has been well documented

that learning plays an important role in the semiconductor industry due to

significant reduction in failure rates over the life cycle of a product. Produc-

tion experience and adjustment in the process over time decreases failures

rates which reduces future unitary production costs. This fact gives inter-

esting dynamic considerations when firms decide production plans over time

because increasing production effort in the present implies lower production

cost in the future. Accounting for the effect of learning-by-doing on the firms’

optimal choices will allow me to identify the market structure that best ex-

plains the observed data in a way that is consistent with the dynamics of

this market.

The goal of estimating the degree of market power in a dynamic model

imposes an interesting challenge. The previous literature that look at this

kind of problems required to explicitly solve for the equilibrium of the game,

or at least for the first order conditions, and to make strong assumptions on

the type of strategies that players use, as for example open-loop assumptions,

limiting the dynamics of the game. Based on Perloff, Karp and Golan (2007),

this proposal explores the econometric technique by Bajari, Benkard and

Levin (2006), which does not require to solve for the equilibrium of the

game and allows to estimate the parameters under a close-loop in a Markov

Perfect Equilibrium (MPE). An MPE imposes much weaker assumptions

about the strategies that players use and how they incorporate their rival
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future responses to their current choices. Even though this methodology has

been recently used by several authors to estimate firms primitive parameters

of dynamic games (Rafique and Van Biesebroeck 2007, Ryan 2006, Ryan

and Tucker 2007, Macieira 2006 and others), this is the first paper that

uses this methodology to estimate an index of market power in a dynamic

model. The remaining of this paper is organized as follows. First, in the

next section I discuss the previous literature on estimation of the degree of

market power under static and dynamic models, the literature that study the

existence of learning-by-doing in the semiconductor industry and literature

on methodologies to estimate dynamic games. Second, I present a theoretical

model that describes the game that firms play in the industry. In this section

I explain how the index of market structure is incorporated in the analysis.

Third, I present and discuss the econometric technique by Bajari, Benkard

and Levin (2006) that will be used to estimate the index of market structure

in the industry. Fourth, I present a section that describe the sources of

the data set and the main characteristics of the market. Fifth, I present

and discuss the results. The results under this model suggest that firms are

behaving in a Nash-Cournot way in the Markov perfect equilibrium of the

game. A final section discuss the result and present possible extensions to

this work.
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2 Literature Review

2.1 Estimating Market Power

One of the most important research topic in the industrial organization lit-

erature is the measurement of the extent of competition in a market (Reiss

and Wolak, 2005). The measurement of the degree of market power goes

back to Lerner (1934) who presents the classic index based on the differences

between price and marginal cost. Later in the 1970s, Iwata (1974) proposed

a method to estimate a conjectural variation parameter and an statistical

procedure to test for collusion. After that, a gigantic theoretical and em-

pirical literature has being developed around the subject of estimating the

degree of competition in a market.2

Until the end of the 1980s the analysis of market power was mainly static.

The first in notice that static analysis was misleading when firms face a

dynamic environment was Pindick (1985). He discusses why the Lerner’s

index can not be a good indicator in dynamic markets. Additionally, in a

number cases it is not possible to compute Lerner’s measure because marginal

cost information is not available. More recently, Corts (1999) shows that a

conduct parameter can be highly misleading in a dynamic oligopoly. He

simulates a collusive market supported by repeated interaction and shows

that an static conduct parameter may fail to detect any market power even if

the price-cost margin are near the monopoly level. This calls for the necessity

of explicitly model the dynamics of the market to measure market power in

2For a detailed review see Perloff, Karp and Golan (2007). Geroski, Phlips, and Ulph
(1985), Bresnahan and Schmalensee (1987) and Bresnahan (1989) present surveys of the
empirical literature in static models of competition.
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a better way.

Under fundamental source of dynamics3 the estimation of the extent of

competition is challenging because one needs to model the optimal behav-

ior of firms under different market structures. Price equal marginal cost is

not necessarily the outcome that maximizes social welfare under a dynamic

model. What is required for an optimal allocation is that marginal benefits

equal full marginal cost, which is a function not only of the static production

cost, but also of the shadow prices of the stock variables that are involved in

the dynamic problem.

Karp and Perloff (1989, 1993a) have estimated dynamic oligopolies in the

rice export and in the coffee export markets, respectively. They consider two

models to estimate parameters that nest different market structures. In a first

model, they use an open-loop assumption, in which firms choose a trajectory

of output levels in the initial period. Under open-loop, it is assumed that

firms consider just the direct effect of their actions over current rival decisions

and not indirect effects trough the change on the state of the world that

might induce changes in competitors behavior. In the second model, they

use a feedback assumption, in which firms choose rules that set output as

function of state variables. In both cases, they use a linear-quadratic model

to simplify the estimation procedure. In both markets they found that the

market is more competitive than Nash-Cournot. In the coffee market, they

found that firms behavior is closer to price-taking than to collusion.

3The origin of dynamics in a model can be separated into fundamental and strategic
reasons. In the first case, some dynamic element exists in the structure of the problem.
This is the case, for example, when demand or cost functions have a dynamic structure. In
the second case, the players could be looking forward because today’s behavior can affect
future behavior of the other players.
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Perloff, Karp and Golan (2007) suggest the use of the econometric tech-

nique by Bajari, Benkard and Levin (2006) to estimate parameters that

allows identification of the extent of competition under a Markov Perfect

Equilibrium. This technique will be explored in this proposal to estimate

competition in the computer CPU market.

2.2 Learning-by-doing in the semiconductor industry

The existence of learning-by-doing in the semiconductor industry has been

well documented in the literature. Hatch (1996) provides an explanation of

how this process works: “It is the elimination of yield loses that results in

substantial reductions in manufacturing costs. It is not uncommon for yields

for new semiconductor processes to start as low as 10%. In such cases,

the cost of scrapped output is initially very high but falls to low levels as

yields rise to 90% or higher over time”. Hatch and Reichelstein (1994) show

that cumulative production and cumulative engineering analysis are the key

determinants of learning-by-doing in the semiconductor industry.

The empirical application of learning-by-doing in the semiconductor in-

dustry have concentrated in the PC memory manufacturing (Aizcorbe, 2006).

Even when the production of CPUs if far more complex than memory man-

ufacturing, both processes share the characteristics that justify the existence

of learning in the semiconductor industry, which is the reduction on failure

rates trough adjustment in the production process during the life cycle of a

product. A well accepted stylized fact is that the slope of the learning curve

in the semiconductor industry is 28%, which means that unitary production
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cost fall in around 28% when cumulative output doubles. Applying differ-

ent methods in the PC memory market a number of authors have obtained

learning rates ranging from 16% to 51% (See for example Irwin and Klenow

(1994), Siebert (2003) and Aizcorbe (2006))

Learning-by-doing generates dynamics incentives that affect the interpre-

tation of traditional static measures of competition. Under learning firms

have incentives to increase the rate of current production to decrease fu-

ture production cost. A firm that enjoy market power needs to compare the

current incentive to produce less, which increases prices, with the dynamic

incentive to produce more, which reduces future costs. A dynamic social

planner just have the incentive to produce more to reduce future cost, and

therefore there should be a higher production and lower current price under

the social planner than under monopoly. Hence, a firm with market power

could not take full advantage of the learning-by-doing as would be socially

desirable. For this reason, it is very important to investigate if firms are

behaving in a collusive or competitive way, which will indicate if firms reach

a sociable desirable outcome under this dynamic incentive.

2.3 Estimation of Structural Dynamic Oligopoly Mod-

els

The estimation of structural parameters in dynamic games can be highly sim-

plified using an open-loop assumption. Under this assumption firms choose

strategies as function of initial values of stock variables and time, and in the

equilibrium they choose they complete path of actions taking as given the

8



rival path of actions. If a symmetric equilibrium is also assumed, then the

problem is therefore made strategically static. Perloff, Karp and Golan (2007)

present two methodologies to estimate dynamic games under an open-loop

assumption. The first method considers to solve the firms necessary condi-

tions obtaining the Euler equation and estimate parameters on this equation

by using an GMM method. The second method considers to estimate the

parameters of the model using directly the dynamic programming equation

and it is based on the fixed-point estimators developed by Rust (1987, 1994),

Aguirregabiria and Mira (2002) and others.

The use of the open-loop assumption, although give simplicity to the es-

timation method, is very restrictive because it assumes that firms will not

react to changes in the state of nature or adjust their behavior over time. A

less restrictive assumption is the use of Markov strategies by firms and the

Markov Perfect Equilibrium concept. This equilibrium concept was intro-

duced by Maskin and Tirole (1987, 1988a, 1988b) and adapted for empirical

applications by Pakes and McGuire (1994) and Ericson and Pakes (1995).

When firms use Markov strategies, they take their decisions in every period

as function of the value of state variables that have a direct effect on current

profits. A number of recent papers have developed methods and estimated

structural models of oligopolies using the Markov assumption (See for exam-

ple Aguirregabiria, 2006; Aguirregabiria and Mira, 2004; Aguirregabiria and

Mira, 2007; Bajari and Hong, 2005; Bajari, Benkard and Levin, 2006; Hotz

and Miller, 1993; Hotz et al. 1994; Jenkis et al., 2004; Pakes, Ostrovsky and

Berry, 2004; and Pesendorfer and Schmidt-Dengler, 2003).

In this paper I use the methodology proposed by Bajari, Benkard and
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Levin (2006). This method is based in two stages of estimation. The first

stage estimates the primitives involving no dynamics and the policy func-

tions, which are the observed actions as function of observed state variables.

The policy function explain how firms will behave in a given state of na-

ture. Because the exact functional form of the policy function depends on

the unknown solution to the game, it is estimated non parametrically. The

first stage intends to explain what the firms do in the game and are used

to simulate what they will do in the future. In a second stage the game is

simulated to the future using the functions estimated in the first stage. This

stage allows to estimate the structural dynamic parameters that make the

observed equilibrium an optimal behavior. Jenkis, et.al (2004) working in a

similar framework propose the use of a third stage, in which the estimation

of the parameters of the first and second stage is improved. All the details

of the estimation procedure are presented in section 4.

Other papers that have used the methodology by Bajari, Benkard and

Levin (2006) to estimate parameters of dynamic games are Rafique and

Van Biesebroeck (2007), Ryan (2006), Ryan and Tucker (2007) and Macieira

(2006).

3 Model

The theoretical structural model in this paper considers a market with two

firms (AMD and INTEL). Each firm choose in each time period the quantities

to sell of each of its available products. Firms have at most two products

available at each moment on time. It is assumed that the time in which a
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product enters and exits the market is exogenous and known by both firms.

For the empirical application the different models of CPU are aggregated at

the generation level so that just three products exists for each firm during

the sample period. A generation of CPU shares the same technology of

production and basic architecture of design. For this reason, learning-by-

doing is present at this aggregation level.

Quality and quantity sold of the products are the most important de-

terminants of the inverse demand. Quality is measured using an index of

performance for each CPU. The performance index is a measure of the speed

at which each CPU can perform a number of tasks 4. The evolution of per-

formance is assumed to follow a linear trend on time and it is known by both

firms.

The inverse demand is modeled using a log-log functional form, where

the price of each product is a function of the own quantity, the quantity of

other products sold by the same firm, the quantity of other products sold by

the competitor and the relative quality of each product. All products that

are available in a given period are considered substitutes of each other.

The marginal cost of a CPU is constant and equal to average cost within

each period; however, experience, which is measured by both cumulative

production and time since the introduction of each product, reduces the

average cost of future periods due to learning-by-doing. Learning generates a

dynamic incentive because current production increases experience, reducing

future marginal cost, which affects future optimal choices.

4Several of these indices exists. We use the only one that has a comparable measure
for CPUs for all the time period in the dataset
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The exact form of the game that firms are playing is assume to be un-

known by the econometrician. An index of market structure form a linear

combination of three possible equilibrium outcomes in the dynamic game:

Social Welfare Maximization, Nash-Cournot and Perfect Collusion. The

purpose of the paper is to identify the index of firm behavior as a linear

combination of these known market structures.

In the remaining of this section I present the specific form of the demand

function and the primitives of the supply side. I then present the way in

which the index of market structure is introduced in the firms optimization

problem. I finally present the equilibrium concept of the dynamic game. The

next section presents the details of the econometric procedure used for the

estimation of the parameters of the game.

3.1 Demand

The demand function is a single aggregate demand function for each differ-

entiated product. The function to estimate has the following form 5

pijt = p(qijt, q−ijt, q−jt, kijt)

Where pijt is the price of the product, qijt is the quantity of the product,

q−ijt is the quantity of other products by the same firm, q−jt is the quantity

of other products by the other firm, kijt is the relative quality of the product

5I have tried several demand systems, including two and three stages nested logit and
this aggregate demand form is what gave the best prediction for prices of each product and
average markups for each firm. Nevertheless, I consider that this is one of the important
parts of the research that need to be improved. Other approaches to demand estimation
will be discussed in the final section of this proposal.
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with respect to the average product in the market in the previous period. I

discuss the construction of this index in the next section.

3.2 Definition and Evolution of Quality over Time

The measurement of quality relevant for the demand (kijt) is a relative mea-

sure which is formed with the ratio between the current quality level of the

product (Kijt) and the average quality of the products available in the last

period (AKt).

kijt =
Kijt

AKt

The quality of each product (Kijt) is assumed to follow an exogenous

process over time so that just depends on the time since the introduction

of the product (TSIijt) in a linear way. This functions are assumed to be

known for both firms:

Kijt = κ0ij + κ1ij · TSIijt

The average quality (AKt) of last period products is formed with a

weighted average of the quantity sold of each product in the previous time

period

AKt =

∑
i

∑
j qi,j,t−1Kij,t−1∑
i

∑
j qi,j,t−1

Notice that even when Kijt is exogenous and can not be affected by firm

production decisions, the firm can affect the average quality at each time pe-

riod trough the quantity sold of each product. Therefore, kijt can be affected
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by the firm adding some dynamics to the demand side of the market. The

effect of the state variables Kijt and TSIijt on demand can be summarized in

kijt. Is this variable, together with the information about products available

at each moment of time, the only state variable (endogenous) that affects

demand.

3.3 Cost Function

I assume that within each period average and marginal cost are equal and

constant and they decrease over time due to learning-by-doing. I also assume

that both firms face the same cost function and therefore the parameters do

not depend on the firm. Nevertheless, every firm receive privately known cost

shocks in each period for each product (εijt). The cost shocks are assumed

to be independent and identically normally distributed.

Due to learning by doing unitary costs are reduced with experience over

time. I consider the two measures of experience that are commonly used in

the learning-by-doing literature, time since the introduction of the product

(TSIijt) and cumulative production (Eijt). Hence, the cost function is

cijt = c(Eijt, TSIijt)

Where Eijt represents the cumulative production of each product until

time t−1 and TSIijt is the time since the introduction of each product. Due

to learning-by-doing we expect cost to be decreasing in both Eijt and TSIijt.

The state variables that affects costs are then Eijt (endogenous) and

TSIijt (exogenous).
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3.4 Single Period profit function

The demand and cost functions previously defined allow me to define the per

period profit function for each firm as

πjt(qjt, q−jt, sjt) =
∑

i

(p(qjt, q−jt, kijt)− c(Eijt, TSIijt)) · qijt (1)

Where sjt = [kjt,Ejt,TSIjt] is the vector of profit relevant state variables

for the firm j at time t.

To estimate the market structure parameter I assume that the econome-

trician do not know the exact form of the payoff function of the game but

the firms known exactly the game they are playing and therefore the exact

form of the payoff function of the game. The profits from both firms and the

consumer surplus will be nested using a market structure parameter to iden-

tify the payoff function in the Markov Perfect Equilibrium of the dynamic

game. That will allow us to identify the market structure that is closest to

the observed behavior in the MPE of the dynamic game.

3.5 Market Structure Parameter

Following Perloff, Karp and Golan (2007), I want to nest three different

market structures in the MPE of the game. The identification of the market

structure is done using a single parameter which moves the market between

three leading cases: Perfect Collusion (PC) , Nash-Cournot (NC) and Social

Welfare Maximization (SWM). These market structures are conditional on

all the elements that have been assumed exogenous in the model as the
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number of firms in the industry, the number and speed of introduction of

products, etc. In this application I am not interested in how the different

market structures may have affected these characteristics of the market and

therefore those effects can not be captured by the model. All that the model

can capture is if, conditional on all those elements, the behavior of firms in

choosing quantities is more competitive or collusive than the Nash-Cournot

assumption.

The identification of this conditional market structure relies on the form

of the problem that firms solve under the three leading cases. In the NC equi-

librium firms maximize the expected discounted value of own profits, taking

into account the current and future responses of their competitor. In the PC

equilibrium firms maximize the expected discounted value of joint profits. In

the SWM equilibrium the behavior of firms implies the maximization of the

sum of both firms profits and consumer surplus. The identification of the

market structure consist therefore in the identification of the function that

has being maximized by the firms when they made their production decisions

(for a more detailed discussion of this dynamic index of market power, see

Perloff, Karp and Golan 2007, chapter 7).

To identify the objective function that firms have maximized in the dy-

namic game we define the following payoff function for firm j (time index

has been suppressed to simplify notation), where θ ∈ [−1, 1] is the index of

market structure:

Wj(qj,q−j; θ) = Πj(qj,q−j)+(λ1(θ)+λ2(θ))·Π−j(qj,q−j)+λ2(θ)·CS(qj,q−j)
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where:

(λ1(θ), λ2(θ)) =

 (−θ, 0) if −1 ≤ θ ≤ 0;

(0, θ) if 0 < θ ≤ 1.

Where (qj,q−j) represent the infinite sequence of quantities vectors over

time by both firms, Πj represents the expected discounted value of firm j

profits, Π−j represents the expected discounted value of profits of the other

firm and CS represent the expected discounted value of the consumers sur-

plus. Expectation is applied over current and future actions and random

shocks over demand and cost functions. That is:

Πj(qj,q−j) = E

[
∞∑

τ=t

∑
i

βτ−tπijτ (qijτ ,qi−jτ )

]

Π−j(qj,q−j) = E

[
∞∑

τ=t

∑
i

βτ−tπi−jτ (qijτ ,qi−jτ )

]

CS(qj,q−j) = E

[
∞∑

τ=t

∑
i

∑
j

βτ−tCS(qijτ )

]
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The three leading cases are represented by the following values of θ, λ1, λ2:

Market Structure θ λ1 λ2

Perfect Collusion (PC) -1 1 0

Nash-Cournot (NC) 0 0 0

Social Welfare Maximization (SWM) 1 0 1

As θ moves from −1 to 0, λ1 moves from 1 to 0, keeping λ2 = 0, giving

less weight in the objective function to the other firm profits, which implies

that the market moves from PC to a NC equilibrium. As θ moves from 0 to

1, λ2 moves from 0 to 1 keeping λ1 = 0 giving more weight to the competitors

profits and to the consumer surplus. This implies that the equilibrium moves

from NC to SWM. Looking for the parameter θ that makes the observed

choice consistent with an MPE of the game will allows us to identify the

market structure that is closest to the observed behavior of the firms.

3.6 The Game and the Equilibrium Concept

Given the constructed payoff function presented in the previous section firms

choose actions simultaneously in each period. Actions are quantity for each

one of the products available.

Following Benkard, Bajari and Levin (2006) I focus the equilibrium anal-

ysis on pure strategy Markov perfect equilibria (MPE). In a MPE each firm’s

equilibrium strategies depends only on the current period profit relevant state

variables. A Markov strategy is defined as a function σj : S → Qj where S

represent the state space and Qj represent the set of actions for firm j. A

profile of Markov strategy is a vector σ = (σ1, σ2).
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If firms behavior is given by a Markov strategy profile σ, the maximized

payoff function at a given state s can be written recursively as

Vj(s; σ) = E [Wj(σ(s), s) + βVj(s
′; σ)|s]

The strategy profile σ is a Markov Perfect Equilibrium if, given the op-

ponent profile σ−j, each firm does not have any other alternative markov

strategy σ′j that increase the value of the game. This is, σ is a MPE if for all

firms j, states s and Markov strategies σ′j

Vj(s; σj, σ−j) ≥ Vj(s; σ
′
j, σ−j)

The empirical methodology will make use of this condition to identify the

value of the structural parameters assuming that the observed behavior is

part of a Markov Perfect Equilibrium.

4 Econometric Technique

The empirical strategy considers the estimation of the market structure pa-

rameter based on the algorithm proposed by Bajari, Benkard and Levin

(2006). In this section I will present the main elements of the methodology.

The algorithm has two stages. In the first stage the non-dynamic elements

and parameters of the models are estimated. In this application this stage

requires the estimation of the demand curve, the cost function, performance

evolution, the equilibrium policy function as a function of current value of

state variables and the observed points of the value function. The second
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stage of the algorithm consists on the estimation of the parameter θ which

identify the market structure.

4.1 First Stage Estimates

The first step in this stage is the identification of demand and cost parame-

ters. Both functions are estimated using traditional IV methods. I estimate

the demand using the state variables that affect unitary costs (TSIijk, Eijk)

as instruments for the endogenous quantities. The cost function is estimated

using available data for average production cost for each product. All the

details are presented in the section of Results.

The other important task is the estimation of the policy functions. Given

that the exact functional form of the policy function depends on the unknown

functional form of the value function, the best one can expect to do in this

stage is to estimate the policy function non-parametrically (Jenkis, et al.

2004).

The Markov strategy assumption indicates that the only relevant vari-

ables for the policy function are current period profit relevant state variables.

The assumption that the observed behavior is part of the equilibrium allows

me to estimate the policy function using observed choices and state variables.

Bajari, Benkard and Levin (2006) propose the estimation of this rela-

tionship using multivariate local linear regression as presented by Fan and

Gijbels (1996). In this method, for predicting the value of the optimal choice

at a given point in the state space, the observations located within a certain

distance of this point are considered. Then, these observation are used to es-
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timate a weighted linear regression. For the weight a kernel function is used,

giving more weight to the points that are closest to the point that want to be

predicted 6. The size of the interval used for the local points is adaptative,

adjusting the size until obtain a predetermined number of closest neighbors.

The number of neighbors is determined optimally by cross-validation. This

methodology minimizes the sum of the squared errors from predicting the

points in the sample, without including in the explanatory set the point that

want to be predicted.

4.1.1 Value Functions

Given the assumption that the observed choices are an optimal solution to the

game, the “observed” value of the payoff function correspond to the relevant

observation of the value function. In our game the payoff function of each

firm is unknown by the econometrician, because it depends on the value of the

market structure parameter θ which is what we want to identify. Therefore,

instead of calculating the value function, all I can do is to estimate what the

expected discounted value of firms profits and consumer surplus where on

each period. These terms do not depend on θ. These components will then

be used to estimate the value of θ that makes the observed choice an MPE

equilibrium of the game.

The value function for firm j is given by

6The Kernel function utilized is the Epanechnikov which gives to each point at a nor-
malized distance u ≤ 1 the value 3

4 (1 − u2) and zero to the values of u > 1. For more
details, see Fan and Gijbels (1996), chapters 3 and 7).
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Vj(s; σj(s), σ−j(s), θ) = Πj(σ(s), s) + (λ1(θ) + λ2(θ)) · Π−j(σ(s), s) + λ2(θ) · CS(σ(s), s)

Notice that because this function is separable on θ and σs, changes in

θ will not change Πj(σ(s)), Π−j(σ(s)) and CS(σ(s)). I will estimate the

values of these three terms assuming that the observed choice is part of the

optimal strategy for each firm and then, I will use these objects to estimate

the unknown parameter θ.

For doing so, we need to estimate the value of Πj(·), Π−j(·) and CS(·)

for observed choices and for one-step deviations from the observed choices

in each period. Using the first stage estimation of demand, cost and policy

functions, the methodology employs a forward simulation procedure that can

be summarized as follows:

1. Starting at a time t=0, in which a value for the state s0 is given, a value

for εijt (the cost shock) and ηijt (the demand shock) is drawn from the

distribution of the residuals of the first stage.

2. For t=0, the observed choice (or the deviation) is taken as the first

period choice. For t > 0 the optimal choice is predicted using the

non-parametric estimation of the policy function. In this case, the pre-

diction error in the quantity is also incorporated in this stage taking a

random value of the distribution of the residuals in the first stage of the

policy function estimation. With all this information on prices, quan-

tities and costs, I predict profits for both firms and consumer surplus

for period t.
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3. Using the law of motion for each state variable a new state for the next

period, s1, is determined.

4. In the next period, new values for the random shocks are drawn (cost,

demand and production). Steps (1) to (3) are repeated and we move to

the future calculating the predicted value of profits for both firms and

consumer surplus in each period. We keep going forward for a large

number of periods, until a time T in which βT is small enough so that

the reminder of the infinite sum can be approximately zero.

These steps generate a single path of profits and consumer surplus and we

can calculate the discounted value of that path. But we need to calculate the

expected value and not a single random observation of the discounted value

of profits. Notice that what give randomness to the simulation is the fact

that we are getting different demand, cost and production random shocks

each time we repeat the simulation. By repeating this procedure many times

and taking the average over them we obtain a simulated expected discounted

value for the profits of each firm and also for the consumer surplus. This

procedure allows us to calculate the value function for the observed choice

and also for deviations from the observed choice, so we are able to estimate

the following terms:

• Πj(σ(s)), Π−j(σ(s)), CS(σ(s)), with qj = σj(s).

• Πj(σ
′
j(s), σ−j(s)), Π−j(σ

′
j(s), σ−j(s)), CS(σ′j(s), σ−j(s)) for one-step de-

viations q′j = σ′j(s).

We will use these objects in the second stage to identify the value of the
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market structure parameter that makes the observed behavior of firm the

closest possible to a MPE of the game.

4.2 Second Stage Estimates

The second stage estimation procedure is based on the equilibrium condition

for the MPE of the game which requires that if a strategy profile is an MPE

then any one-step deviation for both firms, keeping its rival strategies con-

stant, will be unprofitable. This requirement is that for all j and all possible

deviations σ′j(s):

Vj(s; σj(s), σ−j(s), θ) ≥ Vj(s; σ
′
j(s), σ−j(s), θ)

Let define gj(θ) ≡ Vj(s; σj(s), σ−j(s), θ)−Vj(s; σ
′
j(s), σ−j(s), θ), then the pre-

vious condition can be written as

gj(θ) ≥ 0 (2)

Then for a given value of θ and a sample of size n we define a quadratic

loss function based on the observations that violate that condition

Qj(θ|n) =
1

n

n∑
k=1

(
min{gk

j (θ), 0}
)2

Where k is an index for every observation in the sample. This quadratic

function measures how far is the observed behavior of representing a Markov

perfect equilibrium of the game at a given value of θ. If we want the observed
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behavior as closest as possible of a MPE of the game we want to minimize

the value of Qj(θ|n). The estimator for θ is then:

θ̂ := arg min
θ

Qj(θ) (3)

As previously explained, some terms of the value function can be esti-

mated independently of θ. Once these terms have been estimated the value

of Qj(θ) can be easily computed and therefore, the finding of θ̂ becomes an

standard minimization problem in the sample.

5 Overview of the Market and Dataset

This section describes the CPU market, focusing on the existence of imperfect

competition in the market. First, I will present some characteristics of the

market under analysis. Then, I will present some data on prices and cost

estimates to discuss the existence of imperfect competition in the industry.

The main data set has been acquired from In-Stat, a research company

that specializes in the CPU market7. It includes estimates of quarterly ship-

ments (sales) for each CPU model from 1993 to 2004 and historical prices

for AMD and Intel processors. It also includes unitary cost estimates for

the different families of Intel CPUs. In-Stat obtains figures on list prices of

Intel products and adjusts them for volume discounts offered to their major

customers. Their main sources are the 10K Financial Statements reports

and the World Semiconductor Trade Statistics elaborated by the Semicon-

7This data is proprietary material belonging to In-Stat.
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ductor Industry Association (SIA). They use this information to estimate

unit shipments for each product by Intel, based on engineering relationships

and capacity production of each Intel plant (Aizcorbe, et.al. 2003). The In-

Stat data set is complemented with two other sources: the first is firm-level

marketing expenditures and cost of sales for each company. These data have

been obtained from the 10K financial statements. The second extra source

consists of information about CPU performance which is used as measure

of quality. It has been acquired from The CPU Scorecard, a company that

measures in a comparative basis and keep track of the performance of the

different CPU products. The In-Stat database has been previously used by

Song (2006a, 2006b) to estimate demand for differentiated products and wel-

fare implications from investment in research and development in the CPU

market. It has also been used by Gordon (2006) to estimate a demand model

for durable goods.

With respect to the cost information, the main analyst of this data at

In-Stat reports that: “The cost model is derived from an analysis of the

individual dies relative to the manufacturing process used to fabricate them.

The primary factors influencing the product cost include wafer size, die size,

manufacturing process node (include the number of metal layers), process

maturity, anticipated yields, and package type.” (Jim McGregor, Personal

communication). It can be inferred that the way in which this unitary cost

is estimated is consistent with the learning-by-doing process in which yield

is increased with time and production experience.
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5.1 A Short History of the CPU Market

The history of the CPU market dates back to 1974. At this time, CPUs

were invented to be used in electronic calculators. By 1978 Intel introduced

the first generation of a 16 bit CPU, the 8086, which was the basis for the

x86 architecture currently used in computer CPU. In the following years a

technological race for faster CPU started between these two firms. Since

then, seven generations of CPUs have been introduced into the market, each

one with an incredible increase in performance and possibilities, expanding

the potential use of computers from being simple calculators to managing

gigantic databases, digital sound, images and movies.

Intel and AMD dominance of the CPU market began when IBM chose

Intel’s processor to be part of its new line of personal computers. As a part

of IBM policies, they required a secondary producer of the chips and Intel

had to sign an agreement with another company to be able to sell its chips

to IBM. They choose as their secondary provider Advanced Micro Design

(AMD). Some years later, a new market for IBM PC clones was developed

and Intel tried to finish its tie to AMD. Intel canceled the agreement with

AMD and refused to hand over technical specifications of its new chips. AMD

challenged Intel’s decision, and a long legal dispute started. The legal fight

finished in 1991, giving AMD the right to produce the Intel chips. However,

in December 1994, the Supreme Court of California denied to AMD the right

to use Intel codes. Later, AMD and Intel signed a cooperative agreement to

share technological innovation, which allowed AMD to produce and sell CPU

based on the Intel 286, 386 and 486 technologies. After that, AMD have been
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developing its own architecture introducing the K5, K6 and K7 generations

of chips.

The large number of differentiated products in the Computer CPU mar-

ket can be grouped in generations and families. A generation of products

share the same basic production technology and design. Over the lifetime

of a generation several improvements are introduced which give rise to the

introduction of new families of product. When an important improvement

is introduced, a new “family” of products within that generation is created.

Within each family, several products are fabricated which are differentiated

on the basis of several characteristics such as the clock speed (measured in

Mhz), the amount of cache memory on the CPU and other elements that

affect the performance of each product. This allows firms to differentiate

products and to cover different needs of the wide range of users.

The most important characteristic of a CPU from a consumer’s point

of view is it capacity to perform different tasks in a short period of time.

Performance is usually associated with the clock speed of the processor, but

that is not the only determinant of how quick a CPU can be. The clock

speed measures the number of cycles of instruction that are processed by the

CPU in one second. There are several other characteristics of a CPU that

affects performance as for example the amount of cache memory, the speed

of the mathematical coprocessor or the front side bus speed which measure

how faster the CPU can communicate with other components of the system.

When a new generation is introduced to the market, the new production

technology implies an important increase in performance and therefore in

product quality. This performance is continuously increased within each
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generation when new families and different products with faster clock speeds

are introduced into the market. Figure 1 shows the average performance

of the last four AMD and INTEL generations. The most important fact is

the continuous improvement and different trend in performance that these

products have over time.

5.2 A First Look to Competition in the CPU Market

If fast technological advancement is one of the main characteristics of the

CPU market, other crucial characteristics are the high concentration and the

high dominance of Intel in terms of market share. During the period of my

data set Intel had an increasing share of the market from around 75% in 1993

up to 95% in 1997. With the introduction of the AMD K6 generation, Intel

lost some participation in the market going back to levels around 80%-85%.

Another traditional static indicator of the existence of market power is

the existence of high differences between prices and marginal costs. Figure

2 shows the average selling price of CPUs for Intel and AMD between 1998

and 2003. It also shows In-Stat average unitary cost estimates for both

companies.

There are at least two interesting facts on this graph. First, Intel’s average

prices are far higher to AMD’s average prices. Second, cost estimates of AMD

and Intel seems to be of a similar order of magnitude, but Intel’s average

prices approximately double AMD’s average prices. This can be explained

because Intel sells similar products at higher prices than AMD, but also

because a higher proportion of AMD sales are low quality products.
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These observations might suggest that Intel is taking better advantage of

its high market share and enjoying a higher degree of market power. Nev-

ertheless, as previously stated, the simple observation of this static measure

of market power could be misleading and the estimation of a measure that

considers the dynamic elements of the industry is needed to draw a better

conclusion.

6 Results

In this section I present the result of the empirical implementation of the

econometric technique in the computer CPU market. I first present the

result of the demand and cost estimation. Next, I present the observed and

predicted markups and the estimation of quality evolution. Then, I show the

results of the nonparametric estimation of the policy functions in the sample.

Finally, I present the estimates of the parameter that identifies the market

structure.

For the empirical model products are aggregated at the generation level.

To calculate prices and quality of the aggregated products, I use the weighted

average, using quantities sold as weights. Given limited data availability for

the first two generations in the data set (particularly Amd486 and K5) and

because they are similar products in comparison with the other generations,

they have been aggregated in one single product. Therefore, the model con-

siders three products for each firm. I call these products AMD1, AMD2,

AMD3, INTEL1, INTEL2 and INTEL3. Even when some small firms were

present in the market, mainly at the beginning of the data period, I ignore
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them and assume that the relevant market is a duopoly between AMD and

INTEL.

6.1 Demand Estimation

The specific functional form of demand is the following:

log(pijt) = α0+α1 log(qijt)+α2 log(q−ijt)(1−dnp)+α3 log(q−jt)+α4kijt+α5Intel+α6dnp+ηijt

Where pijt is the price of the product, qijt is the quantity of the product,

q−ijt is the quantity of other products by the same firm, q−jt is the quantity

of other products by the other firm, dnp is a dummy that takes the value

1 when the firm is producing just one product (q−ijt = 0). The variable

dnp control for situations in which log(0) is not defined, so that I can define

0 · log(0) = 0. The parameter α6 will control for changes on demand when

this happen. kijt is the relative quality of the product with respect to the

average product in the market in the previous period and Intel is a dummy

for the biggest firm.

Endogeneity of quantity is solved by using as instrumental variables the

state variables that affect cost, experience and time since introduction, and

additionally, the experience of the previous generation and experience of

the generation following the product under analysis. These instruments are

the variables that determine choice of quantities in the supply side in the

Markov Perfect Equilibrium of the game and should be uncorrelated with

uncontrolled determinants of price. A Wu-Hausman endogeneity test has an

F − value of 3.63 and a p− value of 0.0598 which allows us to reject the null
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of exogeneity of price at a confidence level of 10%.

Table 1 presents a summary of the data set for the demand estimation.

For this estimation I have 59 total observations for AMD products and 75

total observations for INTEL products. Nevertheless, given that price is just

observed since 1995 for Intel and since 1999 for AMD that gave us a total of

95 observations for the demand estimation. Table 2 presents the estimation

results for the inverse demand function.

The residuals from the demand estimation allows us to estimate the dis-

tribution of the demand shocks. They are assumed to have a normal distri-

bution with mean zero and a empirical standard deviation of 0.21.

6.2 Cost Function Estimation

Given that detailed cost data is just available for Intel, that the production

process between companies is similar and that average unitary cost seems

to be similar between firms, I will assume that both firms present a similar

learning-by-doing process in their production technology and the same cost

functions for a product of the same generation.
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The functional form for the cost function is the following:

cijt = βi0 + βi1 log(Eijt) + βi2TSIijt + εijt

Where Eijt represents the cumulative production of each product until

time t−1 and TSIijt is the time since the introduction of each product. Due

to learning-by-doing we expect both βi1 and βi2 to be negative.

A dummy for the second and third product is used to capture difference

in the cost of producing the first unit. The rate of learning is assumed to be

the same between generations. The estimated parameters are presented in

Table 3.

The results suggest that the unitary cost of a unit of the fifth generation

(INTEL1 and AMD1) when 1 unit has been produced (log(1)=0) and it is in

the first quarter of production (timesinceint=0) is around $107. With every

quarter, the cost is reduced in $3.5. The unitary cost is also reduced in a

non-linear way with cumulative production. AMD2 and INTEL2 products

present a cost that is higher by $59 to the cost of AMD1 and INTEL1, when

introduced. AMD3 and INTEL3 products present a cost higher by $15 to

the first generation in the data. The regression presents high significance

globally and individually for all the parameters.

The residuals from the estimation allow us to estimate the shock in costs

which will be used in the forward simulation in the second stage. We assume

that residuals are distributed normal with mean zero and with the empirical

standard deviation of 18.58.
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6.3 Predicted Markup

Using the demand and cost functions previously estimated and the observed

production by firm, I am able to predict the markup for both firms for the

whole period of the data set. I compared this prediction with average markup

for each firm presented by In-Stat for some time periods. Figure 3 shows the

predicted average markup and the markup presented by In-Stat/MDR for

some time periods. Even when the cost function is estimated using just

INTEL cost data at the product level, the estimated equations predict rela-

tively well the markup for each firm, except at the beginning of the sample,

where no data on price exists, where it predicts negative markups for AMD.

I consider that the predicted markup has the main observed characteristics

that are required to estimate the market structure parameter in the second

stage of the algorithm.

6.4 Quality Evolution

For the forward simulation that allows us to estimate the value functions, I

have assumed that quality follows an exogenous linear path over time and

that it is known by both firms. I have estimated the parameters of a linear

function that will predict the quality of each product, depending on the time

since its introduction and its generation. The estimated parameters of the

performance function are presented on Table 4.
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6.5 Policy Functions

As previously presented, the Markov perfect assumption implies that the op-

timal choice in each period is a function of the current period state variables

that affect current payoff. Table 5 shows that all the state variables consid-

ered have high statistical power to explain quantity choices. The sign of all

coefficients agree with what is expected and are all statistically significant.

One interesting point is the sign of the state variables that control for the

experience of the past and the next generation. The experience of the next

generation has a negative coefficient which controls for the fact that firms

reduce the quantity of the old generation when they introduce a new gener-

ation. A similar interpretation is given to the positive sign of the parameter

related to experience of the previous generation.

Even though a linear regression predicts relatively well the observed be-

havior of firms, as mentioned before, the method that will be used is non

parametric local linear regression. The estimation procedure considers a lin-

ear regression in a neighborhood around each point to be evaluated. The

neighborhood is chosen optimally using cross-validation. The optimally de-

termined neighborhood size includes the 15 closest neighbors in each local

estimation relevant state variables. In this case, these are variables that

affect production costs (experience), state variables that affect demand (per-

formance) and the set of products available in each period. Based on that,

the variables used in this application are: performance of each product, cu-

mulative production of each product, time since the introduction of each

product, cumulative production of the product of the previous generation by
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the same firm and cumulative production of the product of the next genera-

tion by the same firm. Figure 4 presents a plot of the predicted choice using

the local linear regression and the observed choice in the sample.

6.6 Value Functions

This step consist on the estimation of Πj(s, σ(s)), Π−j(s, σ(s)), and CS(s, σ(s))

for all the observed choice in the data set and also Πj(s, σ
′
j(s), σ−j(s)),

Π−j(s, σ
′
j(s), σ−j(s)), and CS(s, σ′j(s), σ−j(s)) for different one-step devia-

tions in the first period.

All these expected values are calculated using the forward simulation

technique and will be used in the next section to estimate the value of θ that

allows us to identify the market structure.

Figure 5 shows a plot of the estimated components of the value functions

for the observed choices. This consists on each firm’s expected discounted

value of profits and expected present value of the consumer surplus, for the

period of the data.

6.7 Market Structure Parameter estimation

To estimate the market structure parameter (θ) the following steps are taken.

First, in every period, the expected present value of the profits are estimated

for the observed choice and for one-step deviations from the observed choices.

To calculate the expected value of profits, in every period a path of profits

is simulated for a large number of periods and one value for the discounted

present value of the profits is calculated. The same procedure is repeated
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100 times and the mean is calculated to obtain the expected discounted value

of the profits in each period. This is repeated for both firms in all the 48

time periods for which data is available. The procedure is repeated starting

with the observed choice in every period, and also for one-step deviations of

+/- 5%, +/-10% and +/-15% from the observed choice. After that, the dif-

ferential profit between the deviations and the observed choice is calculated.

Then, for a given value of θ, the value of the loss function is calculated by

adding over the deviations that increase the value of the objective function.

The parameter that minimize the loss function is chosen.

Table 6 presents the estimated market structure parameter. This pa-

rameter is presented for two cases. In the first case, it is assumed that the

objective function that each firm solves is different. This gave one market

structure parameter for each firm: θAMD and θIntel. The second case assumes

that the objective function for both firms is the same, and therefore a com-

mon market structure parameter is estimated using the information for both

firms. This parameter is called θIndustry.

The result suggest that the market structure is very close to the Nash-

Cournot equilibrium of the game for AMD and for the Industry as a whole,

obtaining point estimates for θAMD = −0.0176, and θIndustry = 0.0000. The

results for Intel suggest a market structure that is between Nash-Cournot

and Collusion with θIntel = −0.4363. Bootstrapped parameters gave a mean

of θAMD = −0.0012, θIntel = −0.2116 and θIndustry = −0.0548. The standard

deviation based on the bootstrapped parameters gave values of σθ = 0.0835

for AMD, σθ = 0.1944 for Intel and σθ = 0.0728 for the Industry.

The point estimate and the bootstrapping allows us to estimate t-values
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to test for the different market structures. These t-values are presented in

Table 7. If we use the point estimates, we can reject the existence of collusion

and social welfare maximization for the three market structure parameters.

We fail to reject the existence of a Nash-Cournot equilibrium in the game for

AMD and the industry as a whole. If we use the mean of the bootstrapped

parameters, we confirm the previous result for AMD and the industry ; ad-

ditionally we fail to reject the existence of a Nash-Cournot equilibrium and

reject the existence of collusion for Intel.

These result suggest that the observed behavior of firms is closest to a

Nash Equilibrium of the game and allows us to reject the existence of perfect

collusion and of social welfare maximization.

7 Conclusions

In this paper, the estimation of an index of market structure in a dynamic

structural model has been applied to the computer CPU market. Two ele-

ments exist in this market that may generate incentives to firms to produce

a quantity that is closer to static perfect competition. The first of them is

the existence of learning-by-doing. Under learning-by-doing firms have in-

centives to produce higher quantity of products during the first periods of

introduction of a product, with the objective of reducing future production

costs. Additionally, as proposed by Siebert (2003), the existence of adja-

cent generations of products by the same firm may create a higher degree

of competition in the market. When firms produce several products, even

when firms have few competitors, the fact that products compete with other
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products by the same firm could create a more competitive results.

The observation of prices minus unitary cost markup suggests that Intel

is taking advantage of its higher market share, obtaining a much higher

markup and profit than its competitor, AMD. Nevertheless, the estimation

of parameters in a dynamic model suggest that both firms are obtaining

a result that is closest to a Nash-Cournot behavior in the Markov Perfect

Equilibrium of the dynamic game, rejecting the existence of both competitive

(welfare maximizing) and collusive behaviors.

Several assumptions have been necessary to simplify the model and have

allowed me to estimate the behavioral parameter in the dynamic game. First,

I have grouped products at the generation level. This might hide some of

the variability of the data at the product and family level. Even when the

available data could have allowed analysis at the product level for Intel prod-

ucts, the available data not fully disaggregated for AMD, which makes hard

to estimate the model at that level for both firms. Probably, the existence of

more competitive products may have generated a more competitive result,

nevertheless, it is not clear how that compares to a social welfare maximiza-

tion result under that model. Second, I have assumed that demand is static

and that people take buying decisions in every period without taking in ac-

count expectations of quality and prices of products that will be available in

the future. I have also ignored the fact that CPU are elements of durable

goods. Incorporating these elements into the modeling strategy is very dif-

ficult and creates a two-side game between buyers and sellers. Third, being

the computer CPU one component of a digital computer system, the demand

of CPU is a derived demand from computer producers. This fact has been
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also ignored in the estimation procedure and the inverse demand function

has been estimated using an aggregated demand. Incorporating other mod-

eling strategies in the demand estimation is one of the possible extensions of

this paper. Fourth, technical progress and the development of new products

have been considered exogenous and the only control value for firm has been

assumed to be the quantity of each product. Incorporating a more general

model is another possible extension. Finally, the estimation of the market

power parameters in a two-stage procedure, in which in the first stage the

demand and cost functions are estimated and in a second stage the market

power parameters are identified could generate a loss of efficiency. Other

ways of improving the estimation can be explored and proposed in future

work.
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Table 1: Summary Statistics for the Demand Estimation

AMD
Variable Obs Mean Std. Dev. Min Max
price 29 100.79 50.17 64.00 250.00
prod 59 1476.67 2396.35 0.00 8800.00
prodi 59 2953.33 2783.76 0.00 8800.00
prodj 59 23136.29 9103.36 5967.00 36404.00
perf 59 0.39 0.55 0.00 2.43
INTEL
Variable Obs Mean Std. Dev. Min Max
price 66 245.03 133.65 84.00 787.00
prod 75 7712.10 10945.02 0.00 36404.00
prodi 75 15424.19 12141.55 0.00 36404.00
prodj 75 4430.00 2453.67 1200.00 8800.00
perf 75 0.63 0.66 0.00 2.38

Table 2: Inverse Demand Estimation.
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Number of obs = 95
F( 6, 88) = 94.65
Prob > F = 0
R-squared = 0.8673

lprice Coef. Std. Err. t P > |t| [95% Conf. Interval]
lprod -0.0497 0.0323 -1.5400 0.1270 -0.1138 0.0145
lprodi*(1-dnp) -0.0252 0.0261 -0.9700 0.3360 -0.0770 0.0266
lprodj -0.0314 0.0486 -0.6500 0.5200 -0.1279 0.0652
perf 0.8810 0.0656 13.4300 0.0000 0.7506 1.0114
brand 0.7578 0.1251 6.0600 0.0000 0.5092 1.0063
dnp -0.1834 0.1976 -0.9300 0.3560 -0.5761 0.2093
cons 4.4860 0.6454 6.9500 0.0000 3.2034 5.7685
Instrumented: lprod
Instruments: prodidummy lprodj perf brand dnp exp expnext expprev tsint
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Table 3: Cost Function Estimation
Number of obs = 67
F( 4, 62) = 59.5
Prob > F = 0.0000
R-squared = 0.79

uncost Coef. Std. Err. t P > |t| [95% Conf. Interval]
Logcumprod -3.1779 1.2952 -2.4500 0.0170 -5.7671 -0.5888
Timesinceint -3.5414 0.5040 -7.0300 0.0000 -4.5489 -2.5340
Gen6 59.3758 6.9280 8.5700 0.0000 45.5269 73.2247
Gen7 14.9099 6.6912 2.2300 0.0290 1.5344 28.2853
Constant 106.9539 11.4915 9.3100 0.0000 83.9827 129.9251

Table 4: Evolution of Quality

Number of obs = 134
F( 7, 126) = 991.79
Prob > F = 0.0000
R-squared = 0.98

perf Coef. Std.Error t P > |t| [95% Conf. Interval]
tsint 27.2314 6.8364 3.9800 0.0000 13.7023 40.7606
tsig5 63.2453 8.2072 7.7100 0.0000 47.0036 79.4870
tsig6 225.9784 10.4767 21.5700 0.0000 205.2453 246.7116
firm 110.5089 67.7011 1.6300 0.1050 -23.4696 244.4873
firm6 2260.1620 119.6085 18.9000 0.0000 2023.4600 2496.8630
dg5 210.0696 113.4538 1.8500 0.0660 -14.4522 434.5914
dg6 1434.4910 139.5289 10.2800 0.0000 1158.3670 1710.6140
cons -142.0165 89.1696 -1.5900 0.1140 -318.4805 34.4475

Table 5: OLS Regression of Quantity on State Variables

Number of obs = 134
F( 5, 128) = 71.89
Prob > F = 0.0000
R-squared = 0.74

q Coef. Std. Err. t P > |t| [95% Conf. Interval]
perf -3830.3 1462.7 -2.6200 0.0100 -6724.4 -936.15
exp 0.0453 0.0059 7.6700 0.0000 0.0336 0.0570
expprev 0.0214 0.0036 5.9900 0.0000 0.0143 0.0284
expnext -0.2842 0.0237 -12.0000 0.0000 -0.3311 -0.2374
intel 5436.6 1442.6 3.7700 0.0000 2582.1 8291.2
cons 5951.5 1637.4 3.6300 0.0000 2711.7 9191.2
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Table 6: Estimated Market Structure Parameters
θAMD θINTEL θIndustry

θ̂ -0.0176 -0.4363 0.0000
Mean bootstraping -0.0012 -0.2116 -0.0548
Std.Dev. Bootstraping (0.0835) (0.1944) (0.0728)

Table 7: Hypothesis Tests for Market Structure (t-values)

Market Structure Parameter Value AMD INTEL Industry
Using Point Estimates
Collusion θ = −1 11.7653 2.8997 13.7363
Nash-Cournot θ = 0 -0.2108(*) -2.2443 0.0000(*)
Social Welfare Maximization θ = 1 -12.1868 -7.3884 -13.7363
Using Mean of Bootstrapped Distribution
Collusion θ = −1 11.9617 4.0556 12.9835
Nash-Cournot θ = 0 -0.0144(*) -1.0885(*) -0.7527(*)
Social Welfare Maximization θ = 1 -11.9904 -6.2325 -14.4890

(*) Fail to Reject the null.
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Figure 1: Average Performance (Quality) for each generation of products

Figure 2: Average Selling Price and Unitary Cost by Firm
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Figure 3: Estimated and Observed Markup for each firm

Figure 4: Estimated policy functions and observed choice
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Figure 5: Estimated Components of the Value Functions
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