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Site-Specific Seismic Hazard Analyses

Abstract
by Gonzalo Andres Montalva, Ph.D.

Washington State University

August, 2010

Chair: Dr. Adrian Rodriguez-Marek

Current seismic hazard analyses are generally performed using probabilistic methods.

When dealing with a specific site, the typical methodology involves using a ground

motion prediction equation (GMPE) to estimate the rock outcrop ground motion and

associated variability, then the ground motion is propagated to the ground surface by

site response analysis.

The site response process is inherently variable. Including this uncertainty in site

response analyses without modifying the input ground motion uncertainty produces

double counting of the uncertainty associated with site response. In this dissertation

the total uncertainty is partitioned into its several contributing components, quantify-

ing these components, and proposing methods to perform site-specific seismic hazard

analyses without double counting uncertainties.

Four random field models were developed, and an existing one was fitted to a different

database. These models can be used to generate shear-wave velocity profiles for site

response analyses. Two types of models are presented, using Gaussian random fields,

and using Markov Chains. The first ones showed better performance, and among those

a stationary Gaussian model (stationary on ρ) showed the best performance, and it is

the simplest among the five models.

Three GMPE’s were developed, one only from surface records, one from “at-depth”

records, and a third one combining surface and “at-depth” records. The results show the
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same magnitude and distance scaling for the three equations. For stations that recorded

a large number of records, total uncertainty was measured by the standard deviation of

the observed minus predicted, and similarly for intra-event residuals. These statistics

serve as lower bounds for site-specific seismic hazard analyses, note that these standard

deviations are non-ergodic. The use of a GMPE capable of predicting bedrock and

surface median ground motions, allows the partition of the components of the total

uncertainty at the surface into those related to the bedrock ground motion and those

to site response. These components and their correlations are presented.

Measurements at a site can potentially reduce the uncertainty in the ground motion

prediction from that calculated using the ergodic assumption, to that observed at single

sites. This implies a reduction on the order of 25%.

v



Contents

Abstract iv

Contents vi

List of Figures xi

Table Index xxv

1 Introduction and Objectives 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 5

2.1 Site Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

vi



2.1.1 Typical Site Response Analyses . . . . . . . . . . . . . . . . . . . . . 6

2.2 Factors Controlling Site Response . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Regression Models Treatment of Site Response . . . . . . . . . . . . . . . . 8

2.4 Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Shear Wave Velocity Measurement Uncertainty . . . . . . . . . . . . . . . . 14

2.5.1 Measurement Specific Uncertainty . . . . . . . . . . . . . . . . . . . 15

2.5.2 Inter-method Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.3 Shear-wave Velocity Profile generation . . . . . . . . . . . . . . . . . 16

2.6 Profile Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.7 Available Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Stochastic Site Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Framework for site-specific PSHA 25

3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Issues with the propagation of uncertainty . . . . . . . . . . . . . . . 27

3.1.2 Proposals for site-specific intensity estimates . . . . . . . . . . . . . 28

4 Uncertainty in Site Response Analyses 36

4.1 Random Field Model for Shear Wave Velocity . . . . . . . . . . . . . . . . . 37

4.1.1 Existing Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



4.1.2 Spatial statistics of the KiK-net database . . . . . . . . . . . . . . . 39

4.1.2.1 Soil Statistics and Correlation Structure . . . . . . . . . . . 39

4.1.2.2 Rock Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.3 Proposed Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3.1 Modified EPRI . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3.2 One Layer Lag Stationary Gaussian Model . . . . . . . . . 52

4.1.3.3 Two Layer Lag Stationary Gaussian Model . . . . . . . . . 52

4.1.3.4 Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.3.5 Second Order Markov Chain . . . . . . . . . . . . . . . . . 56

4.1.4 Statistical Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.5 Comparison in Terms of Site Response . . . . . . . . . . . . . . . . . 58

4.1.5.1 Comparison of site response between a set of measured Vs

profiles and a set of artificially generated Vs profiles . . . . 58

4.2 Monte Carlo Simulation Approach . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Single Site Variability of Ground Motions: estimates from the KiKnet

database 79

5.1 Data Source Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 GMPE for Surface and Borehole . . . . . . . . . . . . . . . . . . . . . . . . 86

viii



5.2.1 Combined Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.2 Surface Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 Borehole Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.4 Model Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.2.5 Analysis of Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.2.5.1 Inter-Event Residuals . . . . . . . . . . . . . . . . . . . . . 105

5.2.5.2 Intra-Event Residuals . . . . . . . . . . . . . . . . . . . . . 116

5.2.6 Comparison of Inter and Intra-Event Residual Standard Deviations . 127

5.3 Single-Station Standard Deviations . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.2 Analysis of Residuals at Single-Stations . . . . . . . . . . . . . . . . 140

5.3.3 Study of Cross-correlation between Residuals . . . . . . . . . . . . . 160

5.3.4 Study of Single-Station Standard Deviations: path, magnitude, and

distance effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5.4 PSHA Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6 Conclusions 181

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.2 Significant Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

ix



6.3 Recommendations for Further Study . . . . . . . . . . . . . . . . . . . . . . 185

Bibliography 187

A Additional Plots of Ground Motion Residuals 195

A.1 Intra-Event Residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

x



List of Figures

2.1 Schematics of site response phenomena . . . . . . . . . . . . . . . . . . . . . 6

2.2 Typical spatial covariance shape. . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Inherent soil variability. Reproduced from Phoon and Kulhawy (1999) . . . 14

3.1 Flowchart for estimation of site-specific surface ground motion intensity . . 30

3.2 Flowchart for estimation of site-specific surface ground motion intensity . . 35

4.1 Shear-wave velocity statistics and correlation coefficients for the entire data

set and Vs30 based subsets. 4.1a entire database, 4.1b site classes A and B

(Vs30 > 760 m/s), 4.1c site class C (760 m/s > Vs30 > 360 m/s), and 4.1d

site class D (360 m/s > Vs30 > 180 m/s). . . . . . . . . . . . . . . . . . . . 41

4.2 Comparison of the standard deviation of shear wave velocity for the entire

database and for Vs30-based subsets. . . . . . . . . . . . . . . . . . . . . . . 42

xi



4.3 Shear-wave velocity correlation coefficients considering only lag distances

that are one layer away from each other. Initial depths of 10, 50, and 90

meters are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Shear-wave velocity correlation coefficients considering only lag distances

that are two layers away from each other. Initial depths of 10, 50, and 90

meters are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.5 p-values versus depth, for the hypothesis that the Vs values fit a log-normal

distribution at a given depth. At 5% significance level, all p-values greater

than 0.05 are considered to approach a log-normal distribution. . . . . . . . 47

4.6 Rate of layer transitions versus depth for the generic case. This parameter,

λ, can be understood as the reciprocal of layer thickness for each depth. . . 50

4.7 Flow chart of the generation procedure for the modified EPRI model. . . . . 51

4.8 Correlation between layer depth and shear-wave velocity for the entire KiK-

net database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.9 Comparison of the mean and one standard deviation band for one set of

simulated Vs profiles using the Modified EPRI methodology, and a set of

measured Vs profiles for site C class. . . . . . . . . . . . . . . . . . . . . . . 58

4.10 Comparison of the mean and one standard deviation band for one set of sim-

ulated Vs profiles using the One layer lag Stationary Gaussian methodology,

and a set of measured Vs profiles for site C class. . . . . . . . . . . . . . . . 59

4.11 Comparison of the mean and one standard deviation band for one set of sim-

ulated Vs profiles using the Two layer lag Stationary Gaussian methodology,

and a set of measured Vs profiles for site C class. . . . . . . . . . . . . . . . 60

xii



4.12 Comparison of the mean and one standard deviation band for one set of

simulated Vs profiles using the first order Markov chain methodology, and a

set of measured Vs profiles for site C class. . . . . . . . . . . . . . . . . . . . 61

4.13 Comparison of the mean and one standard deviation band for one set of

simulated Vs profiles using the Second order Markov chain methodology,

and a set of measured Vs profiles for site C class. . . . . . . . . . . . . . . . 62

4.14 Empirical correlation functions for depth 10 m, and site class C. Comparison

of measured profiles with sets of simulated profiles using the five proposed

methodologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.15 Empirical correlation functions for depth 50 m, and site class C. Comparison

of measured profiles with sets of simulated profiles using the five proposed

methodologies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.16 Comparison of the median Ratio of Response Spectra for the different Ran-

dom Field generators. Also shown is the predicted Ratio of Response spectra

using the measured shear wave velocity profiles for site class C. . . . . . . . 64

4.17 Comparison of the standard deviation of Ratio of Response Spectra for the

different Random Field generators. Also shown is the predicted standard de-

viation of Ratio of Response spectra using the measured shear wave velocity

profiles for site class C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.18 Mean of the Ratio of Response Spectra versus standard deviation of V s30.

Results shown for period of 0.2 seconds and Site C class. . . . . . . . . . . . 68

4.19 Mean of the Ratio of Response Spectra versus standard deviation of V s30.

Results shown for period of 0.5 seconds and Site C class. . . . . . . . . . . . 68

xiii



4.20 Mean of the Ratio of Response Spectra versus standard deviation of V s30.

Results shown for period of 1.0 seconds and Site C class. . . . . . . . . . . . 69

4.21 Standard deviation of the Ratio of Response Spectra versus standard devia-

tion of V s30. Results shown for period of 0.2 seconds and Site C class. . . . 69

4.22 Standard deviation of the Ratio of Response Spectra versus standard devia-

tion of V s30. Results shown for period of 0.5 seconds and Site C class. . . . 70

4.23 Standard deviation of the Ratio of Response Spectra versus standard devia-

tion of V s30. Results shown for period of 1.0 seconds and Site C class. . . . 70

4.24 Mean of the Ratio of Response Spectra versus standard deviation of V s30.

Results shown for period of 0.2 seconds and Site D class. . . . . . . . . . . . 71

4.25 Mean of the Ratio of Response Spectra versus standard deviation of V s30.

Results shown for period of 0.5 seconds and Site D class. . . . . . . . . . . . 72

4.26 Mean of the Ratio of Response Spectra versus standard deviation of V s30.

Results shown for period of 1.0 seconds and Site D class. . . . . . . . . . . . 72

4.27 Standard deviation of the Ratio of Response Spectra versus standard devia-

tion of V s30. Results shown for period of 0.2 seconds and Site D class. . . . 73

4.28 Standard deviation of the Ratio of Response Spectra versus standard devia-

tion of V s30. Results shown for period of 0.5 seconds and Site D class. . . . 73

4.29 Standard deviation of the Ratio of Response Spectra versus standard devia-

tion of V s30. Results shown for period of 1.0 seconds and Site D class. . . . 74

4.30 Standard deviations of the amplification factor for Site C, and spectral period

of 0.3 seconds. Each point is the standard deviation of the amplification

factor for 600 artificially generated profiles. . . . . . . . . . . . . . . . . . . 74

xiv



4.31 Standard deviations of the amplification factor for Site C, and spectral period

of 1.0 second. Each point is the standard deviation of the amplification factor

for 600 artificially generated profiles. . . . . . . . . . . . . . . . . . . . . . 75

4.32 Standard deviations of the amplification factor for Site D, and spectral period

of 0.3 seconds. Each point is the standard deviation of the amplification

factor for 600 artificially generated profiles. . . . . . . . . . . . . . . . . . . 76

4.33 Standard deviations of the amplification factor for Site D, and spectral period

of 1.0 second. Each point is the standard deviation of the amplification factor

for 600 artificially generated profiles. . . . . . . . . . . . . . . . . . . . . . 77

5.1 Magnitude versus Distance distribution for the KiK-net database . . . . . . 81

5.2 Distribution of upper 30 m time-averaged shear-wave velocity (V s30) for the

KiK-net database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Instrument depth distribution for the KiK-net database. Note that most

subsurface instruments are located at 100m or 200m below the surface. . . . 83

5.4 Borehole shear-wave velocity histogram. . . . . . . . . . . . . . . . . . . . . 83

5.5 KiK-net ground motion station locations. Shown in red are the 46 station

for which more that 15 records are available. Stations in blue are considered

in the regression analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.6 KiK-net database epicenters for the recorded earthquakes included in the

GMPE. Note that each of these events were recorded by surface and at

depth instruments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xv



5.7 Ground motion estimates attenuation with respect to distance for magni-

tudes 4, 5, and 6. Left column corresponds to the estimates for borehole,

and right column to surface estimates; first row shows estimates for a spec-

tral period of 0.05 (sec), second row for T = 0.3 (sec), and third row for T

= 1.0 (sec). Estimated scenario corresponds to V s30 of 760 (m/s), depth to

V s equal to 800 (m/s) of 60 (m), Vs at depth 100 (m) of 3000 (m/s) . . . . 102

5.8 Comparison of the magnitude terms for the Combined, Surface, and Borehole

models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.9 Median spectrum estimates for magnitudes 4, 5, and 6. Left column corre-

sponds to the estimates for borehole, and right column to surface estimates;

first row shows estimates for a distance to the fault plane of 20 (km), second

row for RRUP= 50 (km), and third row for RRUP= 100 (km). Estimated

scenario corresponds to V s30 of 760 (m/s), depth to V s equal to 800 (m/s)

of 60 (m), Vs at depth bedrock of 3000 (m/s) . . . . . . . . . . . . . . . . . 104

5.10 Inter-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 106

5.11 Inter-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus Event Depth. . . . . . . . . . . . . 107

5.12 Inter-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 108

5.13 Inter-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus Event Depth. . . . . . . . . . . . . 109

5.14 Inter-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 110

xvi



5.15 Inter-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus Event Depth. . . . . . . . . . . . . 111

5.16 Inter-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 112

5.17 Inter-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus Event Depth. . . . . . . . . . . . . 113

5.18 Inter-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 114

5.19 Inter-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus Event Depth. . . . . . . . . . . . . 115

5.20 Intra-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 117

5.21 Intra-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus distance to the fault. . . . . . . . . 118

5.22 Intra-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 119

5.23 Intra-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus distance to the fault. . . . . . . . . 120

5.24 Intra-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 121

5.25 Intra-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus distance to the fault. . . . . . . . . 122

xvii



5.26 Intra-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 123

5.27 Intra-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus distance to the fault. . . . . . . . . 124

5.28 Intra-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus Magnitude. . . . . . . . . . . . . . 125

5.29 Intra-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus distance to the fault. . . . . . . . . 126

5.30 Surface intra- and inter-event standard deviations as a function of magnitude.

Intra-event standard deviation presented in left column, inter-event standard

deviation in right column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.31 Borehole intra- and inter-event standard deviations as a function of magni-

tude. Intra-event standard deviation presented in left column, inter-event

standard deviation in right column. . . . . . . . . . . . . . . . . . . . . . . . 129

5.32 Comparison of the intra-event standard deviations -φ- for the Combined,

Surface, and Borehole models. . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.33 Comparison of the inter-event standard deviations -τ - for the Combined,

Surface, and Borehole models. . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.34 Comparison of the inter-event standard deviations -τ - for the Combined,

Surface, and Borehole models allowing for oversaturation in the median es-

timate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.35 Correlation between surface Inter- and Intra-event residuals, for a spectral

period of 0.03 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xviii



5.36 Correlation between surface Inter- and Intra-event residuals, for a spectral

period of 1.0 second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.37 Correlation between borehole Inter- and Intra-event residuals, for a spectral

period of 0.03 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.38 Correlation between borehole Inter- and Intra-event residuals, for a spectral

period of 1.0 second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.39 Surface Inter-Event terms versus Borehole Inter-Event terms for peak ground

accelerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.40 Surface and Borehole Inter-Event terms versus the Inter-Event terms ob-

tained from the Combined model, for peak ground accelerations . . . . . . . 138

5.41 Magnitude-Distance distribution for the subset of stations with more than

10 records. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.42 Station parameters for subset of stations with more than 10 records. . . . . 141

5.43 Intra-event residuals at stations with more than 10 records. . . . . . . . . . 143

5.44 Intra-event residuals corrected for site term versus magnitude, for peak

ground acceleration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.45 Intra-event residuals corrected for site term versus magnitude, for a spectral

period of 0.3 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.46 Intra-event residuals corrected for site term versus magnitude, for a spectral

period of 1.0 second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.47 Correlation between intra-event residuals (corrected for the site term) and

inter-event residuals, for peak ground acceleration. . . . . . . . . . . . . . . 147

xix



5.48 Correlation between intra-event residuals (corrected for the site term) and

inter-event residuals, for a spectral period of 0.3 seconds. . . . . . . . . . . . 148

5.49 Correlation between intra-event residuals (corrected for the site term) and

inter-event residuals, for a spectral period of 1.0 second. . . . . . . . . . . . 149

5.50 Single station standard deviations for stations with more than 10 records,

for peak ground acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.51 Total standard deviations compared for single-sites and the ergodic predic-

tion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.52 Mean of single-station residuals versus V s30 and site period (To). Left col-

umn shows the mean residuals (δS2S) and right column shows its standard

deviation (φS2S). Results for peak ground acceleration. . . . . . . . . . . . . 153

5.53 Mean of single-station residuals versus V s30 and site period (To). Left col-

umn shows the mean residuals (δS2S) and right column shows its standard

deviation (φS2S). Results for spectral acceleration of 0.3 seconds. . . . . . . 154

5.54 Mean of single-station residuals versus V s30 and site period (To). Left col-

umn shows the mean residuals (δS2S) and right column shows its standard

deviation (φS2S). Results for spectral acceleration of 1.0 second. . . . . . . . 156

5.55 Intra-event single-station residuals a versus V s30 for peak ground acceleration.157

5.56 Intra-event single-station residuals a versus V s30 for a spectral period of 0.3

seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.57 Intra-event single-station residuals a versus V s30 for a spectral period of 1.0

second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xx



5.58 Standard deviation of empirical amplification factor for peak ground accel-

eration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.59 Standard deviation of empirical amplification factor for a spectral period of

0.3 seconds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.60 Standard deviation of empirical amplification factor for a spectral period of

1.0 second. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.61 Correlation coefficient between the different components of the total ground

surface residual. Correlation Coefficients are plotted against spectral period. 163

5.62 Mean residual amplification (δS2SAMP ) versus V s30 for peak ground ac-

celeration. Plus and minus 1 standard deviations are added to illustrate

dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.63 Mean residual amplification (δS2SAMP ) versus V s30 for spectral period of

0.3 seconds. Plus and minus 1 standard deviations are added to illustrate

dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

5.64 Mean residual amplification (δS2SAMP ) versus V s30 for spectral period of

1.0 seconds. Plus and minus 1 standard deviations are added to illustrate

dependency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

5.65 Single station standard deviations for T = 0.3 versus standard deviation

of station-to-event azimuths. These two quantities are positively correlated

(ρ = 34%). Only stations with more than 15 records are considered for this

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.66 Single station standard deviations for T = 0.3 of records sampled from a

varying range of station-to-event azimuth. Only station with more than 15

records are considered for this plot. . . . . . . . . . . . . . . . . . . . . . . . 172

xxi



5.67 Single station standard deviations for different magnitude ranges for T = 0.3.

Only station with more than 10 records are considered for this plot, and only

those with 6 or more records are within each magnitude bracket are plotted. 173

5.68 Single station standard deviations for T = 0.3 and for different ranges of

distance to the rupture plane. Only station with more than 10 records are

considered for this plot. Mean single station standard deviation of these

records is 0.48. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.69 Shear-wave velocity profile for site KMMH09 . . . . . . . . . . . . . . . . . 176

5.70 Total residuals at site KMMH09, for spectral period of 0.1 seconds. . . . . . 176

5.71 Ergodic Hazard Curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

5.72 Ergodic and Single-Site Hazard Curves . . . . . . . . . . . . . . . . . . . . . 177

5.73 Site-specific hazard curve using borehole ground motion estimate and site

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

5.74 Hazard curve using site response and partially ergodic standard deviation . 179

5.75 Short return period portion of the hazard curves. Note the misfit of the site

response generated curves with respect to the ergodic curve, this reflects the

reduction of the bias in the ground motion predictions. . . . . . . . . . . . . 179

5.76 Hazard curves including nonlinear site response. . . . . . . . . . . . . . . . . 180

A.1 Intra-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus V s30. . . . . . . . . . . . . . . . . . 196

A.2 Intra-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus predominant period (To). . . . . . 197

xxii



A.3 Intra-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus depth to shear-wave velocity of 800

(m/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

A.4 Intra-Event Residuals for spectral period of 0.03 seconds and the models for

Surface, Borehole, and Combined versus Magnitude, considering only events

closer than 20 (km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

A.5 Intra-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus V s30. . . . . . . . . . . . . . . . . . 200

A.6 Intra-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus predominant period (To). . . . . . 201

A.7 Intra-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus depth to shear-wave velocity of 800

(m/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

A.8 Intra-Event Residuals for spectral period of 0.2 seconds and the models for

Surface, Borehole, and Combined versus Magnitude, considering only events

closer than 20 (km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

A.9 Intra-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus V s30. . . . . . . . . . . . . . . . . . 204

A.10 Intra-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus predominant period (To). . . . . . 205

A.11 Intra-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus depth to shear-wave velocity of 800

(m/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

xxiii



A.12 Intra-Event Residuals for spectral period of 0.6 seconds and the models for

Surface, Borehole, and Combined versus Magnitude, considering only events

closer than 20 (km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

A.13 Intra-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus V s30. . . . . . . . . . . . . . . . . . 208

A.14 Intra-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus predominant period (To). . . . . . 209

A.15 Intra-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus depth to shear-wave velocity of 800

(m/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

A.16 Intra-Event Residuals for spectral period of 1.0 second and the models for

Surface, Borehole, and Combined versus Magnitude, considering only events

closer than 20 (km). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

A.17 Intra-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus V s30. . . . . . . . . . . . . . . . . . 212

A.18 Intra-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus predominant period (To) . . . . . . 213

A.19 Intra-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus depth to shear-wave velocity of 800

(m/s). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

A.20 Intra-Event Residuals for spectral period of 1.4 seconds and the models for

Surface, Borehole, and Combined versus Magnitude, considering only events

closer than 20 (km) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

xxiv



Table Index

2.1 Intra-Method Variability for V s30 Measurement . . . . . . . . . . . . . . . . 15

4.1 Half-space Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Parameters for Non-stationary Correlation Function . . . . . . . . . . . . . 49

4.3 Coefficients for layering model, 95% confidence interval in parenthesis . . . . 49

4.4 Correlation Coefficient for Stationary Models . . . . . . . . . . . . . . . . . 52

5.1 Model Parameters for the Distance and Magnitude terms of the Combined

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Model Parameters for the Site terms of the Combined Model . . . . . . . . 92

5.3 Standard Deviations of the Residuals from the Combined Model . . . . . . . 93

5.4 Model Parameters for the Distance and Magnitude terms of the Surface Model 95

5.5 Model Parameters Site term for the Surface Model . . . . . . . . . . . . . . 96

xxv



5.6 Standard Deviations of the Residuals from the Surface Model . . . . . . . . 97

5.7 Model Parameters for the Distance and Magnitude terms of the Borehole

Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.8 Model Parameters for the Site terms of the Borehole Model . . . . . . . . . 100

5.9 Standard Deviations of the Residuals from the Borehole Model . . . . . . . 101

5.10 Single-Station Standard Deviations for Surface and Borehole . . . . . . . . . 155

5.11 Single-Station Residuals correlation Coefficients . . . . . . . . . . . . . . . . 162

5.12 Standard Deviation of Random Variables that compose the total Surface

Standard Deviation (ergodic) . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.13 Empirical check for Equation 5.25 . . . . . . . . . . . . . . . . . . . . . . . . 165

5.14 Single-Station Standard Deviations for Surface and Bracketed Azimuths . . 169

5.15 Single-station standard deviations for PGA . . . . . . . . . . . . . . . . . . 170

xxvi



To my wife, Zulia

xxvii



Chapter 1

Introduction and Objectives

1.1 Introduction

Prediction of earthquake effects is a branch of science under constant development because

of the great impacts that these events have on humanity. Of special concern are surface

ground motion intensities, their frequency, amplitude, and if at all possible their recurrence.

These predictions are possible but they involve a significant amount of uncertainty, due to

the random nature of the seismic process, and due to our limited understanding of the

phenomena.

A probabilistic framework, known as probabilistic seismic hazard analysis, is used to account

for these uncertainties. One of the many components in a hazard analysis is the effect of

the near surface materials. In current practice, these effects are introduced into an analysis

with varying degrees of sophistication. In all cases, however, the uncertainties are usually

not rigorously accounted for. A reduction of the overall uncertainty in the prediction of

ground motions can be achieved by accounting only for the uncertainties that are possible

on a specific site.
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This study focuses on the effects that the random nature of the near surface soil parame-

ters would have in seismic wave propagation, particularly on the waves traveling vertically

through soil and shallow surface deposits, a problem known as site response. The impor-

tance of site response is widely acknowledged and can lead to an amplification of up to ten

times in the ground response (Boore, 2004).

Measured values of soil parameters are known to be uncertain; even the theoretical concept

of a true value for a soil parameter is hard to be formulated realistically. A more sensible

view would accept that a measured value is only an average of the parameters within

the sample, a sample of limited dimensions that is used to represent a much larger volume.

Also, a comprehensive view needs to acknowledge that the measured value is also inherently

uncertain from the testing point of view.

The evident randomness of the soil parameters and their measurement affects all areas of

geotechnical engineering and has been studied extensively over the last 10 years (e.g. Phoon

and Kulhawy, 1999; Fenton et al., 2005; Fenton and Griffiths, 2005; Kim and Santamarina,

2008). Despite the work of these authors and many others, there is a latent need to advance

the state of the art in stochastic analysis in geotechnical engineering.

The interest to appropriately characterize and quantify site response concerns all those

interested in surface ground motions. Seismologists studying seismic sources or their paths

need to extract the effects of the surface materials. Engineers need to assess how the

frequency content, amplitude, and duration of the surface ground motions are affected by

the surface materials parameters.

This research attempts to better characterize the uncertainty involved in site response an-

alyzes, to improve seismic hazard assessments. The physics of the site response problem

are complex, however often modeled with a one-dimensional approach, and although the

mechanism of one-dimensional wave propagation is widely accepted, our understanding of

site response is still improving. This study will use existing site response models, and mea-
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sured site response to improve on our understanding of the characterization of uncertainty

in site response analyses.

1.2 Objectives

The main objective of this work is to advance the knowledge in the use and assessment

of site response uncertainty. The focus is on site-specific studies, for which stochastic

modeling of the soil profile along with empirical estimates of site response are studied. It

is acknowledged that the problem is complex, however to provide useful tools as end result

of this study, wave propagation analysis is assumed to be one-dimensional, hence all the

consequences that result of this assumption (i.e. soil layers are infinite in the horizontal

dimension, no surface waves are considered, and shear-waves are the mayor contributor to

seismic shaking) are also carried along. Specific objectives are:

1. Assess the site response impact on the propagation of the uncertainty from bedrock

level to the soil surface.

2. Propose a new methodology to generate random site profiles that accurately repli-

cate a selected database or a part of it (i.e. a site class). Update currently used

methodologies (i.e. EPRI, 1993) to fit a new data set.

3. For a limited set of vertical arrays from the Japanese KiK-net network (Kiban-

Kyoshin, 2010), assess the effects in predicted uncertainty when the total error param-

eter in ground motion prediction equations (GMPE) is divided into: (a) inter-site,

(b) intra-site, (c) site response terms, and (d) inherent variability, where the first two

terms are divided into inter-event, and intra-event terms as well. Study the possible

partition of these uncertainty terms into path, and region specific effects.

4. Proposed a methodology to incorporate the reduced uncertainty, into site-specific

probabilistic seismic hazard analysis (PSHA).
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1.3 Organization of the Dissertation

After the introduction to the problem and proposed objectives, the dissertation describes

in chapter 2 the current understanding and treatment of site response, followed by a de-

scription of the factors that control the problem. This description encompasses empirical

and analytical methods. Chapter 3 presents the framework to include uncertainty in site

response into site-specific probabilistic seismic hazard analyses (PSHA). Chapter 4 covers

the development of novel random field models to generate random soil profiles that main-

tain the spatial dependence of measured data. A popular existing model (EPRI, 1993) is

modified and tested for comparison with the newly developed models. Monte Carlo sim-

ulations are used to show the applicability of these models. Chapter 5 presents surface

and borehole GMPE developed for the KiK-net database. Also, a GMPE constrained

with data combined from borehole and surface data is presented, the appropriateness of

combining these two sets of data to better constrain the overall estimates is discussed. The

developed GMPE models are used to estimate residuals at stations with several earth-

quake recordings, obtaining estimates of single site ground motion uncertainty. Finally, in

chapter 6 practical applications and the potential use in practice of the methods developed

are discussed.
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Chapter 2

Background

2.1 Site Response

Local site conditions have an important effect on seismic ground motions, and the esti-

mation of seismic risk at a site must take this into account. These important effects have

been recognized since the early work of Idriss and Seed (1970), but it was the occurrence

of the earthquakes of Michoacan (Mexico, 1985), and Loma Prieta (California, 1989) that

brought attention to the devastating effects that could result from site amplification, and

hence the need to better understand the phenomena (Finn, 1991).

A complete ground motion analysis would include the modeling of the fault mechanism,

the propagation of body waves from the source to the top of the bedrock, the generation

and propagation of surface waves to the site of interest, and the propagation of body waves

from the bedrock to the soil surface. In practice, it is still impossible to reliably predict

the mechanism of fault rupture (that depends on fault size, the slip distribution, asperity

of the interface, and direction of rupture among other parameters), and the complex wave

propagation from the source to bedrock levels (that is affected by crustal wave velocities,
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Figure 2.1. Schematics of site response phenomena

and wave scattering). Figure 2.1 illustrates a process that results in the surface ground

motion, that is the modification of the bedrock motion by the near surface material, this

process is referred to as site response.

The way the engineering community deals with this complex phenomenon is by using

empirical methods based on observed data from previous earthquakes. Various regression

models (e.g. Abrahamson et al., 2008) have been developed, these equations are based on

recorded ground motions, and numerical modeling. They are then semi-empirical, and are

parameterized by physical properties known to affect ground motions such as, distance to

the rupture zone, magnitude, and shear-wave velocity of the near surface materials.

2.1.1 Typical Site Response Analyses

Site amplification is usually accounted for by an amplification factor defined as the ratio of

a given ground motion intensity measure (GMIM), such as pseudo spectral acceleration

(Sa), at the surface to that at the bedrock level. There are several definitions for site

response (see Boore, 2004), among which a very important one is the ratio of a Sa at the

soil surface, Ssa to that at a rock outcrop reference site Sra.
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There are two ways to compute site amplification factors, theoretically using wave propaga-

tion theory, and empirically by using data from recorded ground motions. The theoretical

approach assumes that the ground response depends on the shear-wave velocity and density

of the near surface materials. Empirical methods are developed by computing the ratios of

recorded ground motions at two locations, generally ground surface, and bedrock or surface

rock reference site.

The site amplification factor (AF ) approach is generally used by site classification systems,

that attempt to characterize site response with coefficients for sites with similar character-

istics, this approach is employed by building codes or regulatory agencies to identify areas

with similar ground motion levels. Generally, the number of site categories range from 3

to 6 main classes, and are based on shear wave-velocity, geotechnical data, or surface geol-

ogy (e.g. Borcherdt, 1994; Rodriguez-Marek et al., 2001; Dobry et al., 2000; Stewart et al.,

2003). One of the important conclusions of a number of verification studies that followed

the work of Borcherdt (1994), and its subsequent modified adoption by NEHRP seismic

design provisions, was that amplification factors have significant variability (Kramer and

Stewart, 2004). This deterministic approach has been criticized by Goulet and Stewart

(2009) for underestimating the surface ground motions computed probabilistically, that

is the code nonlinear amplification factors are often lower than those obtained within a

probabilistic seismic hazard analysis.

An alternative to using site classification is to perform site specific analyses. These type of

analyses have the advantage of using site specific information, rather than relying in corre-

lations such as the classification systems used by building codes (this is further discussed

in 2.2), and in turn the site response results are not bounded to a coefficient but rather

reflect the effect of the near surface material at all frequencies or times, depending on the

type of analysis performed. Site specific analysis can use linear-equivalent (e.g. Schnabel

et al., 1972) or fully nonlinear models (e.g. Park and Hashash, 2004; Reyes et al., 2009a,b),

which is yet another advantage.
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2.2 Factors Controlling Site Response

The assumption that a single dimension (1D) is sufficient to study site response has been

confirmed (Kramer, 1996; Reyes et al., 2009b,a, to name some examples), and refuted

(i.e. Thompson et al., 2009) in the literature, but it is by far the most popular approach.

Under this assumption and using an equivalent linear approach (Schnabel et al., 1972), the

phenomena is controlled by the soils shear-wave velocity (V̄s), density (ρ), damping, and

their variations with depth and strain during the shaking. For the case of nonlinear analysis

and the 1D assumption, the problem is controlled by the stress-strain behavior of the soil,

note that the equivalent linear approach is an approximation to the nonlinear behavior.

Borcherdt (1994) introduced a classification system based on the upper 30 m time-averaged

shear-wave velocity (V s30). This classification is the base for modern building codes treat-

ment of site amplification, and showed that shear-wave velocity is the controlling factor in

seismic site response.

2.3 Regression Models Treatment of Site Response

Ground motion prediction equations (GMPE) use as primary predictor variables the fault

type, moment magnitude, M, closest distance to the fault plane Rrup (alternatively the

closest distance to the surface projection of the fault plane is also used), and V s30. Where

V s30 is used as proxy for near surface site effects. Eq. 2.1 is the basic functional form of

GMPE, where ymed represents the median estimate of an intensity measure (i.e. Sa) in

natural logarithm units, which is composed by a magnitude term, a distance term, and a

site response term (see Eq. 2.2).

y = ymed + ε (2.1)
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where, ε is a random variable that represents the error of the median prediction.

ymed = Fm(Mw) + Fd(RRUP ,Mw) + Fsite(V s30) (2.2)

The use of V s30 as an index for site amplification, by GMPE such as the Next Generation

of Ground-Motion Attenuation Models (Abrahamson et al., 2008), has been questioned in

the literature (e.g. Castellaro et al., 2008; Kokusho and Sato, 2008). However, it remains

the most widely used proxy for site effects in GMPE.

2.4 Random Fields

The stochastic nature of geotechnical problems is widely acknowledged, yet often not con-

sidered. It refers not only to random material properties, but also to random loading (e.g.

seismic ground motions), and random boundaries, a topic where there is little research done

(Manolis, 2002). The nature of geo-materials necessarily implies a certain degree of spatial

dependence.

The spatial dependence, or spatial structure, of soil properties is basically the relation

between a random variable Xi, which corresponds to the value of the property at a given

location (xi, yi, zi), with one Xi+h, where Xi+h is the same property at a distance h.

Random fields are a way to characterize the randomness at unsampled locations.

Each location i, or equivalently (xi, yi, zi), represents one realization of the random field

(or random process) X. If the same probability density function (pdf) can describe both Xi

and Xi+h, and the joint density function fXi,Xi+h
is only a function of h, the random field

is considered stationary. Stationarity is not a requirement for the use of random fields, but

its use simplifies the analyses considerably. This stationarity condition is generally not met

by natural data sets, hence a relaxation of this hypothesis is often adopted so that only
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Figure 2.2. Typical spatial covariance shape.

the mean and variance are constant in space (the joint pdf is still independent of spatial

location), this is called a weak stationarity condition.

Gaussian random fields are the most utilized in geotechnical engineering, largely as a result

of their simple characterization. A gaussian random field is one whose joint pdf is a

multivariate normally distributed random process. Under the stationarity assumption,

they are completely defined by their mean, µX , and spatial covariance (see Equation 2.3

for general form, and Equation 2.4 for stationary form), which for h = 0 becomes the

variance, σ2
X . Figure 2.2 shows a typical covariance structure shape.

Cx(u1, u2) = σ(u1)σ(u2)ρ(u1, u2) (2.3)

Cx(h) = E[(Xi − X̄i)(Xi+h − X̄i+h)] = E[XiXi+h]− µXiµXi+h
(2.4)
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ρ(h) =
Cx(h)

σ2
x

(2.5)

For the discrete case, in which only certain locations are measured, Equation 2.4 is estimated

by Equation 2.6, where nh is the number of pairs of data. There are several functions that

are commonly fitted to the empirical data, usually a correlation function (Equation 2.5)

is used to characterize how the field changes in space, this is done as a way to normalize

the otherwise variance dependent values of the spatial covariance (see Equation 2.3). This

property of the random fields can also be captured by the spectral density function, or the

variance function.

Ĉx(h) =
1

nh
∗
nh∑
i=1

(Xi ∗Xi+h)− X̄i ∗ X̄i+h (2.6)

The spectral density function is shown in Equation 2.9 (see also Equations 2.7 and 2.8

leading to 2.9), where the random field X(i) is first expressed as a sum of sinusoids, S(w) is

the two-sided spectral density function which is the inverse Fourier transform of the spatial

covariance, also referred as autocovariance or autocorrelation, of the random field.

X(i) = µX +
N∑

k=−N
(Ak ∗ cos(wk ∗ i) +Bk ∗ sin(wk ∗ i)) (2.7)

C(h) = Cov[X(0), X(h)] =

∫ ∞
−∞

S(w) ∗ cos(wh)dw =

∫ ∞
0

G(w) ∗ cos(wh)dw (2.8)

G(w) =
2

π

∫ ∞
0

C(h) ∗ cos(wh)dh (2.9)
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The variance function, shown in Equation 2.10, gives the reduction in the variance when

the random field X(i) is averaged over the length H.

γ(H) =
1

H2

∫ H

0

∫ H

0
ρX ∗ (ξ − η)dξdη (2.10)

Among the most popular correlation functions are the Markov (Eq. 2.11), and the Gaussian

(Eq. 2.12) models.

ρX(h) = exp[−2h/c] (2.11)

ρX(h) = exp[−π
(
h

c

)2

] (2.12)

Geostatistics

Geostatistics is a branch of applied statistics that focuses on the characterization of spatial

dependence in properties that vary in value over space and the use of that dependence to

predict values at unsampled locations. The notion of spatial dependence implies that two

data values from nearby locations will be more alike than two values from distant locations.

The technique most commonly used in geostatistics is called “kriging” (Pawlowsky-Glahn

and Olea, 2004), which is used to estimate a random field between measured data.

The idea behind kriging is to estimate the random variable Xi at any location i using a

weighted linear combination of the observations. This procedure allows for the appropriate

treatment of clusters of data with high or low values, of the attribute of interest (i.e. soil

property) with respect to the trend of the entire data set, without biasing the results for

the entire data set.
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One Dimensional Random Fields in Geotechnical Engineering

Phoon and Kulhawy (1999) studied a breakdown of geotechnical uncertainty into inherent

soil variability, measurement error, and transformation uncertainty. The last two corre-

sponding to epistemic uncertainty, and the first one modeled by random fields. Figure 2.3

shows the basic modeling of a soil property as a function of depth, where ξ(z) is a soil

property at depth z, t(z) is the trend of the property, and w(z) is the residual. The scale of

fluctuation (Equation 2.13), also referred as correlation length, is an alternative to model

spatial dependence mathematically defined by the area under the correlation function (see

Equation 2.13), and it represents the distance within which points are strongly correlated.

Equation 2.14 from Phoon and Kulhawy (1999) divides the vertically varying ξ(z) into a

trend t(z), and w(z), where the residuals w(z) can be modeled as a random field. The ad-

vantage of removing the trend is that in the “detrended” model, the residuals, may acquire

some stationary characteristics.

θ =

∫ ∞
−∞

ρ(h) (2.13)

ξ(z) = t(z) + w(z) (2.14)
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Figure 2.3. Inherent soil variability. Reproduced from Phoon and Kulhawy
(1999)

2.5 Shear Wave Velocity Measurement Uncertainty

Uncertainty in shear wave velocity comes from two sources, uncertainty associated to the

measurements (inter and intra-method), and inherent soil variability. The first one corre-

sponds to epistemic uncertainty, while the second one is aleatoric. Another way to explain

these two types of uncertainty is that the epistemic uncertainty is due to lack of knowledge,

and thus can be reduce by a better understanding of the phenomena, in this case by better

sampling techniques. The second type, aleatoric uncertainty, cannot be reduced as it corre-

sponds to the random nature of the problem, it is also the consequence of mapping spatial
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variability to point variability (ergodicity assumption). Although this division is widely

accepted, it is arguable whether this is an aleatoric uncertainty or what is considered as

such is just the result of physical processes that we are unable to account for.

Time-averaged shear-wave velocity of the upper 30 m (Vs30) is commonly used as an index

for site period (Dobry et al., 1976), and hence for the dynamic behavior of the near surface

soil. This index is only a simplified approach to parameterize site effects but its popularity

has many advantages among which is the availability of data to quantify measurement

errors, an essential component of the overall site response uncertainty.

2.5.1 Measurement Specific Uncertainty

Among the different methods used for shear wave velocity measurement, SASW (spectral

analysis of surface waves), MASW (multi-channel analysis of surface waves), suspension

logging (P-S suspension logging), and the seismic cone (SCPT) are the most commonly

used in practice along with geologic-based estimates (Moss, 2008). Table 2.1 summarizes

Vs30 coefficient of variation for each of these methods.

Table 2.1. Intra-Method Variability for V s30 Measurement

Method Coefficient of Variation
MASW 1-4%1

SASW 5-10%2; 6%3

P-S logging and SCPT 1-3%1,4

Geologic Estimates 20-35%5

[1] Asten and Boore (2005)

[2] Marosi and Hiltunen (2004)

[3] Martin and Diehl (2004)

[4] Brown et al. (2002)

[5] Moss (2008)

SASW is different from the rest in that the measurements of phase angle and phase velocity

have a COV of only about 2%. According to Marosi and Hiltunen (2004) the difference be-
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tween V s30 variability and the little measurement variability occurrs because the inversion

process magnifies the uncertainty in the dispersion data, the epistemic uncertainty here

could be separated into measurement and analysis. Geologic Estimates is, as expected,

the method with greater uncertainty but it is also singular in that the σV s30 estimates do

not only increase with the µV s (i.e. maintaining a constant COV) but the COV increases

linearly with Vs30 estimates (Moss, 2008).

2.5.2 Inter-method Uncertainty

Two of the most popular methods are suspension logging and SASW. Brown et al. (2002)

report a variability in site amplification factors AF (f) for most frequencies, predicted by

both methods, of about 15%. The same value was obtained for the comparison of SASW

with downhole measurement.

Asten and Boore (2005) compared nine methods to suspension logging, obtaining differences

in the value of Vs30 of up to 20% for all the methods with exception of horizontal to vertical

spectral ratio (HVSR) where the differences ranged from 30 to 60%. Other studies on inter-

method variability are sumarized by Moss (2008) showing the same magnitud of variability.

The variability of invasive versus noninvasive methods could be explained in part due to soil

disturbance, if this was the case it could be argued that the invasive methods are biased.

This biasing would be attributed to strain softening is soft soils, and to strain hardening

in stiffer soils (Moss, 2008). In the absence of significant quantity of data and a study that

correlates them, this hypothesis is still to be confirmed.

2.5.3 Shear-wave Velocity Profile generation

Based on the statistics observed in data from 557 sites Toro (1995) used a gaussian random

field to generate artificial shear-wave velocity profiles. His method proposes an first-order
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auto regressive (also called Markovian) model to generate profiles.

The velocity model operates with a normalized quantity, Zi (Equation 2.15), that assumes

the Vs data is appropriately characterized by a log-normal distribution.

Zi =
ln(Vi) + ln[Vmedian(hi)]

σlnV s
(2.15)

The log-normal velocity distribution and the correlation structure is characterized by a first-

order auto-regressive model as in Equations 2.16, and 2.17; where ρ is the autocorrelation

coefficient of Z, and εi are standard normal independent random variables.

Z1 = ε1 (2.16)

Zi = ρ ∗ Zi−1 +
√

1− ρ2 ∗ εi (2.17)

As stated by Toro (1995) “ ideally, one should remove all bedrock velocities from the data

prior to the analysis”, that is on order to avoid mixing soil Vs with bedrock Vs. To this end,

a maximum likelihood estimation (MLE) method is used to estimate model parameters.

The depth to bedrock and it’s corresponding shear-wave velocity is generated separately

from the shear-wave velocity profile on soil. Depth to bedrock is assumed to have a uniform

distribution, and the bedrock shear-wave velocity distribution is estimated by a log-normal

distribution with median = 1020 m/s and σlnV s = 0.30. The proportion of bedrock velocities

pR in the database is an unknown that is estimated as part of the MLE.

The likelihood function for layers i to n is given by Equation 2.18.

Li = (1− pR) ∗ fS(lnVi|lnV1, lnV2, . . . lnVi−1) + pR ∗ fR(lnVi) (2.18)
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where fS is the probability density function of soil log-velocities, and fR is the probability

density function of bedrock log-velocities. The first-order model produced the best fit to

the data, for this case fS is given as:

fS(lnVi|lnVi−1) =
1√

2π(1− ρ2)σlnV
exp

−1

2

(
Zi − ρ ∗ Zi−1√

1− ρ2

)2
 (2.19)

In Toro’s analyses, information (i.e. shear-wave velocity) for depths with less than five

profiles is not considered in the calculations.

The correlation coefficient, ρ, used by Toro depends on depth and the distance between

the mid points of two consecutive layers, thus making the model non-stationary. Equation

2.20 shows the expression used, where ρd(z) (see Equation 2.21) is a depth-dependent

correlation, and ρh(∆z) (see Equation 2.22) is a thickness-dependent correlation

ρ(z,∆z) = (1− ρd(z)) ∗ ρh(∆z) + ρd(z) (2.20)

ρd(z) =

 ρ200

[
z+z0

200+z0

]b
for z ≤ 200

ρ200 for z > 200
(2.21)

ρh(∆z) = ρ0 ∗ exp(−
∆z

∆
) (2.22)

In Equations 2.20, 2.21, and 2.22 z is the average of the midpoints depths of two consecutive

layers, and h is the difference between these depths. ρ200, z0, b, ρ0, and ∆ are parameters

to be calculated by the MLE procedure. ∆z is the difference between two depths being

considered and is equivalent to h in equations in section 2.4.
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2.6 Profile Uncertainty

The layering system defined after shear-wave velocity testing is performed in different ways

and therefore it has certain level of uncertainty. Toro (1995) proposed a model for artificial

layering, which can be used to account for the testing uncertainty, the model generates

layers from a non-homogeneous Poisson process with parameter λ(z) being a function of

depth z measured from the ground surface. The functional form proposed by Toro is shown

in Equation 2.23, where a, b, and c are coefficients were fitted to match the observed layering

system at 557 California sites.

λ(z) = a ∗ (b+ z)−c (2.23)

A maximum likelihood methodology is used by Toro (1995) to estimate the coefficients a, b,

and c in equation 2.23. The calculated results, for the California database are 1.98, 10.86,

and 0.89 for a, b, and c respectively.

Boore and Thompson (2007) studied the sensitivity of the process of defining the number

and position of layers by a number methods, including different manual methods, and

automatic picking. They concluded that for periods over 0.2 seconds site amplification was

negligibly affected by the layering of the shear-wave model.

2.7 Available Databases

There are three databases that have significant amount of shear-wave velocity profiles, the

Kiban-Kyoshin network (KiK-net) in Japan available at http://www.kik.bosai.go.jp/kik/

(last accessed October 2009), a compilation of shear-wave profiles primarily from California

compiled by Dr. Walter Silva from Pacific Engineering and Analysis (Wills and Silva, 1998),
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and a public database available through Dr. David Boore’s web site http://quake.usgs.gov/ boore/.

The KiK-net data base consists of 629 vertical arrays, where each consists of a 3D ac-

celerometer at surface level and at a base layer (Kokusho and Sato, 2008). Each of these

profiles have an associated shear-wave velocity profile obtained by P-S suspension logging.

This is the only database that has all measurements done by the most precise (note that this

does not necessarily imply accuracy) method used in practice, and that also allows for the

computation of empirical site response through a ratio of surface to borehole ground motion

data. Both these attributes are important strengths of this database when compared to

others.

The PE&A database consists of 1081 shear-wave velocity profiles measured by a variety

of methods, where the most significant was downhole measurement, but including cross-

hole, P-S suspension logging, geology estimations, and CXW (early form of surface wave

dispersion). The strength of this database is the large number of profiles, and hence its

statistical value. Two disadvantages of it is the large number of methods, and the inclusion

of methods with large uncertainties (see 2.5.1), these two characteristics anticipate a larger

uncertainty in the shear-wave velocity profiles than that from other databases.

The USGS database consists of 278 shear-wave velocity profiles measured using downhole

type measurement. This database is part of the compilation made by PE&A. The fact that

a single measurement technique was used and the significant number of sites, makes this

database worth analyzing separately.

2.8 Stochastic Site Response

The incorporation of local site conditions into the estimation of seismic risk is achieved by

means of a frequency -and amplitude (see Borcherdt, 2002)- dependent site amplification

factor given by Equation 2.24, where Ssa(f) is the spectral acceleration at the soil surface,

20



Sra(f) is the spectral acceleration in rock, and f is the frequency.

AF =
Ssa(f)

Sra(f)
(2.24)

The assessment of AF are done using empirical (Borcherdt, 1994) or theoretical (Schnabel

et al., 1972) methods, this work uses both.

Site response affects all characteristics of a ground motion, but among the most significant

for the engineering profession is the spectral acceleration. This will be the GMIM of

main interest throughout this study. In addition to the amplification factor described, the

uncertainty associated with it (or with its product, the spectral acceleration of the soil

motion) is also needed for risk analyses. Often, this uncertainty is modeled by the the

standard deviation of the logarithm of the spectral acceleration σlnSs
a
(f) (see Abrahamson

et al., 2008) because of the assumption that Sa values distribute log-normally.

The site response problem can then be defined as the computation of both Ssa(f) and

σlnSs
a
(f) for given values of Sra(f) and σlnSr

a
(f) (Bazzurro and Cornell, 2004a). The inputs

to a site response analysis are the soil profile (i.e. layering), the soil properties, and the

input ground motion in terms of its spectral acceleration. It is reasonable to assume that

both the median values and the uncertainties in the input parameters have an influence on

the ground motion at the soil surface.

The variation of the soils shear strength and damping due to cyclic loading has an important

effect on the site amplification at a site. Darendeli (2001) used dynamic laboratory tests

on “intact” soil samples from 20 sites to develop mean values for both normalized modulus

reduction curves, and material damping curves along with their associated uncertainty. The

ability to handle uncertainty within this curves, allows for their proper use in probabilistic

seismic hazard analysis.
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The implementation of site effects into PSHA has been formalized by Cramer (2003), and

can be performed by the procedures presented by Bazzurro and Cornell (2004b). Bazzurro

and Cornell (2004a) showed that a relatively small number of input motions are needed to

obtain stable estimates of the mean and standard deviation of the amplification factor. The

problem with this approach is that when it is used in PSHA to obtain hazard curves for

soils, the exceedance rates are unknown, inconsistent across frequencies, and generally non-

conservative (Bazzurro and Cornell, 2004b). In summary, the application of deterministic

site response analyses superposed on ground motion predictions on rock results in ground

motion estimates that lack an appropriate statistic characterization.

Bazzurro and Cornell (2004b,a) proposed a methodology for obtaining AF that are appli-

cable to seismic hazard analyses. Bazzurro and Cornell’s methodology provides a mapping

between Ssa(f), Sra(f), σlnSs
a
(f), and σlnSr

a
(f) that is statistically rigorous based on a mix-

ture of site response analyses and statistical regression.

Bazzurro and Cornell (2004b) proposed two alternatives for the AF and PSHA integration.

The first method is to convolve the AF , obtained from a site response analysis, with a site

hazard curve for a reference site (i.e. rock outcrop or bedrock). The second procedure

modifies the statistical moments of the estimated ground motion intensity at a rock level

to account for site effects. The Bazurro and Cornell methodology constitutes the bases of

the methodology proposed in this study and is discussed further in Chapter 3. Baturay

and Stewart (2003) present an alternative empirical methodology to integrate site response

and hazard analyses.

Monte Carlo Simulation

Monte Carlo simulations (MCS) are used in many fields, and although computation in-

tensive are considered to provide the exact solutions for problems involving randomness

of its parameters. These methods were considered computationally too expensive in the

past, and depending on the application (e.g. including site response in each iteration of a
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probabilistic seismic hazard analysis) they still are, but the increasing processing capacity

of modern computers is making them more readily available.

In site response analysis, the use of MCS has been used to study the effects of stochas-

tic soil and input ground motion properties on surface ground motions (Rodriguez-Marek

et al., 2010). Rahman and Yeh (1999) used a stochastic finite element method to conduct

a parametric study on the effects of stochastic ground motion and soil stiffness on site re-

sponse, concluding that ground motion variability has a greater effect, the same conclusion

has been reached in other studies (see Bazzurro and Cornell, 2004a).

Recently, Douglas et al. (2009) presented a method, based on MCS, to use available in-

formation on the site of interest to reduce the uncertainty associated to site response, the

method assumes that all conceivable variables that affect site response are independent

from each other. These variables include geological information, standard penetration test

(SPT ), profile depth (to bedrock), crustal structure, near surface Vs, and topography.

While the idea of reducing uncertainty is very important (the same motivation for the

proposed study), the independence assumption may not be warranted and could lead to

errors.

Random Vibration Theory

Random vibration theory (RV T ) has also been used to perform site response analysis.

Initially used in seismology to predict ground motion parameters as a function of source

distance and magnitude (e.g. Boore, 1983), the method uses a Fourier amplitude spectrum

(FAS) to characterize a ground motion, and uses RV T compute response spectra, PGA,

and PGV . The inclusion of site response (Rathje and Ozbey, 2006) implies that the FAS

corresponding to bedrock is modified by the near surface soil resulting in a surface FAS

from where the same ground motion parameters can be obtained.

The RV T method has the advantage of producing median response spectra with a single
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analysis, and if the input FAS is appropriately selected this results match the median value

of a Monte Carlo simulation. One of the limitations of the RV T site response procedure is

that no time history is produced. The advantage of obtaining the median response spectra

in one step is also viewed as a disadvantage when modeling uncertainty due to the near

surface soil, because of its ability to compute site response for the equivalent of a set of

input ground motions in one step, the uncertainty associated solely to the soil variability,

and its nonlinear behavior, the surface uncertainty in response spectra would be artificially

reduced.
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Chapter 3

Framework for site-specific PSHA

In current practice, structures are designed using pseudo-acceleration spectra, Sa(f), as an

index for their seismic demand. These spectra are intended to have equal probability of

exceedance over a set time interval at all periods. This is called a uniform hazard spectrum

(UHS).

However, code-prescribed design spectra are provided only for V s30-based site classes, which

are obtained by scaling a uniform hazard spectrum for a reference site by an amplification

factor. The resulting spectra loses the uniform hazard characteristics. An alternative

approach is to scale a uniform hazard spectrum for a reference site using site response anal-

yses. Various authors have proposed methodologies to rigorously incorporate site response

in a PSHA such that the uncertainty is properly propagated from the input to the output

ground motion, and hence the resulting spectra maintains its uniform hazard characteristics

(e.g. Cramer, 2003; Bazzurro and Cornell, 2004b).

The uncertainty associated with surface ground motion intensity estimates, and hence with

the propagation of the uncertainty in ground motion intensities from a reference site to a

specific site of interest, is of great concern within the framework PSHA.
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This chapter describes the framework for two alternative methodologies to compute site-

specific spectra that incorporate measurement uncertainty.

3.1 Methodology

The Bazzurro and Cornell (2004a,b) framework for including site response into PSHA is

herein presented and used throughout this study to introduce non-linear site response effects

into site-specific hazard assessment. The amplification factor, AF was given in Equation

2.24, is mapped as a function of Sra(f) in a log-log space as:

lnAF (f) ≈ c0 + c1 ∗ (lnSra(f) + εlnSr
a(f) ∗ σlnSr

a(f)) + εlnAF (f) ∗ σlnAF (f) (3.1)

where c0, and c1 are model coefficients, lnSra(f) is the median value of the logarithm of

the spectral acceleration on a bedrock site (Bazzurro and Cornell, 2004b, assumed this

to be reference bedrock site, in this dissertation a borehole-bedrock will be used instead),

εlnSr
a(f) and εlnAF (f) are standard normal variables (e.g. εlnSr

a(f) N(0, 1)), σlnSr
a(f) is the

standard deviation of the logarithm of the spectral acceleration in rock, and σlnAF (f) is

the standard deviation of the AF . However, as will be discussed in Chapter 5, there are

alternative ways to compute the σlnSr
a(f) value that better account for input uncertainty in

site-specific analyses.

The model coefficients c0, and c1 are obtained from a fit in log-log space of results of site

response analyses (Bazzurro and Cornell, 2004a). The methodology is not constrained to

any single site amplification prediction code.

Combining Equations 2.24 and 3.1, the median estimate of the log-spectral acceleration in

soil, Ssa(f), can be estimated as:
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lnSsa(f) ≈ c0 + (c1 + 1) ∗ lnSra(f) (3.2)

The standard deviation of Ssa(f) is expressed as:

σlnSs
a(f) ≈

√
(c1 + 1)2 ∗ σ2

lnSr
a(f) + σ2

lnAF (f) (3.3)

In the next section, some of the assumptions inherent to this approach are discussed.

3.1.1 Issues with the propagation of uncertainty

Bazzurro and Cornell’s methodology to propagate uncertainty from a rock site to a soil site,

accounting for the site amplification effect and its associated uncertainty, assume that the

standard deviation of the logarithm of the amplification factor, σlnAF (f), is independent of

both the logarithm of the rock pseudo-acceleration, lnSra(f), and its standard deviation,

σlnSr
a(f). Both these assumptions will be tested in Chapters 4 and 5.

Estimation of lnSra(f), and σlnSr
a(f) from currently available GMPE (e.g. Boore and Atkin-

son, 2008) is not appropriate for site specific cases in which Equation 3.3 is applied, because

in such case the site-to-site variability embedded in the estimation of lnSra(f) would be erro-

neously convolved with the uncertainty in the AF . Most GMPE are the result of regressing

data from earthquakes that occurred in a wide range of locations and recorded at various

sites. By using these equations in seismic hazard analyses we are assuming that the vari-

ability observed in the combined data set (parameterized as described in Section 2.3) is

the same as that in a single site, this is known as the ergodic assumption (Anderson and

Brune, 1999). As shown in Chapter 5, the variability of intensity estimates for site-specific

cases are much lower than those invoking the ergodic assumption.
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3.1.2 Proposals for site-specific intensity estimates

The discussion above evidences the need for different methodologies for site-specific ground

motion intensity estimates. Two alternatives are herein proposed to this end.

Method 1 The first proposal for site-specific estimation of ground motion intensities is

shown in Figure 3.1. The first step of the proposed method, makes use of the GMPE

developed in Chapter 5. Note that the GMPE used to select lnSra(f) and σlnSr
a(f) is for

a single site, that is the median model is parameterized as described in Section 2.3 and

includes the repeatable site effect, which reduces the value of σlnSr
a(f) and eliminates part

of the bias from the median estimate.

In order to be able to estimate a repeatable site effect, an instrument must be located at

a bedrock site over a sufficiently long period of time such that it would permit a stable

estimate of both the median value of the ground motion estimated at the site, and its

standard deviation (that is, the single-station standard deviation).

For the case where the available recordings are on bedrock and the hazard analysis is being

conducted on soil deposit, site amplification analyses must be conducted. The method

of Bazurro and Cornell can be used to capture nonlinearity. The selection of compatible

earthquake records for the site response analyses can be achieved by a number of available

methods (e.g. Kottke and Rathje, 2008; Baker and Cornell, 2006), and typically involves a

suite of about 7 to 10 records (Rathje et al., 2010), the selected records are linearly scaled

and/or spectrally matched, the objective is to reproduce the target spectrum median and

standard deviation.

Step three performs the site response analyses. The methodology of Bazurro and Cornell

can be used to introduce nonlinear effects. The random field models presented in Chapter

4 can be used to introduced uncertainty in the measured shear wave velocity profiles. The
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uncertainty has to be compatible with the anticipated coefficient of variation for the method

used to measure the shear-wave velocity profile (see Table 2.1). Site response analyses can

be performed with any available method. Epistemic uncertainty on the site response model

can be included by considering different site response models within a logic three approach.

The method proposed is theoretically rigorous but of limited use because there are very few

sites for which sufficient data is available to constrain GMPE that include the repeatable

site effect. It is not current practice to rely on measurements at a given site for predicting

seismic hazard. However, considering the length of time that is involved in the planning

and design of critical facilities, it is not unreasonable to consider the option of installing

instruments to measure repeatable site effects at a design site. Moreover, since site response

can be predicted, a single, well placed bedrock instrument over a region can serve as a

reference site for input to site response analyses.

It is important to note that should a station be located at the site of interest, then the

repeatable site effect would be captured at the site and site response analyses would be

needed only to account for deviations from the median due to non-linear effects. In such a

case, the measured standard deviation at the site (the single-site standard deviation at the

design site) would constitute a lower bound for the standard deviation that must be used

in a PSHA. Values of the single-site standard deviation are studied in Chapter 5.
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Obtain a set of Ground Motions on
bedrock that span the possible scenar-
ios in PSHA (e.g. M-R combinations)

Generate random profiles for the
C. of V. associated with the mea-
sured shear-wave velocity profile

Function of qual-
ity and quan-
tity of testing

Perform site response analy-
ses on the generated profiles
with the set of ground mo-

tions to obtain co, c1, and σAF

Perform PSHA using Ergodic µB

and single-site σBss, and use Baz-
zurro and Cornell’s methodology to
modify µB into µG, and σBss into σGss

Resulting lnSsa(f)

includes an estimate
of the site term

Figure 3.1. Flowchart for estimation of site-specific surface ground motion inten-
sity
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Method 2 The second method proposed for site-specific PSHA considers the more gen-

eral case in which no recordings are available at the site of interests. However, since the

analysis is being conducted at a specific site, the ergodic assumption implicit in GMPE

derived from regional data sets should be removed, at least for the components that are

predictable. In this method, it is assumed that site response is predictable through analytic

means (e.g. a site response analysis). Prior to describing the method, it is necessary to

describe a breakdown of the uncertainty in GMPE. A more rigorous presentation of this

breakdown is described in 5, but for the interest of clarity, the breakdown is summarized

herein.

It will be assumed that it is possible to predict ground motion at the soil-rock interface.

Chapter 5 uses the KiK-net database to develop such predictions. Therefore, we express

the ground motion prediction at the borehole as

yB = µB + δWB + δBB (3.4)

where, yB is the natural logarithm of the pseudo-spectral acceleration at the borehole, µB

is the median estimate of yB, δWB is the intra-event residual, and δBB is the inter-event

residual. Capital letter W is used to indicate that the residuals are measured within a

given event, capital letter B is used to indicate that the residuals are measured between

different events. The standard deviation of the random variables that vary within the same

event (i.e. earthquake) will be called φ, the standard deviations of the random variables

that vary between events will be called τ , and the letter σ is reserved for total uncertainty.

The ground motion at the ground surface can then be predicted by

yG = µB + δWB + δBB + µAMP + ∆AMP (3.5)
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In this equation, the term µB +µAMP constitutes the median ground motion at the ground

surface and can be obtained from regression analysis of surface ground motions using a pa-

rameterization for site conditions (e.g. V s30 and h800). The term ∆AMP is the remaining

variability in the amplification factor and can be broken down into

∆AMP = δS2SAMP + δAMP (3.6)

Where delta δS2SAMP is a random variable that represents the variability between various

sites that share the same parameterization, and δAMP is a random variable that represents

the residual variability at a single site. The nature of this residual variability is important

to the proposed method. The residual variability can be due to:

1. differences in amplification due to differences in phasing of the input motion

2. soil nonlinearity

3. site response differences due to non-vertically propagating waves.

4. 2D or 3D effects, such as basin response or topographic amplification

Items 1 and 2 are due to one-dimensional effects and can be captured analytically. Items 3

and 4 are not predictable through 1D analysis.

When a site-specific PSHA is conducted, the δS2SAMP random variable takes a given

value (i.e. a deterministic value). In absence of additional information at the site (e.g.,

if only V s30 is given), it is not possible to constrain this deterministic value and delta

δS2SAMP has to be considered a random variable. However, if additional information at

the site is available, such as additional details on the Vs profile that allow for a site response

analysis, then the value of δS2SAMP can be predicted, with a possible uncertainty on the

prediction. With this consideration, Equation 3.5 can then be rewritten as

32



yG = µB +

[
µAMP + δ̂S2S

AMP
]

+DAMP + δWB + δBB + δAMP ∗ (3.7)

The terms δ̂S2S
AMP

and DAMP represent analytical estimates that correspond to the

deviation of the predicted amplification from the mean amplification (µAMP ) and its un-

certainty. DAMP is a random variable with zero mean and standard deviation φDAMP

The remaining uncertainty related to the residuals δAMP ∗ is not known a priori but it is

bounded to be lower than the uncertainty from δAMP because part of the effects captured

by δAMP go into the DAMP term. The term, however, is capped by the δAMP measured

at single stations (Chapter 5) and limited below by zero, if the site is devoid of non 1D ef-

fects. Preliminary studies (figures 4.5 and 4.6 from Rodriguez-Marek and Montalva, 2010)

indicate that site response analysis do capture most of the δAMP , hence the zero bound

is realistic for some sites. In a PSHA analysis, this choice becomes an issue of epistemic

uncertainty.

The GMPE developed in Chapter 5 assumes linear site response. To introduce nonlinear

site response, the methodology of Bazzurro and Cornell (2004b) can be used. In this case,

however, the uncertainty of the input motion has to be modified to reflect the breakdown

of uncertainty shown Equation 3.7. A switch from the notation used in this dissertation to

that used by Bazurro and Cornell is given below.

• lnSsa(f) → yG

• lnSra(f) → yB

• σAF → φS2S

• σlnSr
a(f) → σB

Note that φδAMP ∗ has to be added to the final uncertainty. Its value must be chosen

arbitrarily or made to vary within a logic tree analysis. The uncertainty in the input
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motion (σlnSr
a(f)) has to be the ergodic uncertainty at bedrock (σB) because the bedrock

term (δB2B) can not be estimated a priori in the analysis. Nevertheless, (σB) is lower

than its counterpart at the surface (σG, see Figure 5.51), this is because an important part

of the site response variability is included in σG.

The proposed methodology is shown in Figure 3.2. As indicated for Method 1, the choice

of input motion set for the site response analyses has to reflect the statistics of the input

motion, yB, as predicted by a GMPE for bedrock. Again, the median value can be

estimated with only a few records (the recommendation of Rathje et al. (2010) is 7 records,

of Bazzurro and Cornell (2004b) is 5 to 10). The uncertainty of the amplification factor

necessitates a larger number of records. In the example given in Rodriguez-Marek and

Montalva (2010) 14 records were used to obtain a stable estimate of the standard deviation

of the amplification factor, that is the AF does not change with increasing number of

records.

The significance of the proposed method is that it allows for two important contributions:

• Replacing the prediction of the amplification term given by the GMPE with a site-

specific prediction (e.g., bias reduction)

• A possible reduction in uncertainty that would result if φDAMP + φδAMP ∗ is lower

than φδAMP + φS2SAMP . Chapter 5 looks at the breakout of residuals and considers

the contribution of each residual.

A more subtle contribution of the proposed method is that the variability in site response

computed analytically, DAMP may be bounded by physical considerations of site response

(e.g. soil nonlinearity), while there are no statistical basis to propose such bound on the

random variables computed from the ground motion data.
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Obtain a set of Ground Motions on
bedrock that span the possible scenar-
ios in PSHA (e.g. M-R combinations)

Generate random profiles for the
C. of V. associated with the mea-
sured shear-wave velocity profile

Function of qual-
ity and quan-
tity of testing

Perform site response analy-
ses on the generated profiles
with the set of ground mo-

tions to obtain co, c1, and σAF

Perform PSHA using Ergodic µB

and σB, and use Bazzurro and
Cornell’s methodology to mod-
ify µB into µG, and σB into σG

Resulting lnSsa(f)

includes an estimate
of the site term

Figure 3.2. Flowchart for estimation of site-specific surface ground motion inten-
sity
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Chapter 4

Uncertainty in Site Response

Analyses

The significance of site response was described in section 2.1. Site response analyses can

have varying degrees of sophistication. For routine projects, code-defined factors that are

based on site classification schemes can be used to modify mapped ground motion values.

Alternatively, as described in section 2.3 site effects can be captured using ground motion

prediction equations (GMPE) that incorporate site response through simple parametriza-

tion of site conditions (Abrahamson et al., 2008). The latter approach has the advantage

that GMPE provide estimates of both the median value of a ground motion parameter and

a quantification of its aleatoric uncertainty (e.g., the standard deviation value of the ground

motion parameter).

When the shear-wave velocity (Vs) profile at a site is known or can be estimated, site-specific

estimate of ground motions can be computed using site response analysis (e.g. Cramer,

2003). Such analyses have been performed routinely in engineering practice. When ground

motions estimates are needed for PSHA, it becomes necessary to estimate both the median

36



and the uncertainty of ground motions at the surface of a given site. This implies that

site response analyses must be conducted in a stochastic fashion, and both epistemic and

aleatoric uncertainty of input parameters must be computed. For this purpose it becomes

imperative to have a model that quantifies the uncertainty of Vs profiles (e.g. Asten and

Boore, 2005; Brown et al., 2002; Marosi and Hiltunen, 2004; Martin and Diehl, 2004; Moss,

2008).

Uncertainty in the shear-wave velocity of the soil profile can be quantified by a random field

model (e.g. Toro, 1995). This chapter describes the development of a random field model

using the KiK-net database to constrain the parameters of the model. Once the input

variability is constrained, a Monte Carlo simulation approach can be used to compute how

input variability propagates to the estimates of site response.

4.1 Random Field Model for Shear Wave Velocity

Point-estimates of variability are not sufficient to quantify the statistical distribution of a

spatially varying quantity. Spatial variability models for geotechnical properties have been

presented by various authors (e.g. Fenton, 1994; Phoon and Kulhawy, 1999). EPRI (1993)

presented a model for generating Vs profiles based on statistical data of recorded profiles.

This type of model can be used to generate artificial Vs profiles. Random profile generators

can be used in conjunction with site response analyses to obtain the epistemic uncertainty

of site response when site profile data is limited.

The objective of this section is to present five models for the artificial generation of Vs

profiles. The first model is based on the EPRI (1993) model. The second and third models

are a simplification of the EPRI model. The last two models are based on the concept

of Markov Chains. The model parameters are constrained using the KiK-net database

(Kiban-Kyoshin, 2010), a large database of Vs profiles from Japan. The appropriateness
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of the models is judged by comparing the spatial variability of the measured shear-wave

velocities with the spatial variability of sets of artificially generated Vs profiles. In addition,

the appropriateness of the proposed models is evaluated in terms of their ability to simulate

the one-dimensional site response of the original data set. For this purpose, site response

statistics are computed using subsets of the measured Vs and artificially-generated sets of

profiles.

4.1.1 Existing Methodologies

The most widely used random field model for Vs profiles is the model presented in EPRI

(1993), and extended by Toro (1995). The model defines independently the properties of the

bedrock, the profile layering, and the Vs variation with depth. The bedrock depth is defined

by a uniform distribution while the bedrock Vs is defined by a log-normal distribution that

is independent of the Vs of the soil overlying the bedrock. The profile layering is defined by

a non-homogeneous Poisson process (e.g. the process’ parameters are depth dependent).

Finally, the Vs model uses a first order non-stationary auto-regressive Gaussian process to

reproduce the spatial statistics of the Vs at the mid point of each layer. Details of this

model are given later in the paper.

Only few other models to reproduce Vs profiles have been proposed. Notably, Douglas

et al. (2009) proposed a model that is based on the quarter-wavelength method and uses

velocity gradients to generate Vs profiles. This model is focused on shear-wave velocities

at large depths (of interest to seismologists). Since the focus of this study is on the shallow

Vs profile, the Douglas et al. model will not be included in comparisons with the proposed

models.
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4.1.2 Spatial statistics of the KiK-net database

The KiK-net database is a ground motion database located in Japan, consisting on more

than 600 stations. Each station in this network has two 3-component accelerometers, one at

the surface and another at depth (most sensors are located at a depth of -100m or -200m).

The instruments have a 24 bit analog-to-digital converter with a sampling frequency of 200

Hz (Fujiwara et al., 2004). Vs profiles at each of the ground motion stations were obtained

using PS-logging Vs measurements.

Shear-wave velocity distribution of the measured profiles are herein analyzed differentiating

it from the shear-wave velocity at the instrument depth, statistics for the latter are given

in section 4.1.2.2.

4.1.2.1 Soil Statistics and Correlation Structure

The statistics of the Vs profiles of the KiK-net database are shown in Figure 4.1 for V s30-

based subsets of the KiK-net database. These subsets are selected because V s30-based site

classifications have been adopted by various national codes (e.g. IBC, 2006; CEN, 2003).

The plots on the left show the median Vs value with a one-standard deviation band. Spatial

correlation was calculated for all depths but is shown only for three arbitrary depths (10,

50, and 90 m). The correlation function shown in Figure 4.1 is the Pearson’s correlation

coefficient between all the natural logarithm of Vs values at the depth of interest (i.e. z = 10,

50, and 90 m) and the natural logarithm of Vs at a lag distance ∆z (e.g. at a depth of

z + ∆z).

The standard deviations of the natural logarithm of Vs for the entire database and Vs30

based subsets are compared in Figure 4.2. As expected, the statistics of the entire database

have more variability than the statistics of subsets based on Vs30 based site classes, in

spite of the fewer data on each class category. Differences are also observed on the spatial
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(a)

(b)

(c)

Figure 4.1

40



(d)

Figure 4.1. Shear-wave velocity statistics and correlation coefficients for the
entire data set and Vs30 based subsets. 4.1a entire database, 4.1b site classes A
and B (Vs30 > 760 m/s), 4.1c site class C (760 m/s > Vs30 > 360 m/s), and 4.1d

site class D (360 m/s > Vs30 > 180 m/s).

correlation (Figure 4.1). Note that the spatial correlation of the site classes (Figures 4.1b

to 4.1d) is "noisier" than the spatial correlation of the entire data set; however, all subsets

show strong spatial dependence, suggesting that an auto-regressive model (e.g. a model

where properties at depth i are a function of properties at depth i-1) should be appropriate

for random profile generation. It is interesting to note that shallow shear-wave velocities

(e.g. at z ≤ 10 m) are weakly correlated with deeper layers even for relatively short lag

distances.

The lower standard deviations observed in the Vs30-based site classes, along with strong

correlation coefficients between different profile depths indicate that Vs30-based site clas-

sification is an adequate proxy for Vs variability at all depths in the analyzed database. A

similar observation was made by Toro (1995), who compared the statistics of Vs profiles

for different site classes from a California data set.

Figure 4.3 shows the correlation coefficient of shear-wave velocities between two depths

separated by lag-distance ∆z and considering only profiles where those two depths are in
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Figure 4.2. Comparison of the standard deviation of shear wave velocity for the
entire database and for Vs30-based subsets.
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Figure 4.3. Shear-wave velocity correlation coefficients considering only lag dis-
tances that are one layer away from each other. Initial depths of 10, 50, and 90

meters are shown.
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Figure 4.4. Shear-wave velocity correlation coefficients considering only lag dis-
tances that are two layers away from each other. Initial depths of 10, 50, and 90

meters are shown.
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Table 4.1. Half-space Statistics

Site Class Rock depth
log-normal
parameters

Shear wave ve-
locity (m/s)

V sR
1 beta

distribution
parameters

Correlation coefficient
between V sR and in-
dicated parameters

µ σ µ σ α β Depth V s30 V slast
2

Generic 4.33 0.66 1626 704 1.6 2 0.01 0.44 0.77
Sites A + B 4.2 0.67 2196 562 1.61 1.51 -0.09 0.27 0.63

Sites C 4.27 0.62 1691 629 1.56 2.07 -0.05 0.26 0.77
Sites D 4.53 0.69 1310 694 1.04 2.18 0.29 0.02 0.75

1 Shear-wave velocity of the bedrock layer
2 Shear-wave velocity of the deepest soil layer

contiguous layers (i.e., ∆Layer = 1). Observe that the correlations are strong. Figure 4.4

shows the same correlations but only considering cases where there is a two-layer separation

(∆Layer = 2). Note that the correlation significantly decreases when considering two layers

separation. Note that while correlation between two depths decreases with lag distance

(Figure 4.1), correlation seems to be constant when layer separation is considered (Figures

4.3 and 4.4). A functional form to model this dependence will be shown below.

4.1.2.2 Rock Statistics

Site response analyses require a characterization of the material below the soil column.

This material is commonly assumed to constitute an elastic half space (elastic material

that continues infinitely below a given depth) in site response modeling. Based on an

analysis of the KiK-net data, it appears convenient to model the half space separately from

the soil column. Table 4.1 shows the statistics of the half-space. Observe that Vs at and

below the instrument depth (which corresponds generally to bedrock, but in some cases is

an arbitrary depth at which profiling was stopped), is well correlated with Vs at the deepest

measured layer, but very poorly correlated with depth.
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It is commonly assumed that shear-wave velocities at a given depth can be modeled by

a log-normal distribution. This is the case of the studies by Toro (1995, 2006); EPRI

(1993); Andrade and Borja (2006). This hypothesis was tested using a χ2 goodness-of-fit

test at 5% significance level. Site classes A and B were combined for the analysis due

to the lack of sufficient data for individual analyses, the results show that a log-normal

distribution fits the data but only up to a depth of about 30 meters; between 30 and 60

meters a normal distribution better fits the available data; beyond 60 meters either normal

or uniform distributions are appropriate, but the amount of data is not sufficient to make

such fits reliable.

Figure 4.5 shows a formal assessment of the goodness-of-fit of the log-normal distribution

to the Vs at each depth. The p-values were calculated using a χ2 test for most of the

cases and a Lilliefors test for small samples (Conover, 1980). Observe that the log-normal

distribution is poorly suited to the data for depths between 30 and 70 meters for sites classes

C and D. Since the overall data set is controlled by these site classes, the lumped data set

also has a poor fit between 30 and 70 meters. However, an examination of the cumulative

distribution functions (CDF’s) for that depth range reveals a close match between the

log-normal distribution and the data in all regions except the right tail.

4.1.3 Proposed Models

4.1.3.1 Modified EPRI

The EPRI (1993) model has been modified to match the characteristics of the KiK-net

database. Let the natural logarithm of Vs as a function of depth be defined by a random

field V(z) where z is depth. Assume that

V (z) = t(z) + ε(z) (4.1)
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Figure 4.5. p-values versus depth, for the hypothesis that the Vs values fit a log-
normal distribution at a given depth. At 5% significance level, all p-values greater

than 0.05 are considered to approach a log-normal distribution.
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where t(z) is the median value of the logarithm of Vs, and ε(z) is a Gaussian random process

with zero mean, standard deviation σε(z) and auto-correlation ρ(∆z, z) given by:

ρ(z,∆z) = (1− ρS(z)) ∗ exp(−∆z/κ) + ρS(z) (4.2)

where ρS(z) and κ are given by

ρS(z) = ρ0 − exp(−(z − z0)/b) ≥ 0 (4.3)

κ = κ0 + (κmax − κ0) ∗ (z/zmax) ≥ 0 (4.4)

where ρ0, z0, b, κ0, κmax, and zmax are fitting parameters, and where κ is limited to κmax

(κ ≤ κmax). The parameters obtained from a fit to the entire KiK-net data set and from

separate fits to subsets based on Vs30 site categories are shown in Table 4.2. The parameters

were obtained using the Levenberg-Marquardt algorithm for nonlinear regression method

implemented into Matlab.

The geostatistical model above can be used in conjunction with a routine to generate

artificial Vs profiles that replicate the statistics of the underlying data. The first step for

generating artificial profiles is to determine the depth to the bottom of the profile. By

definition, the bottom of the profile corresponds to the location of the elastic half space in

site-response analyses. For the KiK-net database, the depth to the bottom of the profile

follows a log-normal distribution (see Section 4.1.2.2). Parameters of the log-normal model

for the KiK-net database are shown in Table 4.2.

After the depth to the bottom of the profile is defined, the next step consists in the gen-

eration of the layering for each profile. This process is identical to that presented in 2.6,
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Table 4.2. Parameters for Non-stationary Correlation Function

ρ0 z0 b κ0 κmax zmax
Generic 0.5532 -5.0031 5.4041 -19.00 83.9813 35

Sites A & B 0.8860 1.6252 9.5663 3.16 5.2920 43
Site C 0.5756 7.3486 4.2589 -8.1 77.5863 50
Site D 0.8143 38 12.3571 -105.00 58.4465 16.6

Table 4.3. Coefficients for layering model, 95% confidence interval in parenthesis

a b c
Generic 0.34 (-0.08; 0.75) 2.39 (-4.08; 8.87) 0.58 (0.27; 0.89)

Sites A & B 0.1 (0.001; 0.2) -1 (-1.57; -0.43) 0.01 (-0.25; 0.27)
Site C 0.24 (-0.08; 0.57) 1.27 (-5.69; 8.22) 0.46 (0.1; 0.81)
Site D 0.18 (-0.005; 0.36) 1.4 (-7.24; 10.11) 0.33 (0.08; 0.58)

briefly repeated herein for clarity. This is accomplished by using a non-stationary Poisson

model with parameter λ−1, where λ is a model parameter that represents the frequency

of layer transitions at each depth. Figure 4.6 plots the number of layer transitions as a

function of depth. A relationship for λ as a function of depth that fits the data shown in

the figure is given by:

λ(z) = a ∗ (b+ z)−c (4.5)

Table 4.3 shows the regression results for the coefficients of Equation 4.5 on each category,

and Figure 4.6 shows the fit of Eq. 4.5 for the generic case (i.e. the entire database). Once

the layering is generated for each profile using Eq. 4.5, the Vs values are generated using

the statistical model given in Eqs. 4.1 through 4.4. Rock Vs values are generated using

the mean and standard deviations from Table 4.1, and are correlated to the Vs value of the

last layer of the profile with the corresponding correlation coefficients given in Table 4.1.

Figure 4.7 summarizes the process.
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Figure 4.6. Rate of layer transitions versus depth for the generic case. This
parameter, λ, can be understood as the reciprocal of layer thickness for each depth.
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Figure 4.7. Flow chart of the generation procedure for the modified EPRI model.
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Table 4.4. Correlation Coefficient for Stationary Models

Category ρ(∆L = 1) ρ(∆L = 2)

Generic 0.85 0.69
Sites A & B 0.67 0.88

Site C 0.83 0.65
Site D 0.71 0.53

4.1.3.2 One Layer Lag Stationary Gaussian Model

The strong correlation of Vs values between adjacent layers (Figure 4.3) indicates the suit-

ability of a model that uses only this correlation as its correlation structure (e.g., a station-

ary model).

Table 4.4 shows the depth-independent correlation values for each category. Profile gener-

ation follows the same procedure as the Modified EPRI model.

4.1.3.3 Two Layer Lag Stationary Gaussian Model

Figure 4.4 shows the correlation structure resulting from considering only layers that are

separated by one intermediate layer (two layer lag). Note that the correlation coefficients

are significantly lower than those for a one layer lag (Figure 4.3). The correlation structure

could be also modeled using a constant (e.g. depth-independent) correlation coefficient.

Using a normal conditional probability density function (pdf), random profiles can be gen-

erated such that the correlation between two adjacent layers, and layers that are separated

by one layer is always constant, ρ∆L=1 and ρ∆L=2 respectively. For any given ln-Vs value

can be generated using the covariance matrix in Eq. 4.6 and a normal pdf with mean and

standard deviations given by Eqs. 4.7 and 4.8.
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C =


σ(i)2 ρ∆L=1 ∗ (σ(i) ∗ σ(i− 1)) ρ∆L=2 ∗ (σ(i) ∗ σ(i− 2))

ρ∆L=1 ∗ (σ(i) ∗ σ(i− 1)) σ(i− 1)2 ρ∆L=1 ∗ (σ(i− 2) ∗ σ(i− 1))

ρ∆L=2 ∗ (σ(i− 2) ∗ σ(i)) ρ∆L=1 ∗ (σ(i− 1) ∗ σ(i− 2)) σ(i− 2)2

 . (4.6)

µ∗ = µi + C(1, 2 : 3) ∗ C(2 : 3, 2 : 3)−1 ∗ ([lnV s(i− 1)lnV s(i− 2)]− [µi−1µi−2])T (4.7)

σ∗ = C(1, 1)− C(1, 2 : 3) ∗ C(2 : 3, 2 : 3)−1 ∗ C(2 : 3, 1) (4.8)

This procedure can be used iteratively to generate all the needed shear-wave velocity values.

4.1.3.4 Markov Chain

A Markov Chain based model is proposed for the generation of random profiles. The model

is constrained by the statistics and correlation structure of the underlying database (the

KiK-net database in this case). The first step is the generation of Vs values adequately

correlated with layer depth. The second step is the assemblage of the correlated pairs into

random Vs profiles. In this study, the layer depth was chosen to represent the depth to the

bottom of the layer.

This model uses the fact that shear-wave of consecutive layers in the KiK-net database are

strongly correlated. The generation of the correlated Vs values and their corresponding

layer depths is done by means of rank correlation coefficients (RCC), as opposed to simply

using a linear correlation coefficient (ρ). The selected RCC for this study was Kendall’s τ .

The procedure for the generation of the correlated variables consists of the following steps:

1. Compute the RCC (i.e. Kendall’s τ) for the data set.
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2. Transform that coefficient to Pearson’s ρ using

ρ = sin(τ ∗ π/2) (4.9)

3. Generate correlated Gaussian random variables using the correlation coefficient com-

puted in (2).

4. Obtain the CDF for each variable, which by definition will lead to two uniform dis-

tributions.

The CDF’s obtained in (4) can be inverted to obtain the marginal distributions of layer

depth and Vs constrained by the empirical Vs and layer depth distributions. The marginal

distribution for shear-wave velocities in the KiK-net database can be modeled by a log-

normal distribution, with mean and standard deviation of the associated normal distribu-

tion of 6.2 and 0.84 respectively. The marginal distribution for layer depth can be modeled

by a log-normal distribution, with mean and standard deviation of the associated normal

distribution of 3 and 1.3 respectively. Goodness of fit tests confirmed this fit to be appro-

priate. The result of this approach is a set of randomly generated pairs of Vs and layer

depth that follow the same correlation structure as the original database (Figure 4.8)

Once pairs of layer depth and shear wave velocity are generated, these pairs can be assem-

bled into realistic Vs profiles. This is achieved by first creating depth and Vs bins that span

the entire range of possible Vs and depth values. A state is then defined as a combination

of a Vs bin and depth bin. As a simple example, we could define depth and Vs bins as:

depth bin 1 (d1) = [0, 50]

depth bin 2 (d2) = [50, 150]

Vs bin 1 (V1) = [360, 560]

Vs bin 2 (V2) = [560, 760]
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Figure 4.8. Correlation between layer depth and shear-wave velocity for the entire
KiK-net database.

All possible states (i.e. d1V1, d1V2, d2V1, and d2V2) define the state vector (Pi), which

in this simple example would be a 4 by 1 vector. For a given layer (characterized by a given

Vs and layer depth), the state vector takes a given value. In this example, the state vector

for layer i, denoted by Pi, would have 3 zeros and a 1 in the position that corresponds to

the Vs-depth combination of layer i. A transition matrix can then be defined to transition

between the state for one layer to the state of the adjacent layer:

Pi = T ∗ Pi−1 (4.10)

where P is the state vector and T the transition matrix. In matrix form Eq. 4.10 takes the

form:
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

state1

state2

...

staten


︸ ︷︷ ︸

Pi

=



P (state1|state1) P (state1|state2) · · · P (state1|staten)

P (state2|state1) P (state2|state2) · · · P (state2|staten)

...
...

. . .
...

P (staten|state1) P (staten|state2) · · · P (staten|staten)


︸ ︷︷ ︸

T

∗



state1

state2

...

staten


︸ ︷︷ ︸

Pi−1

(4.11)

The transition matrix corresponds to the conditional probability that the Vs-layer depth

pair in layer i be any state given a current state (represented by Pi−1). The first step in

constructing the transition matrix is defining the desired accuracy, which is directly related

with the size of the transition matrix. In this study Vs and layer depths were divided into

6 groups each, giving 36 possible states. One additional case was added to include the

probability that given Pi−1 the profile ends at that depth, thus the transition matrix is a

square matrix of size 37 and the state vector is 37 by 1. The process is initiated by selecting

an initial state using the surface Vs distribution. Eq. 4.11 is then used to generate a state

vector where each element corresponds to the probability of each state (i.e. Vs-depth bin)

occurring. A random number generator is then used to generate a realization of this state

vector that has only one nonzero state (i.e. state k =1 ). This process is repeated iteratively

until the nonzero state in the state vector Pi corresponds to the case in which the profile

ends (the last state in the state vector). The specific Vs and depth values of each layer

are sampled from the Vs-depth pairs computed in step one within the limits set by the

corresponding state.

4.1.3.5 Second Order Markov Chain

Using the same principle, but taking into consideration two layers of dependence f(ε3|ε1, ε2),

a second order Markov chain model is proposed. This model is identical to the previous

model (Section 4.1.3.4), with a notable exception on the dimension of the transition matrix,
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T. The transition matrix is not square because it considers the same number of states (i.e.

the size of the state vector) and all the possible combination of states. This results on

a transition matrix with the number of rows equal to the length of the state vector, and

the number of columns equal to the square of that number, plus the end of profile case in

both dimensions. Each component of T is now the conditional probability that the Vs-layer

depth pair in layer i be any state given a current state (represented by Pi−1) and a previous

one (represented by Pi−2). An auxiliary state vector is used to consider all possible state

combinations. Eq. 4.12 shows the dimensions of the matrices, where n is the length of the

state vector.

[n ∗ 1] = [n ∗ n2] ∗ [n2 ∗ 1] (4.12)

4.1.4 Statistical Comparison

The ability of each of the proposed models to reproduce the statistics of an underlying

ground motion database is tested by generating sets of artificial profiles. Figures 4.9 through

4.13 show the median plus and minus one standard deviation for the five sets of artificially

generated profiles, one for each of the proposed models, compared with the statistics from

the KiK-net database. In both the generated profiles and the KiK-net database cases, the

compared profiles correspond to IBC site C class.

All five models show reasonable ability to reproduce the median and standard deviations,

although it is worth noting that the Gaussian models are smoother. The statistics for the

five models are calculated from 600 profiles each, which was selected based on the number

of profiles available from the KiK-net database, the number of generated profiles will have

a direct impact on the smoothness of the calculated statistics.

Figures 4.14 and 4.15 show a comparison of the empirical correlation functions calculated
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Figure 4.9. Comparison of the mean and one standard deviation band for one
set of simulated Vs profiles using the Modified EPRI methodology, and a set of

measured Vs profiles for site C class.

for the five models and the KiK-net database. Here the best fitting model is the two layer

lag stationary Gaussian (lines in thick blue).

4.1.5 Comparison in Terms of Site Response

4.1.5.1 Comparison of site response between a set of measured Vs profiles and

a set of artificially generated Vs profiles

To compare the impact of the randomly generated profiles in a site response exercise, we

compared the results of equivalent linear site response analyses using the measured KiK-net

profiles and those generated using the proposed models. Results are compared in terms

of the ratio of the response spectra at the surface to the input response spectra (Ratio of

Response Spectra). As input motions for the analyses a sample of 100 ground motions
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Figure 4.10. Comparison of the mean and one standard deviation band for one set
of simulated Vs profiles using the One layer lag Stationary Gaussian methodology,

and a set of measured Vs profiles for site C class.

from the NGA database (PEER, 2010) was selected. These ground motions satisfy certain

general criteria on magnitude and distance form the fault (6 ≤ Mw ≤ 8; Rjb ≤ 100 km,

and Vs30 ≥ 650 m/s).

Figure 4.16 shows the comparison of median ratio of response spectra (RRS). Note that

although the Markov Chain models are able to reproduce reasonably well statistics and spa-

tial correlation of the Vs profiles (Figures 4.12 to 4.15), they fail to reproduce site-response

behavior. This shows the sensitivity of the models to the rock or half-space depth. In the

three Gaussian models the depth to rock is randomly generated following the distribution

of the measured depths, while in the Markov models this depth is automatically generated

within the selected bins (e.g. accuracy level), hence the response of the Markov models can

be improved by selecting closely spaced bins near the mean depth of the measured profiles.

The variability obtained on the ratio of response spectra using the five different models
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Figure 4.11. Comparison of the mean and one standard deviation band for one set
of simulated Vs profiles using the Two layer lag Stationary Gaussian methodology,

and a set of measured Vs profiles for site C class.

are shown in Figure 4.17, the results show the Gaussian models better approximate the

variability in ratio of response spectra computed using the measured profiles.
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Figure 4.12. Comparison of the mean and one standard deviation band for one
set of simulated Vs profiles using the first order Markov chain methodology, and a

set of measured Vs profiles for site C class.
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Figure 4.13. Comparison of the mean and one standard deviation band for one
set of simulated Vs profiles using the Second order Markov chain methodology, and

a set of measured Vs profiles for site C class.
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Figure 4.14. Empirical correlation functions for depth 10 m, and site class C.
Comparison of measured profiles with sets of simulated profiles using the five pro-

posed methodologies.

Figure 4.15. Empirical correlation functions for depth 50 m, and site class C.
Comparison of measured profiles with sets of simulated profiles using the five pro-

posed methodologies.
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Figure 4.16. Comparison of the median Ratio of Response Spectra for the dif-
ferent Random Field generators. Also shown is the predicted Ratio of Response

spectra using the measured shear wave velocity profiles for site class C.
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Figure 4.17. Comparison of the standard deviation of Ratio of Response Spectra
for the different Random Field generators. Also shown is the predicted standard
deviation of Ratio of Response spectra using the measured shear wave velocity

profiles for site class C.
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4.2 Monte Carlo Simulation Approach

The proposed random profile generators allow for the study of the contribution of profile

uncertainty to the uncertainty in ground motions computed from site response analyses.

Observe that the site response uncertainty is an epistemic variable in probabilistic seismic

hazard analyses; hence it can be potentially lowered if Vs profiles are better character-

ized. To evaluate how the uncertainty in the site profile affects the predicted site response

variability, a Monte Carlo Simulation experiment was conducted.

Using the one layer lag model, 100,000 profiles were generated for sites corresponding to

class C (360 m/s ≤ V s30 ≤ 760 m/s), and D (180 m/s ≤ V s30 ≤ 360 m/s). For each

site class, six sets of 100 profiles out of the 100,000 profiles were selected such that the

standard deviation of their V s30 matched preset target values. One of the preset values

is the standard deviation of the measured KiK-net profiles for each site class (C and D).

The remaining preset values were selected to provide a range of V s30 standard deviations

as wide as possible. All 6 sets have equal mean V s30, 560 m/s for the class C sites, and

270 m/s for the class D sites.

The sampling was done using a beta distribution that (a) has the bounds of the site category

(C or D), and (b) has the desired mean and standard deviation. The distribution is fully

characterized by parameters “p” and “q” (see Eqs. 4.13 and 4.14), where a and b are the

V s30 bounds. With this characterization is possible to fix the mean (µ), and then solve for

the values of p and q for a desired standard deviation value (σ).

p = µ̂ ∗ µ̂ ∗ (1− µ̂)

σ̂2
− 1 (4.13)

q = (1− µ̂) ∗ µ̂ ∗ (1− µ̂)

σ̂2
− 1 (4.14)
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with,

µ̂ =
x̄− a
b− a

and

σ̂2 =
s2

(b− a)2

where x̄ and s are the sample mean and sample standard deviation, respectively. Latin

Hypercube Sampling was then used for the selection of 100 sites from the 100,000 sites

samples. Using the distribution defined by p and q with the preset standard deviations,

the 12 groups (6 for each site class) were created. A subset of the 100 ground motions

described in 4.1.5.1 was used to obtain ratios of response spectra for each of the groups.

The subset was selected to maintain the same mean and standard deviation of the input

response spectra.

Figures 4.18 to 4.20 show the results of varying V s30 standard deviations on the mean of

the ratio of response spectra, for class C sites and periods of 0.2, 0.5, and 1.0 seconds. Plus

and minus one standard deviation bands are included for reference. Note that the mean

values of the calculated ratio of response spectra are relatively insensitive to the variability

in V s30.

Figures 4.21 to 4.23 show the effects of varying standard deviations in V s30 over the result-

ing ratio of response spectra, for site C class sites. Note that for high frequencies the effect

of variability in V s30 is negligible, and that for lower frequencies, there is a direct relation

among the variability in site profiles and the calculated site amplification variability.

The results shown and discussed for site C class in the paragraphs above, are shown in

Figures 4.24 to 4.29 for the case of site D class. The observation made on the effect of V s30

variability on the ratio of response spectra for class C sites, is also true for class D sites,
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Figure 4.18. Mean of the Ratio of Response Spectra versus standard deviation
of V s30. Results shown for period of 0.2 seconds and Site C class.

Figure 4.19. Mean of the Ratio of Response Spectra versus standard deviation
of V s30. Results shown for period of 0.5 seconds and Site C class.
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Figure 4.20. Mean of the Ratio of Response Spectra versus standard deviation
of V s30. Results shown for period of 1.0 seconds and Site C class.

Figure 4.21. Standard deviation of the Ratio of Response Spectra versus standard
deviation of V s30. Results shown for period of 0.2 seconds and Site C class.
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Figure 4.22. Standard deviation of the Ratio of Response Spectra versus standard
deviation of V s30. Results shown for period of 0.5 seconds and Site C class.

Figure 4.23. Standard deviation of the Ratio of Response Spectra versus standard
deviation of V s30. Results shown for period of 1.0 seconds and Site C class.
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where the mean value of the ratio of response spectra, a measure of site response, do not

show significant variation with varying the standard deviation of V s30. This observation

is contrary to past observations that indicate that uncertainty in Vs profiles reduces mean

estimates of surface response spectra when the only uncertainty is variability in Vs values

around a baseline Vs profile and stratigraphy is fixed (Rodriguez-Marek et al., 2010; Rathje

et al., 2010).

Figure 4.24. Mean of the Ratio of Response Spectra versus standard deviation
of V s30. Results shown for period of 0.2 seconds and Site D class.

The simulation performed allows for the study of the Bazzurro and Cornell (2004b) affir-

mations. The dependence of the values of σlnAF with lnSra is shown in Figures 4.30 to 4.33

for spectral periods of 0.3 and 1.0 seconds, and sites classes C and D.

Figures 4.30 to 4.33 above show a clear, and often strong, correlation between σlnAF and

lnSra. Bazzurro and Cornell (2004b) assumption is that they are independent.
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Figure 4.25. Mean of the Ratio of Response Spectra versus standard deviation
of V s30. Results shown for period of 0.5 seconds and Site D class.

Figure 4.26. Mean of the Ratio of Response Spectra versus standard deviation
of V s30. Results shown for period of 1.0 seconds and Site D class.
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Figure 4.27. Standard deviation of the Ratio of Response Spectra versus standard
deviation of V s30. Results shown for period of 0.2 seconds and Site D class.

Figure 4.28. Standard deviation of the Ratio of Response Spectra versus standard
deviation of V s30. Results shown for period of 0.5 seconds and Site D class.
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Figure 4.29. Standard deviation of the Ratio of Response Spectra versus standard
deviation of V s30. Results shown for period of 1.0 seconds and Site D class.

Figure 4.30. Standard deviations of the amplification factor for Site C, and spec-
tral period of 0.3 seconds. Each point is the standard deviation of the amplification

factor for 600 artificially generated profiles.
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Figure 4.31. Standard deviations of the amplification factor for Site C, and spec-
tral period of 1.0 second. Each point is the standard deviation of the amplification

factor for 600 artificially generated profiles.
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Figure 4.32. Standard deviations of the amplification factor for Site D, and spec-
tral period of 0.3 seconds. Each point is the standard deviation of the amplification

factor for 600 artificially generated profiles.

76



Figure 4.33. Standard deviations of the amplification factor for Site D, and spec-
tral period of 1.0 second. Each point is the standard deviation of the amplification

factor for 600 artificially generated profiles.
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4.3 Conclusions

This chapter presented a comparison of five models for the generation of shear-wave velocity

profiles. The models were calibrated to the measured shear-wave velocity profiles of the

KiKnet ground motion database. These models can be used to generate shear wave velocity

profiles for site-response analyses. Two types of models were presented, one using Gaussian

random fields, and the other set using Markov Chains. Of the Gaussian models, one model

is an update of a non-stationary model previously developed by EPRI (1993). The other

two Gaussian models make use of the stationary characteristic of the spatial correlation

function, when look at as a concatenation of layers rather than a continuous. The two-

layer lag stationary Gaussian is a simple model, easy to implement, and shows the best

fit of the five proposed models. The results obtained by the stationary Gaussian models

can be easily modified to fit other data sets, subsets of data that have particularities, or to

characterize the variability in site-specific site response. Profile variability in a site-specific

site response analysis would depend on the quality and extent of the site characterization.

While the two-layer lag stationary Gaussian model herein proposed has the limitation of

being one dimensional, it gives the engineer the possibility to easily generate random profiles

which can be used in forward analyses.

The proposed models are foreseen to be applicable to the modeling of other vertically

varying parameters, such as results of Standard Penetration Tests.
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Chapter 5

Single Site Variability of Ground

Motions: estimates from the KiKnet

database

To obtain single-site variability of ground motions, median ground motion estimates and

their associated uncertainty are needed, which can be computed using a ground motion

prediction equation (GMPE) that uses the ergodic assumption. The ergodic assumption

implies the assumption that two different sites with the same parameterization (e.g. same

V s30) have the same median ground motion for an equally parameterized earthquake (e.g.

Distance to Fault, Magnitude), and that the variability in the entire database is the same

as the variability for a single site. As discussed in Chapter 3 this assumption results in an

overestimation of the single-site ground motion variability. This chapter shows this is the

case; single-site residuals are calculated for 131 stations that recorded more that 10 events,

and estimates of their standard deviations are presented. In addition a further break down

of ground motion residuals, as presented previously in Chapter 3 is also studied.
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5.1 Data Source Characteristics

The source of strong ground motion data is the KiK-net database as processed by Pousse

et al. (2005) and Cotton et al. (2008), and described in Section 2.7. Each station in the KiK-

net network has two 3-component accelerographs, one at the surface and another at depth.

The instruments have a 24 bit analog-to-digital converter with a sampling frequency of 200

Hz (Fujiwara et al., 2004). All records between 1996 and October 2004 withMJMA > 4 have

been downloaded. As a preliminary check to avoid subduction related records, only events

with depth less than 25 km were analyzed. TheMJMA magnitude was converted to seismic

moment magnitude using the Fukushima (1996) relationship (Cotton et al., 2008). A visual

inspection was performed on ground motion data to check for errors and to keep only the

main event if multiple events were recorded in the time series. The signals were band-pass

filtered between 0.25 and 25 Hz with a Butterworth filter. This filtering was performed in

the time domain with four poles and two passes using SAC2000 routines (Goldstein et al.,

2003). Closest distance to the rupture was computed for all recordings. This rupture is

assumed to correspond to the hypocentral distance for small to moderate earthquakes or

when the source dimensions remain unknown. The magnitude-distance sampling of the

database is shown in Figure 5.1. Cotton et al. (2008) state that the longest usable period

for the database is 3.0 s. However, some of the spectral accelerations at long periods are

lower than the number of decimals used in the database. For that reason, this work is

performed only for spectral accelerations less than 1.3 s. For a more detailed description

of the data processing, please refer to Pousse et al. (2005) and Cotton et al. (2008).

The magnitude-distance distribution of the data (Figure 5.1) shows that the majority of

the records are from earthquakes with magnitudes equal or lower than 6.1, this will have

an effect on the regression as it is discussed further in this Chapter. Figure 5.2 shows the

time-averaged upper 30 meters shear-wave velocity (V s30) distribution.
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Figure 5.3 shows the distribution of the subsurface instrument depths. Instruments are gen-

erally installed on bedrock, sometimes at the soil-bedrock interface, but often are installed

at an arbitrary depth. The histogram shows that most of the instruments are located either

at 100 meters or 200 meters below the ground surface, for that reason it was chosen to in-

clude flags to separate the data recorded at the surface, at 150 meters or shallower depths,

and at depths greater than 150 meters. The same approach was taken by Cotton et al.

(2008). Figure 5.4 shows the histogram of the shear-wave velocity at the borehole (i.e., on

the layer where the borehole instrument is installed). Note that most of the instruments

are installed at layers with shear-wave velocities higher than 800 m/s.

Figures 5.5 and 5.6 show the spatial distribution of the stations and epicenters of the

recorded earthquakes. Note that there are clusters of events that could enable future studies

to separate source, and path effects from the prediction of ground motion intensities and

their uncertainties. This approach is not included in this study, but would produce a

Figure 5.1. Magnitude versus Distance distribution for the KiK-net database
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Figure 5.2. Distribution of upper 30 m time-averaged shear-wave velocity (V s30)
for the KiK-net database

reduction in the uncertainty due to the elimination of the source-to-source variability, and

the path-to-path variability.
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Figure 5.3. Instrument depth distribution for the KiK-net database. Note that
most subsurface instruments are located at 100m or 200m below the surface.

Figure 5.4. Borehole shear-wave velocity histogram.
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Figure 5.5. KiK-net ground motion station locations. Shown in red are the 46
station for which more that 15 records are available. Stations in blue are considered

in the regression analysis.
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Figure 5.6. KiK-net database epicenters for the recorded earthquakes included in
the GMPE. Note that each of these events were recorded by surface and at depth

instruments.

85



5.2 GMPE for Surface and Borehole

The ground motion prediction models herein developed correspond to the median estimates,

and their variability, of the natural logarithm of the pseudo-spectral acceleration at the

ground surface (denoted by superscript G), at the bedrock (denoted by a superscript B),

and a combined model that is constrained using simultaneously the data for surface and

borehole.

All three models were developed following the functional form used by Boore and Atkinson

(2008). It was desired to use one of the Next Generation Attenuation (NGA), PEER

(2010), models as a basis to the functional form of the GMPE to reflect the state of the

art in ground motion prediction. The selection of the functional form was made on the

basis of its ability to be constrained by data (other models require intensive seismological

modeling, along with recorded data, to constrain their model parameters). This is reflected

in the simplicity of the Boore and Atkinson (2008) compared to most of the other NGA

models.

The variables to be predicted by the model (i.e. the response variables) correspond to the

peak ground acceleration, PGA, and pseudo-spectral accelerations at 5% damping. These

variables are taken as the geometric mean of the horizontal components of the recorded

ground motions.

The predictor variables of the model (i.e. the independent variables) are moment magni-

tude, denoted by Mw, closest distance to the fault rupture, denoted byRRUP , time-averaged

upper 30 meters shear-wave velocity, denoted by V s30, depth for which shear-wave veloc-

ity of 800 m/s is reached, denoted by h800, and the shear-wave velocity at the bedrock,

denoted by V shole. The shear-wave velocity data used to compute V s30 and V shole is

described in Chapter 4.
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The general form of the model, similar to most available ground motion prediction models,

is given by

y = µ+ δWes + δBe (5.1)

where y is the natural logarithm of the estimated ground motion parameter or response

variable, µ is the median ground motion model, which is a function of the predictor variables

V s30, RRUP , V s30, h800, V shole, where y is being predicted (i.e. surface, borehole located

shallower than 150 meters, or borehole located deeper than 150 meters). δBe is the between-

event residual, or the inter-event residual, which is defined as the misfit of the mean of the

observation for one particular earthquake (or event) from the median ground motion model.

δWes is the intra-event residual, that is the difference between an individual observation

and the event corrected median estimate (i.e. δWes = y − µ− δBe).

5.2.1 Combined Model

The ground motion model for the combined data set is the most general of the three

models as it allows to predict the ground motion intensities at the ground surface and at

the borehole with a single predictive equation. The general form for the median estimate

of this model is given by

µAmed = Fm + Fd + Fsite ∗ Surfflag + F100 ∗ S100flag + F200 ∗ S200flag (5.2)

where,
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Fm = e1 + e5 ∗ (Mw −Mh) + e6 ∗ (Mw −Mh)2 for Mw ≤Mh

Fm = e1 + e7 ∗ (Mw −Mh) for Mw ≥Mh

(5.3)

Fd = (c1 + c2 ∗ (Mw −Mref )) ∗ log(R/Rref ) + c3 ∗ (R−Rref );

R =
√
R2
RUP + h2

(5.4)

Fsite = blin ∗ ln(V s30/Vref ) + bh800 ∗ ln(h800/href ) (5.5)

F100 = a100 + b100 ∗ ln(V s30/Vref ) + c100 ∗ ln(V shole/V sholeref ) (5.6)

F200 = a200 + b200 ∗ ln(V s30/Vref ) + c200 ∗ ln(V shole/V sholeref ) (5.7)

where, Mref is a reference value for Mw equal to 4.5, Rref is a reference distance to the

rupture plane equal to 1 kilometer, Vref is a reference value of V s30 equal to 760 (m/s), href

is a reference value for the depth at which a profile reaches a shear-wave velocity of 800 (m/s)

equal to 60 (m), and V sholeref is a reference value for the shear-wave velocity at bedrock

equal to 3000 (m/s). These reference values do not affect the prediction performance of

the model, the reason to use them is to provide a reference for which the model becomes

a constant. The constants c1, c2, c3, e1, e5, e6, e7, blin, bh800, a100, b100, c100, a200, b200,

c200, h, and Mh are model parameters to be determined during the regression analysis.

Note that the subscript A in Equation 5.2 is used to denote that the median predictor uses

simultaneously the borehole and surface data. However, the model predicts ground motions

either at the ground surface (G) or at the borehole (B) for the same location.
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Modeling of the Residuals The inter (δBe) and intra-event residuals (δWes) are mod-

eled by a normal distribution with mean zero and variance τ2, and φ2, respectively. In the

regression analysis φ2, and τ2 were allowed to be a function of magnitude. The functional

form was restricted to a constant value for magnitudes less than 5, another constant value

for magnitudes greater than 6.5, and linear interpolation between magnitudes 5 and 6.5.

To allow for an adequate constrain of the inter-event residuals (δBe), only earthquakes that

were recorded at 5 or more stations were considered.

Regression Analysis Methodology The determination of the parameters begins with

the determination of c3, the term that controls the curvature of the distance attenuation

term, Fd (see Equation 5.4), at large distances. The data set used to constrain c3 was

restricted to those events with more than 100 records. First the slope of Fd, c1, was fixed

to a value between -0.2, and -1.1 (the slope term c1 has to be negative for the model to

produce lower intensities with greater distances, which is the logical outcome), c2 was fixed

to zero (i.e. making Fd magnitude independent). Then c3 along with the pseudo-depth

coefficient h, were obtained by maximum likelihood estimation method. The slope term c1

was varied within the specified range, and the value that maximized the likelihood function

was used to select the final coefficients for c3, and h. The process was repeated for each

spectral period.

A “magnitude hinge” term, Mh, that is used as a flag in the magnitude attenuation term,

Fm, was defined to separate the magnitude range where magnitude scaling changes from

quadratic to linear (Equation 5.3). A negative value for the linear term for Mw ≥ Mh (e7)

would indicate a reduction of ground motion with an increase in magnitude. The reasons

behind the observation of greater magnitude earthquakes producing less pseudo-spectral

acceleration than lower magnitude ones, known as oversaturation, are not clear. Anderson

(2010) speculates that a possible explanation is that large earthquakes occur along the

same surfaces, hence having smoother interfaces. For the KiK-net database oversaturation
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is observed at all periods, but because the amount of data from high magnitude earthquakes

is limited, and lack of knowledge, the linear term e7 was not allowed to take negative values

during the regression. Boore and Atkinson (2008) followed a similar approach in limiting

oversaturation. The value for Mh was chosen by inspection for all spectral periods.

The rest of the parameters were obtained using random effects method (Searle, 1971; Abra-

hamson and Youngs, 1992). The method delivers both the median model, and the statistics

for the inter- and intra-event residuals. The steps of the iterative process to obtain, φ2, τ2,

and the model parameters θ can be summarized as:

1. Calculate model parameters, θ, using maximum likelihood. Set the inter-event resid-

uals δBe to zero.

2. With the model parameters, maximize the random effects likelihood function (see

Searle, 1971) to obtain φ2 and τ2.

3. Compute the inter-event residuals for each event as given by

δBe =
τ2 ∗

∑ne
s=1 yes − µes

τ2 ∗ ne + φ2
(5.8)

4. Subtract the estimate of each inter-event residual from the observed ground motion.

This results in ground motion corrected for event-to-event variability.

5. Calculate model parameters, θ, using maximum likelihood for the corrected ground

motion residuals. Repeat steps 2 to 5 until the likelihood obtained in step 2 is

maximized.

The random effects regression computes the model parameters (θ) and 4 parameters for

the magnitude dependent standard deviations of the within and between residuals. Model

parameters, for the distance and magnitude attenuation terms (Fd and Fm) of the combined
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model, are summarized in Table 5.1, and the parameters for the site terms (Fsite,F100, and

F200) are shown in Table 5.2. The parameter e7 is not included in the table because it took

a value of zero during the regression.

Table 5.1. Model Parameters for the Distance and Magnitude terms of the Com-
bined Model

Period c1 c2 c3 e1 e5 e6

PGA -1.2534 0.4271 -0.0140 -0.0663 -0.5997 -0.5012
0.0384 -1.2928 0.4089 -0.0140 0.3986 -0.4943 -0.4423
0.0484 -1.3005 0.3719 -0.0140 0.9018 -0.2267 -0.3538
0.0582 -1.2725 0.3373 -0.0140 1.2277 -0.0006 -0.2963
0.0769 -1.2423 0.3270 -0.0140 1.4185 0.0608 -0.3109
0.0844 -1.2267 0.3221 -0.0140 1.4818 0.2850 -0.2211
0.0970 -1.2053 0.3169 -0.0140 1.4496 0.3325 -0.2346
0.1167 -1.1925 0.3135 -0.0138 1.3627 0.2952 -0.3234
0.1472 -1.1937 0.3101 -0.0131 1.1992 0.3159 -0.3877
0.1691 -1.2169 0.3181 -0.0126 1.1069 0.2759 -0.4302
0.2036 -1.2454 0.3343 -0.0119 0.8915 0.1408 -0.5095
0.2340 -1.2639 0.3267 -0.0113 0.8740 0.2653 -0.5054
0.3090 -1.2822 0.3148 -0.0100 0.6841 0.3889 -0.5591
0.3551 -1.2927 0.3136 -0.0092 0.5551 0.0850 -0.6291
0.3896 -1.3016 0.3135 -0.0087 0.3939 -0.3426 -0.7271
0.4274 -1.3038 0.3088 -0.0082 0.3443 -0.1975 -0.6910
0.4690 -1.3064 0.3010 -0.0076 0.3107 -0.0902 -0.6799
0.5913 -1.3224 0.2829 -0.0062 0.1837 0.0808 -0.6842
0.7456 -1.3606 0.2628 -0.0049 0.1503 0.2970 -0.6804
0.8180 -1.3813 0.2577 -0.0043 0.1341 0.3733 -0.6725
0.9401 -1.3975 0.2424 -0.0036 0.1483 0.6130 -0.6271
1.3622 -1.4495 0.2370 -0.0020 -0.2017 0.8621 -0.5687

The intra-event (φ) and inter-event (τ) standard deviations resulting from the random ef-

fects regression are shown in Table 5.3. The inter-event standard deviation (τ) has unusu-

ally large values for large magnitudes. This results from a consistent bias of the predictive

model as a result of limiting oversturation. The last column of Table 5.3 shows an estimate

of (τ) computed using the inter-event residuals (δBe) corrected for the observed bias using

a linear term. This is equivalent to allowing for a negative e7 term, except that the inter-

dependency with the intra-event residuals is not captured. The values of (τ) computed by
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Table 5.2. Model Parameters for the Site terms of the Combined Model

Period blin bh800 a100 a200 b100 b200 c100 c200

PGA -0.4665 -0.1801 -1.4372 -1.6518 -0.0269 -0.1884 -0.2666 -0.3793
0.0384 -0.3756 -0.2219 -1.3309 -1.5398 -0.0184 -0.2502 -0.1435 -0.2053
0.0484 -0.2871 -0.2420 -1.2680 -1.5018 -0.0301 -0.2628 -0.0716 -0.1511
0.0582 -0.2124 -0.2303 -1.3806 -1.6006 -0.0323 -0.2229 -0.0943 -0.1675
0.0769 -0.2658 -0.2060 -1.5810 -1.7920 0.0391 -0.1961 -0.2066 -0.2871
0.0844 -0.3207 -0.2000 -1.6083 -1.8197 0.0520 -0.1924 -0.2591 -0.3398
0.0970 -0.4062 -0.1844 -1.6143 -1.8366 0.0692 -0.1898 -0.3091 -0.4050
0.1167 -0.5213 -0.1767 -1.6022 -1.7851 0.0508 -0.1513 -0.3675 -0.4637
0.1472 -0.6892 -0.1256 -1.5497 -1.6843 -0.0259 -0.0765 -0.4355 -0.5998
0.1691 -0.7431 -0.0964 -1.4863 -1.6025 -0.0206 0.0000 -0.4488 -0.6506
0.2036 -0.8023 -0.0563 -1.3907 -1.5946 -0.0235 -0.0753 -0.4565 -0.6952
0.2340 -0.8370 -0.0392 -1.3202 -1.5249 -0.0543 -0.0553 -0.4613 -0.7024
0.3090 -0.8629 0.0427 -1.1687 -1.4151 -0.0567 -0.0034 -0.4593 -0.7573
0.3551 -0.8394 0.0765 -1.0886 -1.3765 -0.0900 0.0059 -0.4044 -0.7769
0.3896 -0.8161 0.0972 -1.0337 -1.3443 -0.1057 -0.0095 -0.3754 -0.7479
0.4274 -0.7922 0.1268 -0.9834 -1.3163 -0.1310 -0.0220 -0.3528 -0.7326
0.4690 -0.7696 0.1623 -0.9402 -1.3116 -0.1451 -0.0214 -0.3395 -0.7804
0.5913 -0.6798 0.2291 -0.8595 -1.2244 -0.1296 -0.0181 -0.3465 -0.7723
0.7456 -0.6337 0.2592 -0.8001 -1.0314 -0.1058 0.0533 -0.3996 -0.6770
0.8180 -0.6028 0.2797 -0.7991 -1.0049 -0.0847 0.0645 -0.4442 -0.6675
0.9401 -0.5682 0.3004 -0.7968 -0.9580 -0.0778 0.0604 -0.4948 -0.6448
1.3622 -0.5063 0.3041 -0.8443 -0.8703 -0.1381 0.0310 -0.6149 -0.6923
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reducing the bias are significantly lower than those that ignore it, in particular for short

periods.

Table 5.3. Standard Deviations of the Residuals from the Combined Model

Period φ for φ for τ for τ for τ∗ for
Mw < 5 Mw > 6.5 Mw < 5 Mw > 6.5 Mw > 6.5

PGA 0.6293 0.6202 0.4929 0.9164 0.4981
0.0384 0.6252 0.6223 0.5018 0.8963 0.5428
0.0484 0.6321 0.6315 0.5188 0.8533 0.6152
0.0582 0.6469 0.6457 0.5193 0.8599 0.6654
0.0769 0.6623 0.6658 0.5063 0.9332 0.6940
0.0844 0.6697 0.6706 0.5052 0.9433 0.6991
0.0970 0.6846 0.6790 0.5104 0.9274 0.6940
0.1167 0.6878 0.6801 0.5084 0.9242 0.6676
0.1472 0.6893 0.6812 0.4917 0.9348 0.6204
0.1691 0.6847 0.6751 0.4879 0.9446 0.5883
0.2036 0.6772 0.6680 0.5044 0.8520 0.5420
0.2340 0.6648 0.6563 0.5138 0.7751 0.5083
0.3090 0.6436 0.6332 0.5389 0.6936 0.4468
0.3551 0.6352 0.6262 0.5431 0.6914 0.4123
0.3896 0.6272 0.6228 0.5476 0.6963 0.3841
0.4274 0.6170 0.6172 0.5516 0.6743 0.3744
0.4690 0.6049 0.6067 0.5500 0.6638 0.3696
0.5913 0.5778 0.5878 0.5695 0.5611 0.3546
0.7456 0.5535 0.5668 0.5821 0.4478 0.3034
0.8180 0.5478 0.5666 0.5773 0.4244 0.2823
0.9401 0.5421 0.5673 0.5750 0.3840 0.2498
1.3622 0.5374 0.5614 0.5886 0.3711 0.2097

[∗]Allowing for oversaturation at large magnitudes

As a closing for the presentation of the combined model it is important to point out that

the model considers single magnitude and distance terms both for the surface and the

borehole data. This characteristic is desired from a phenomenological point of view because

source- and path- terms should be independent of near-surface layering. Also implicit in

the methodology is that inter-event residuals (δBe), are also equal for surface and borehole.

This is an important property of the model as it allows to separate site response effects.

Therefore, all the difference between surface and borehole is captured by the site terms

(Fsite, F100, and F200).
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5.2.2 Surface Model

The model for the surface follows the same philosophy adopted for the combined model.

The main difference is that it is constrained using purely ground surface records, which is

what most GMPE are based upon. The functional form for the median model is given by

Equation 5.9.

µG = Fm + Fd + Fsite (5.9)

where, the three terms Fm, Fd, and Fsite are the equal to those described for the combined

model. Note that Surfflag is not needed in this model as all the dependent variables

(i.e. the data) comes from ground surface records. Table 5.4 summarizes the results of

the regression for the magnitude and distance terms. Table 5.5 summarizes the site term

parameters for the surface model.

Table 5.6 shows the standard deviations for the inter- and intra-event residuals. Note

that, similarly to what was observed in the combined model, the elimination of the bias

due to oversaturation greatly reduces the variability in large magnitudes of the inter-event

random variable (i.e. τ), and that although it affects all spectral periods the greater effect

is observed at low periods.
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Table 5.4. Model Parameters for the Distance and Magnitude terms of the Surface
Model

Period c1 c2 c3 e1 e5 e6

PGA -1.1630 0.3493 -0.0140 0.1103 0.0390 -0.3150
0.0384 -1.1766 0.3333 -0.0140 0.4665 0.1189 -0.2666
0.0484 -1.1855 0.3101 -0.0140 0.8874 0.3145 -0.1819
0.0582 -1.1453 0.2785 -0.0140 1.1572 0.5749 -0.0895
0.0769 -1.1246 0.2649 -0.0140 1.3796 0.5904 -0.1321
0.0844 -1.1175 0.2644 -0.0140 1.4104 0.6435 -0.1290
0.0970 -1.1021 0.2647 -0.0140 1.3724 0.6425 -0.1647
0.1167 -1.0987 0.2614 -0.0138 1.3265 0.6495 -0.2286
0.1472 -1.1454 0.2740 -0.0131 1.2530 0.6277 -0.2831
0.1691 -1.1919 0.2901 -0.0126 1.1896 0.5265 -0.3448
0.2036 -1.2486 0.3144 -0.0119 1.0459 0.4153 -0.3973
0.2340 -1.2803 0.3172 -0.0113 1.0110 0.4559 -0.4235
0.3090 -1.3074 0.3111 -0.0100 0.7873 0.5632 -0.4542
0.3551 -1.3239 0.3109 -0.0092 0.6854 0.2588 -0.5355
0.3896 -1.3424 0.3113 -0.0087 0.6084 -0.0382 -0.5837
0.4274 -1.3554 0.3119 -0.0082 0.5037 -0.0969 -0.6259
0.4690 -1.3733 0.3088 -0.0076 0.4889 -0.0486 -0.6315
0.5913 -1.3841 0.2827 -0.0062 0.4180 0.2373 -0.5873
0.7456 -1.4126 0.2628 -0.0049 0.3764 0.5342 -0.5361
0.8180 -1.4287 0.2545 -0.0043 0.3652 0.6589 -0.5074
0.9401 -1.4477 0.2392 -0.0036 0.3623 0.8620 -0.4711
1.3622 -1.5023 0.2319 -0.0020 0.0091 1.1450 -0.3811
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Table 5.5. Model Parameters Site term for the Surface Model

Period blin bh800

PGA -0.4804 -0.1654
0.0384 -0.3701 -0.2024
0.0484 -0.2796 -0.2286
0.0582 -0.2058 -0.2206
0.0769 -0.2615 -0.1961
0.0844 -0.3163 -0.1853
0.0970 -0.4045 -0.1668
0.1167 -0.5276 -0.1609
0.1472 -0.7093 -0.1146
0.1691 -0.7812 -0.0855
0.2036 -0.8648 -0.0604
0.2340 -0.9034 -0.0491
0.3090 -0.9553 0.0289
0.3551 -0.9197 0.0677
0.3896 -0.8900 0.0902
0.4274 -0.8507 0.1239
0.4690 -0.8123 0.1609
0.5913 -0.6918 0.2333
0.7456 -0.6203 0.2671
0.8180 -0.5988 0.2823
0.9401 -0.5746 0.2987
1.3622 -0.5136 0.2956
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Table 5.6. Standard Deviations of the Residuals from the Surface Model

Period φ for φ for τ for τ for τ∗ for
Mw < 5 Mw > 6.5 Mw < 5 Mw > 6.5 Mw > 6.5

PGA 0.6858 0.6809 0.4391 0.7987 0.5582
0.0384 0.6778 0.6853 0.4325 0.7954 0.6014
0.0484 0.6722 0.6897 0.4362 0.7773 0.6708
0.0582 0.6869 0.7046 0.4369 0.7722 0.7124
0.0769 0.7350 0.7528 0.4429 0.7968 0.7295
0.0844 0.7473 0.7603 0.4515 0.7891 0.7329
0.0970 0.7715 0.7752 0.4714 0.7712 0.7313
0.1167 0.7718 0.7739 0.4819 0.7623 0.6975
0.1472 0.7727 0.7772 0.4639 0.7715 0.6445
0.1691 0.7617 0.7623 0.4725 0.8026 0.6090
0.2036 0.7489 0.7492 0.4887 0.7846 0.5664
0.2340 0.7341 0.7312 0.4974 0.7596 0.5198
0.3090 0.7008 0.6907 0.5170 0.6857 0.4503
0.3551 0.6876 0.6799 0.5274 0.6863 0.4144
0.3896 0.6808 0.6770 0.5337 0.7059 0.3856
0.4274 0.6677 0.6691 0.5374 0.6723 0.3770
0.4690 0.6530 0.6560 0.5311 0.6506 0.3703
0.5913 0.6237 0.6311 0.5289 0.5745 0.3499
0.7456 0.6005 0.6073 0.5321 0.4904 0.3039
0.8180 0.5958 0.6084 0.5240 0.4633 0.2871
0.9401 0.5850 0.6055 0.5187 0.4339 0.2569
1.3622 0.5666 0.5827 0.5173 0.3949 0.2212

[∗]Allowing for oversaturation at large magnitudes
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5.2.3 Borehole Model

The model for borehole is constrained with data from at-depth instruments, and although

the instruments are typically on bedrock occasionally they are at an arbitrary depth. Hence,

it is herein called “borehole model” rather than “bedrock model”. The regression process

is analogous to the process for the combined and surface models. The parameters for the

distance attenuation term c3, and h were taken as the same as the ones calculated for

surface data, as was the parameter Mh for the magnitude attenuation term. This does not

mean that the distance and magnitude terms are equal, as the remaining parameters were

obtained using solely from borehole data.

The functional form for the median of the borehole ground motion prediction equation is

give by Equation 5.10.

µB = Fm + Fd + F100 + F200 (5.10)

where, all the terms are equal to those proposed for the combined model, with the difference

that this model does not include an Fsite term, which means that all site effects are captured

by F100 and F200, to reflect the fact that site response occurs in the near surface region.

The parameter e1 is a constant that shifts the magnitude attenuation model, given that

the model has other constant parameters, the necessary shift can be captured by other

parameters. The value of e1 was fixed to the value obtained from the surface regression in

order to facilitate comparison of the magnitude attenuation terms. The parameters for the

magnitude and distance attenuation terms for borehole model are given in Table 5.7, and

the site terms in Table 5.8.

Standard deviation for the inter- and intra-event residuals are shown in Table 5.9, along

with an estimate for τ at magnitudes greater than 6.5 to check what would be the standard
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Table 5.7. Model Parameters for the Distance and Magnitude terms of the Bore-
hole Model

Period c1 c2 c3 e5 e6

PGA -1.3569 0.5226 -0.0140 -1.0677 -0.5605
0.0384 -1.4232 0.5059 -0.0140 -0.9255 -0.4878
0.0484 -1.4148 0.4354 -0.0140 -0.5708 -0.4189
0.0582 -1.3897 0.3857 -0.0140 0.0004 -0.2156
0.0769 -1.3553 0.3796 -0.0140 -0.0038 -0.2532
0.0844 -1.3376 0.3791 -0.0140 -0.0125 -0.2677
0.0970 -1.3134 0.3716 -0.0140 0.0278 -0.2929
0.1167 -1.2824 0.3656 -0.0138 0.1160 -0.2908
0.1472 -1.2364 0.3424 -0.0131 0.3216 -0.2823
0.1691 -1.2402 0.3430 -0.0126 0.3790 -0.2957
0.2036 -1.2423 0.3504 -0.0119 0.3143 -0.3587
0.2340 -1.2481 0.3353 -0.0113 0.4962 -0.3398
0.3090 -1.2535 0.3175 -0.0100 0.7236 -0.3537
0.3551 -1.2529 0.3092 -0.0092 0.4604 -0.4529
0.3896 -1.2559 0.3128 -0.0087 0.0107 -0.5722
0.4274 -1.2469 0.3035 -0.0082 0.1362 -0.5578
0.4690 -1.2238 0.2837 -0.0076 0.3243 -0.5324
0.5913 -1.2341 0.2644 -0.0062 0.4412 -0.5648
0.7456 -1.2794 0.2452 -0.0049 0.6268 -0.5794
0.8180 -1.3027 0.2384 -0.0043 0.6740 -0.5965
0.9401 -1.3213 0.2260 -0.0036 0.8908 -0.5624
1.3622 -1.3603 0.2124 -0.0020 1.2335 -0.5013
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Table 5.8. Model Parameters for the Site terms of the Borehole Model

Period a100 a200 b100 b200 c100 c200

PGA -1.6846 -1.9046 0.0306 -0.1359 -0.3047 -0.4115
0.0384 -1.3288 -1.5572 0.0391 -0.2036 -0.1685 -0.2443
0.0484 -1.1233 -1.3833 0.0382 -0.2157 -0.1047 -0.2086
0.0582 -0.9882 -1.2369 0.0284 -0.1903 -0.1257 -0.2231
0.0769 -1.2645 -1.4851 0.0933 -0.1577 -0.2253 -0.3181
0.0844 -1.3753 -1.5925 0.0950 -0.1495 -0.2751 -0.3694
0.0970 -1.3770 -1.5972 0.0943 -0.1450 -0.3220 -0.4262
0.1167 -1.4773 -1.6442 0.0737 -0.0839 -0.3967 -0.4883
0.1472 -1.5884 -1.6977 0.0023 -0.0001 -0.4717 -0.6178
0.1691 -1.5601 -1.6901 0.0030 0.0000 -0.4859 -0.6454
0.2036 -1.5845 -1.7787 0.0000 -0.0000 -0.4940 -0.7212
0.2340 -1.5052 -1.7053 -0.0029 0.0077 -0.5175 -0.7264
0.3090 -1.3217 -1.5619 -0.0079 0.0665 -0.5180 -0.7972
0.3551 -1.2451 -1.5238 -0.0297 0.0667 -0.4676 -0.8085
0.3896 -1.3256 -1.6308 -0.0347 0.0464 -0.4445 -0.7870
0.4274 -1.2323 -1.5656 -0.0526 0.0326 -0.4194 -0.7769
0.4690 -1.2130 -1.5903 -0.0636 0.0250 -0.4052 -0.8231
0.5913 -1.2298 -1.6056 -0.0509 0.0075 -0.4148 -0.8031
0.7456 -1.1376 -1.3802 -0.0340 0.0770 -0.4538 -0.6985
0.8180 -1.1180 -1.3333 -0.0145 0.0891 -0.4971 -0.6868
0.9401 -1.1070 -1.2754 -0.0224 0.0818 -0.5412 -0.6630
1.3622 -1.0976 -1.1312 -0.0729 0.0602 -0.6703 -0.7195

deviation of the inter-event residuals if the model allowed for oversaturation.

5.2.4 Model Comparisons

Figure 5.7 shows the comparison of the distance attenuation for the Borehole and Sur-

face models. As expected the attenuation at higher frequencies is faster than at lower

frequencies, and it can be concluded that both models attenuate at a similar rate, while the

difference is a constant shift in the vertical axis (the median prediction) due to the effect

of the shallow surface deposits.

Figure 5.8 shows the magnitude attenuation terms for the three models. The fixed value

of e1 allows the comparison of Fm for the ground surface and borehole. While for the
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Table 5.9. Standard Deviations of the Residuals from the Borehole Model

Period φ for φ for τ for τ for τ∗ for
Mw < 5 Mw > 6.5 Mw < 5 Mw > 6.5 Mw > 6.5

PGA 0.5782 0.5400 0.4590 1.0701 0.4407
0.0384 0.5787 0.5465 0.4749 1.0331 0.4836
0.0484 0.5936 0.5636 0.5082 0.8667 0.5611
0.0582 0.6127 0.5791 0.5045 0.7940 0.6207
0.0769 0.5973 0.5692 0.4696 0.8376 0.6562
0.0844 0.5985 0.5703 0.4586 0.8480 0.6599
0.0970 0.6023 0.5732 0.4538 0.8183 0.6476
0.1167 0.6067 0.5800 0.4586 0.7953 0.6262
0.1472 0.6091 0.5797 0.4407 0.7710 0.5810
0.1691 0.6117 0.5816 0.4286 0.7891 0.5530
0.2036 0.6106 0.5798 0.4377 0.7516 0.5113
0.2340 0.5979 0.5757 0.4482 0.6882 0.4890
0.3090 0.5849 0.5736 0.4609 0.6341 0.4429
0.3551 0.5790 0.5696 0.4677 0.6274 0.4093
0.3896 0.5700 0.5661 0.4754 0.6597 0.3823
0.4274 0.5627 0.5618 0.4787 0.6408 0.3692
0.4690 0.5552 0.5540 0.4865 0.6031 0.3659
0.5913 0.5289 0.5380 0.5185 0.5106 0.3501
0.7456 0.4994 0.5179 0.5467 0.4291 0.2983
0.8180 0.4932 0.5146 0.5473 0.3885 0.2761
0.9401 0.4882 0.5157 0.5563 0.3313 0.2420
1.3622 0.4811 0.5196 0.6030 0.2976 0.2052

[∗]Allowing for oversaturation at large magnitudes
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Figure 5.7. Ground motion estimates attenuation with respect to distance for
magnitudes 4, 5, and 6. Left column corresponds to the estimates for borehole, and
right column to surface estimates; first row shows estimates for a spectral period of
0.05 (sec), second row for T = 0.3 (sec), and third row for T = 1.0 (sec). Estimated
scenario corresponds to V s30 of 760 (m/s), depth to V s equal to 800 (m/s) of 60

(m), Vs at depth 100 (m) of 3000 (m/s)
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combined model the constant value e1 was not fixed, it can be observed that the shape and

magnitude of the magnitude dependence is in line with the surface and borehole models.

Figure 5.8. Comparison of the magnitude terms for the Combined, Surface, and
Borehole models.

Response spectra are plotted in Figure 5.9 comparing the predictions for borehole and

surface for magnitudes 4, 5, and 6 and distance to the fault rupture of 20, 50, and 100

kilometers. The rest of the predictor variables were set to reference values. The difference

in predicted amplitude of the ground motion reflects the site response effect on the ground

motion.
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Figure 5.9. Median spectrum estimates for magnitudes 4, 5, and 6. Left column
corresponds to the estimates for borehole, and right column to surface estimates;
first row shows estimates for a distance to the fault plane of 20 (km), second row
for RRUP= 50 (km), and third row for RRUP= 100 (km). Estimated scenario
corresponds to V s30 of 760 (m/s), depth to V s equal to 800 (m/s) of 60 (m), Vs

at depth bedrock of 3000 (m/s)
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5.2.5 Analysis of Residuals

This section presents the residuals from the regression analyses as functions of Magnitude

and Event depth. The residuals from the regression analyses as functions of other main

independent parameters is presented in the appendix. This allows the assessment of the

models’ performance. Results are presented for the three models developed, for Surface,

Borehole, and Combined for spectral periods of 0.03, 0.2, 0.6, 1.0, and 1.4 seconds.

5.2.5.1 Inter-Event Residuals

Figures 5.10 through 5.19 show the inter-event residuals for the surface, borehole, and

combined models, for the spectral periods and parameters previously mentioned. The

magnitude dependence figures show the median prediction overestimating the data for

magnitudes over 6.5, this trend was expected as over-saturation was not allowed during the

regression. Note also that there is a clear trend of the residuals with respect to event depths,

this shows that for deeper events the median under-estimates the measured values. This has

a fundamental reason in that deeper events, parameterized by distance-to-rupture (RRUP ),

will be less attenuated than shallower events with similar distance parameterization because

deeper events’ paths include a larger portion of hard rock. In addition, events at larger

depths may have different stress drop than events at lower depths.
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Figure 5.10. Inter-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.

106



Figure 5.11. Inter-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus Event Depth.
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Figure 5.12. Inter-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.13. Inter-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus Event Depth.
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Figure 5.14. Inter-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.15. Inter-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus Event Depth.
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Figure 5.16. Inter-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.17. Inter-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus Event Depth.
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Figure 5.18. Inter-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.19. Inter-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus Event Depth.
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5.2.5.2 Intra-Event Residuals

Figures 5.20 to 5.29 show the intra-event residuals for the surface, borehole, and combined

models, for the spectral periods previously mentioned. Residuals are plotted versus Magni-

tude and Closest distance to the fault rupture. There is no trend with any of the regressed

variables (see also appendix A). However a trend was found when looking at close events

(e.g. recorded at distances to the fault lower than 20 km), this is because the model does

not consider any specific term to account for near fault effects. Moreover, soil nonlinearity

is not accounted for in the model and these effects are more likely to be observed at close

distances. The fact that the trend is, in general, observed in the surface residuals more

than in the borehole residuals concurs with nonlinear soil behavior being a factor. Note

also, that the trend is only noticeable at periods lower than 0.6 seconds.

A noticeable trend of decreasing variation of the intra-event residuals is noticed for distances

larger than 200 km. This effect is not reflected by recent attenuation models (e.g., the NGA

attenuation models), because because these models did not include records at very large

distances in their regressed data.
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Figure 5.20. Intra-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.21. Intra-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus distance to the fault.
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Figure 5.22. Intra-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.23. Intra-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus distance to the fault.
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Figure 5.24. Intra-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.25. Intra-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus distance to the fault.
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Figure 5.26. Intra-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.27. Intra-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus distance to the fault.
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Figure 5.28. Intra-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus Magnitude.
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Figure 5.29. Intra-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus distance to the fault.
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5.2.6 Comparison of Inter and Intra-Event Residual Standard Devia-

tions

Inter- and intra-event residuals, as explained above, are normally distributed random vari-

ables with zero mean and standard deviations τ and φ respectively. The study of these

standard deviations is relevant because they dictate how much uncertainty is embedded in

the GMPE. Figures 5.30 and 5.31 show the magnitude dependence of these two standard

deviations. Note that intra-event standard deviation, φ, is almost independent of magni-

tude, while inter-event standard deviation,τ , are positively correlated with magnitude for

short spectral periods, and negatively correlated for higher spectral periods. It is important

to note that, as mentioned before, the τ values are over-estimated for large magnitudes due

to the bias resulting from preventing oversaturation.

Further comparison of these measures of uncertainty, can be observed in Figures 5.32 to

5.34. Note first that intra-event standard deviation for the combined model falls between

φB and φG, as expected. Figures 5.33 and 5.34 show that inter-event standard deviations

for the three models are not very different. This fact reinforces the suitability of using the

Combined model which forces the inter-event average misfits to be equal (there is only one

δBe in the combine model).

Ground motion prediction equations generally assume that inter- and intra-event residu-

als are independent, this assumption is implicit in that no correlation is included in the

equations. Correlation values, however, are seldom published.

To test whether these two random variables are correlated or not, the correlation coefficient

between them was calculated. Because the regression process allowed for the inter- and

intra-event standard deviations to be magnitude dependent, the values for each of them

were normalized to make them standard normal random variables (i.e. N (0, 1)) by dividing

them by the corresponding standard deviation (τ for the inter-event, and φ for the intra-
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Figure 5.30. Surface intra- and inter-event standard deviations as a function of
magnitude. Intra-event standard deviation presented in left column, inter-event

standard deviation in right column.
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Figure 5.31. Borehole intra- and inter-event standard deviations as a function
of magnitude. Intra-event standard deviation presented in left column, inter-event

standard deviation in right column.
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Figure 5.32. Comparison of the intra-event standard deviations -φ- for the Com-
bined, Surface, and Borehole models.

event residuals). Figures 5.35 to 5.38 show the correlation between δBe and δWes for

spectral periods of 0.03 and 1.0 seconds for the borehole and surface models. From the

analysis it is concluded that the independence assumption is valid.

Figures 5.39 and 5.40 show the close match between Surface and Borehole inter-event resid-

uals. The close agreement between the inter-event residuals obtained from the Combined

model, and those from the Surface and Borehole models indicates that the often made as-

sumption that borehole and surface ground motions have the same event residual is correct.

Moreover, it also indicates that the Combined model gives about the same predictions as

those given by the Surface and Borehole models alone.
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Figure 5.33. Comparison of the inter-event standard deviations -τ - for the Com-
bined, Surface, and Borehole models.
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Figure 5.34. Comparison of the inter-event standard deviations -τ - for the Com-
bined, Surface, and Borehole models allowing for oversaturation in the median

estimate.
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Figure 5.35. Correlation between surface Inter- and Intra-event residuals, for a
spectral period of 0.03 seconds.
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Figure 5.36. Correlation between surface Inter- and Intra-event residuals, for a
spectral period of 1.0 second.
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Figure 5.37. Correlation between borehole Inter- and Intra-event residuals, for a
spectral period of 0.03 seconds.
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Figure 5.38. Correlation between borehole Inter- and Intra-event residuals, for a
spectral period of 1.0 second.
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Figure 5.39. Surface Inter-Event terms versus Borehole Inter-Event terms for
peak ground accelerations
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Figure 5.40. Surface and Borehole Inter-Event terms versus the Inter-Event terms
obtained from the Combined model, for peak ground accelerations
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5.3 Single-Station Standard Deviations

5.3.1 Introduction

Much recent work has been devoted to compute the standard deviation of recorded ground

motions at a single station (e.g. Lin et al., 2010; Al-Atik et al., 2010). This work has been

driven by the need to develop better estimates of standard deviation for non-ergodic PSHA

analyses (Anderson and Brune, 1999). In traditional (e.g., ergodic) PSHA, the underlying

assumption is that the variability computed from an entire data set (e.g., including various

sites and various sources for various events) is the same as the variability at a single site for

various events. Removing the ergodicity assumption implies that the median ground motion

at a given site can be estimated using independent means, and hence the standard deviation

must also be reduced to reflect this additional information. As indicated in Chapter 3, single

station standard deviations can be used as a lower bound value of the standard deviation

that would be used in a PSHA analysis that removes the ergodic assumption on site response

(Al-Atik et al., 2010). This Section presents single station standard deviations for the KiK-

net database and compares the results with similar studies for other geographical regions.

The results presented herein have the originality of being applicable both to the surface

and to the borehole, since the KiK-net database has records at both the surface and at

depth.

This section presents an analysis of single-station standard deviations using the KiK-net

database. The approach taken was to develop a ground motion prediction equation specific

to the KiK-net data (Section 5.2). A subset of stations that have recorded more than 10

records is selected and single station standard deviations are computed for these stations.

These results are presented in Section 5.3.2. Section 5.3.3 looks at correlations between

single station residuals and other subsets of residuals. An additional breakdown of residuals

is studied in Section 5.3.4. Finally, the computed single-station standard deviations are
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Figure 5.41. Magnitude-Distance distribution for the subset of stations with
more than 10 records.

compared to those computed for other geographical regions.

5.3.2 Analysis of Residuals at Single-Stations

A subset of ground motions from the KiK-net database that corresponds to stations that

recorded at least 10 events is selected. The magnitude-distance distributions of earthquakes

recorded at these stations is shown in Figure 5.41. The station parameters (Vs30, Vshole,

H800) of these stations are shown in Figure 5.42.

In order to compute the single station standard deviation, the intra-event residuals com-

puted from the GMPE (Section 5.2) for each station are used to define the site term for

each of the stations as given by
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Figure 5.42. Station parameters for subset of stations with more than 10 records.

δS2Ss =
1

NEs

NEs∑
e=1

δWes (5.11)

where, δS2Ss is a random variable that represents the average within-event residual at

each station and is hereby referred to as the site term. This is the average intra-event

residual at site “s”. Assuming that there is no bias in the subset of single-station records,

this random variable is a zero mean random variable, and its standard deviation is denoted

by φS2S . This standard deviation quantifies the site-to-site variability that is not explained

by the ground motion prediction equation. The introduction of the site term permits a

decomposition of the ground motion residuals as follows

∆ = δWes + δBe = δS2S + δWo + δBe (5.12)

Note that at a single station δS2Ss takes a given, deterministic value, hence the single

station ground motion variability is computed by eliminating this term from the residuals.

δWo is a residual variability. The single-station standard deviation can then be computed

for the entire subset (of stations that recorded more than 10 earthquakes) using:
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φSS =

√∑NS
s=1

∑NEs
e=1 (δWes − δS2Ss)2

(
∑NS

s=1NEs)− 1
(5.13)

Equation 5.13 which assumes a homoscedastic model, is equivalent to a weighted average of

the individual single-site intra-event standard deviation. φSS can then be allowed to vary

with station or event parameters in order to capture any dependence on single station sigma.

Alternatively, the single-station standard deviation can be computed for each station using

Equation 5.14.

φSSs =

√∑NEs
e=1 (δWes − δS2Ss)2

NEs − 1
(5.14)

Figure 5.43 shows the within event residual at each of the N stations with more than

10 records for the PGA. The square symbols represent the mean residual at each station

(δS2Ss) and the error bars correspond to a one standard deviation range (φsss) for each

station. The stations are placed in order of increasing number of records. The residuals

corrected for the site term δS2Ss are shown in Figures 5.44 to 5.46, both for the surface and

the borehole, and for selected frequencies. These residuals are plotted versus magnitude.

Observe that there is only a slight dependency on magnitude of φss.

Figures 5.47 to 5.49 show the correlation between the intra-event residuals corrected for

site-term (δWes − δS2Ss) and the inter-event residuals or event terms (δBe). Statistical

independence between these random variables can be safely assumed from the low correla-

tion coefficients at all periods. Hence, the total single-station standard deviation can then

be computed as

σss =
√
φ2
ss + τ2 (5.15)
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Figure 5.43. Intra-event residuals at stations with more than 10 records.
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Figure 5.44. Intra-event residuals corrected for site term versus magnitude, for
peak ground acceleration.
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Figure 5.45. Intra-event residuals corrected for site term versus magnitude, for
a spectral period of 0.3 seconds.
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Figure 5.46. Intra-event residuals corrected for site term versus magnitude, for
a spectral period of 1.0 second.
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Figure 5.47. Correlation between intra-event residuals (corrected for the site
term) and inter-event residuals, for peak ground acceleration.
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Figure 5.48. Correlation between intra-event residuals (corrected for the site
term) and inter-event residuals, for a spectral period of 0.3 seconds.
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Figure 5.49. Correlation between intra-event residuals (corrected for the site
term) and inter-event residuals, for a spectral period of 1.0 second.
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The single station standard deviations that include the event term are shown in Figure 5.50.

Recall that the magnitude scaling of the GMPE was not allowed to decrease with increasing

magnitude (Section 5.2). As a result, there is a significant bias at high frequencies for

earthquakes with magnitudes larger than 6.0. This bias, in turn, results in an overprediction

of the between event variability at large magnitudes (τ). To limit the effect of this bias, the

bias in the event terms for earthquakes with magnitude greater than 5.6 (Mh) was removed

using a linear fit. The reduced values of τ are used to compute the σss shown in Figure

5.50. The difference between single-station standard deviation of surface and borehole is

consistently lower than the difference seen between standard deviation in the GMPEs (e.g.

Table 5.3). The single station standard deviations for all periods are shown in Figure 5.51

both for the surface and the borehole records. Table 5.10 shows the single-station standard

deviations.

The approach used to compute single station standard deviations presented above is the

approach that was adopted by the PEGASOS project Renault et al. (2010).

Figures 5.52 to 5.54 show the mean of single station residuals (δS2Ss) versus V s30 and

site period (To). It is interesting to note that for long site period (e.g., soft soil sites),

there is a negative bias in the residuals for the surface, which indicates that the GMPE

is overpredicting ground motions for these stations (e.g. Figure 5.52). This is likely due

to nonlinear soil behavior for these stations. Figure 5.52 to 5.54 also show the intra-event

single-station standard deviation (φsss) as a function of site parameters. Observe that

the standard deviation of the δS2Ss term for the surface appear to decrease slightly for

increasing values of To, this is observed at all frequencies.

Figures 5.55 to 5.57 show the dependency of intra-event single-station residuals (δW−δS2S)

versus site conditions for PGA, T = 0.3, and T = 1.0. The dependency of intra-event

single-station residuals on V s30 shows no trend until large V s30 values. For stations with

large V s30 values (i.e. V s30 > 900 m/s), the standard deviation of these residuals (φss) is
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Figure 5.50. Single station standard deviations for stations with more than 10
records, for peak ground acceleration

equal to 0.44 (log units, at borehole for PGA), lower than the 0.51 value for lower V s30

values. If we consider only the V s30 values that correspond to engineering bedrock (V s30

> 760 m/s), the φss value is 0.49. Note that this findings are true for borehole but not for

surface.

Figures 5.58 to 5.60 show the standard deviation of the empirical amplification factor (in

log-space) computed by dividing the ground motion at the surface over the ground motion

at depth for each of the 131 stations with more than 10 recordings. Using the notation

described above, this amplification factor corresponds to:
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Figure 5.51. Total standard deviations compared for single-sites and the ergodic
prediction.

AF = yG − yB (5.16)

Note from Figures 5.58 to 5.60 that the standard deviation of the amplification factor tend

to decrease for high V s30. This observation, combined with the previous one that V s30

does not influence the observed residuals, could indicate that the GMPE (i.e. the median

model) is strongly influenced by the sites where most of the data is (i.e. low V s30) inducing

a slight bias for high V s30.
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Figure 5.52. Mean of single-station residuals versus V s30 and site period (To).
Left column shows the mean residuals (δS2S) and right column shows its standard

deviation (φS2S). Results for peak ground acceleration.
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Figure 5.53. Mean of single-station residuals versus V s30 and site period (To).
Left column shows the mean residuals (δS2S) and right column shows its standard

deviation (φS2S). Results for spectral acceleration of 0.3 seconds.

154



Table 5.10. Single-Station Standard Deviations for Surface and Borehole

Period Surf φ Borehole φ Surf σ Borehole σ
PGA 0.4967 0.5060 0.6725 0.6684
0.0384 0.4857 0.4849 0.6698 0.6681
0.0484 0.4725 0.4670 0.6653 0.6672
0.0582 0.4660 0.4722 0.6655 0.6744
0.0769 0.4774 0.4725 0.6791 0.6697
0.0844 0.4837 0.4819 0.6746 0.6641
0.0970 0.4912 0.4945 0.6800 0.6693
0.1167 0.5028 0.4999 0.6874 0.6761
0.1472 0.5149 0.5024 0.6864 0.6696
0.1691 0.5124 0.5049 0.6805 0.6648
0.2036 0.5067 0.4994 0.6741 0.6610
0.2340 0.5010 0.4865 0.6682 0.6520
0.3090 0.4812 0.4664 0.6582 0.6379
0.3551 0.4777 0.4573 0.6517 0.6361
0.3896 0.4653 0.4459 0.6511 0.6357
0.4274 0.4583 0.4427 0.6459 0.6319
0.4690 0.4531 0.4410 0.6382 0.6320
0.5913 0.4442 0.4350 0.6307 0.6302
0.7456 0.4258 0.4120 0.6144 0.6192
0.8180 0.4264 0.4086 0.6168 0.6216
0.9401 0.4258 0.4034 0.6122 0.6148
1.3622 0.4178 0.3870 0.6095 0.6266
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Figure 5.54. Mean of single-station residuals versus V s30 and site period (To).
Left column shows the mean residuals (δS2S) and right column shows its standard

deviation (φS2S). Results for spectral acceleration of 1.0 second.
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Figure 5.55. Intra-event single-station residuals a versus V s30 for peak ground
acceleration.

Figure 5.56. Intra-event single-station residuals a versus V s30 for a spectral
period of 0.3 seconds.
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Figure 5.57. Intra-event single-station residuals a versus V s30 for a spectral
period of 1.0 second.

Figure 5.58. Standard deviation of empirical amplification factor for peak ground
acceleration.
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Figure 5.59. Standard deviation of empirical amplification factor for a spectral
period of 0.3 seconds.

Figure 5.60. Standard deviation of empirical amplification factor for a spectral
period of 1.0 second.
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5.3.3 Study of Cross-correlation between Residuals

When dealing with borehole and surface records, surface ground motion can be written as,

yG = µB + µAMP + δWB + δS2SAMP + δAMP + δBB (5.17)

where, µB is the median prediction for the borehole, µAMP is the median amplification

factor predicted by the GMPE, function of V s30 and/or other site parameters (see Equation

5.5), δWB is the intra-event residual at borehole, δS2SAMP is the mean residual among

sites with the same site parameterization (e.g. same V s30 and h800), δAMP is the residual

in site amplification within each site, and δBB is the inter-event term at borehole. The sum

of the terms δS2SAMP and δAMP represents the residual of the empirical amplification

factor. If δBG is assumed to be equal to δBB, which is consistent with the results presented

in Section 5.2 (see Figure 5.34) and it is imposed in the Combined model, Equation 5.17

can be rewritten as,

yG = µB + µAMP + δWB + δS2SAMP + δAMP + δBG (5.18)

or equivalently,

yG = µG + δWB + δS2SAMP + δAMP + δBG (5.19)

This implies that,

σG =
√

(φB)2 + (φS2SAMP )2 + φ2
AMP + τ2 (5.20)
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For this to be true, δWB, δS2SAMP , δAMP and δBG must be independent random vari-

ables.

Computation of δS2SAMP The median estimate at borehole is given by,

yB = µB + δWB + δBB (5.21)

and at the ground surface by,

yG = µG + δWG + δBG (5.22)

subtracting them, the empirical amplification factor (AF ) is obtained. Recalling that the

intensities yB and yG are in logarithmic units the equation for AF is then,

AF = yG − yB = µG − µB︸ ︷︷ ︸
µAMP

+ (δWG − δWB)︸ ︷︷ ︸
∆AMP

(5.23)

where, ∆AMP is the difference between the intra-event residuals at the surface and bore-

hole. Combining Equations 5.19 and 5.23, ∆AMP can be rewritten as,

∆AMP = δWG − δBB = δS2SAMP + δAMP (5.24)

where, δAMP is a zero mean, normally distributed random variable with standard deviation

φAMP , and δS2SAMP is also a zero mean, normally distributed random variable with

standard deviation φS2SAMP . Table 5.11 shows the correlation coefficients between the

residuals in Equation 5.20.
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Table 5.11. Single-Station Residuals correlation Coefficients

PGA 0.3 (sec) 1.0 (sec)
δWB & δS2SAMP -0.1178 -0.1572 -0.1591
δWB & δAMP -0.2875 -0.1500 -0.2222
δWB & δBG -0.0911 -0.0072 0.0777

δS2SAMP & δAMP 0.0000 0.0000 0.0000
δS2SAMP & δBG 0.0236 0.0645 -0.0331
δAMP & δBG 0.0459 0.0547 -0.0789

Note the negative correlation between the intra-event residual and mean residual amplifica-

tion (δS2SAMP ), this dependency is what one would expect if nonlinear effects were taking

place. The residual amplification, corrected by δS2SAMP , δAMP is again negatively cor-

related with the intra-event residual, a further indication on of nonlinear effects. Notably,

the correlation between δS2SAMP and δAMP extremely low. The remaining pairs are

poorly correlated.

Figure 5.61 shows the correlation coefficients between all the components of the total resid-

ual at the ground surface. Since the random variables represented by their statistics in

Equation 5.20 are not uncorrelated, Equation 5.20 should include these correlations as,

σG =
√

(φB)2 + (φS2SAMP )2 + φ2AMP + τ2 + · · ·

· · ·2 ∗ ρδWB−δS2SAMP ∗ φB ∗ φS2SAMP + 2 ∗ ρδWB−δAMP ∗ φB ∗ φAMP + · · · (5.25)

· · ·2 ∗ ρδWB−δBG ∗ φB ∗ τ + 2 ∗ ρδS2SAMP−δAMP ∗ φS2SAMP ∗ φAMP + · · ·

· · ·2 ∗ ρδS2SAMP−δBG ∗ φS2SAMP ∗ τ + 2 ∗ ρδAMP−δBG ∗ φAMP ∗ τ

where, all the correlation coefficients needed are given in Table 5.11. The standard devi-

ations of each of the involved random variables are given in Table 5.12, to be consistent

with the estimates of the single station components of the Equation 5.25, the inter-event

residual standard deviation (τ) is updated to represent only those events sampled in the
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Figure 5.61. Correlation coefficient between the different components of the
total ground surface residual. Correlation Coefficients are plotted against spectral

period.

single-station subset 10 or more times. This change is also necessary to add the magni-

tude independent single-station residual variances, with inter-event variances that otherwise

would be magnitude dependent. The difference between this value of τ and the ergodic

estimate (i.e. the standard deviation of the mean of δBe).

Table 5.13 shows the comparison between the empirical total standard deviation at the

ground surface σG, with the sum of the disaggregated sources of variability (i.e. Equation

5.25). Note that for most spectral periods there is very good agreement between the two.
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Table 5.12. Standard Deviation of Random Variables that compose the total
Surface Standard Deviation (ergodic)

Period φB φS2SAMP φAMP τ

PGA 0.6603 0.3805 0.3067 0.5212
0.0384 0.6380 0.3681 0.3100 0.5092
0.0484 0.6190 0.3787 0.3153 0.4965
0.0582 0.6133 0.3854 0.3129 0.4872
0.0769 0.5939 0.4370 0.3012 0.4877
0.0844 0.6085 0.4527 0.2979 0.4821
0.0970 0.6120 0.4922 0.2910 0.4808
0.1167 0.6078 0.5019 0.2811 0.4849
0.1472 0.6010 0.4839 0.2592 0.4587
0.1691 0.6054 0.4926 0.2510 0.4593
0.2036 0.6067 0.4687 0.2425 0.4662
0.2340 0.5921 0.4730 0.2412 0.4616
0.3090 0.5773 0.4549 0.2301 0.4540
0.3551 0.5696 0.4555 0.2266 0.4579
0.3896 0.5517 0.4543 0.2240 0.4674
0.4274 0.5505 0.4483 0.2290 0.4666
0.4690 0.5418 0.4244 0.2359 0.4614
0.5913 0.5207 0.3876 0.2384 0.4717
0.7456 0.4964 0.3770 0.2607 0.4753
0.8180 0.4924 0.3610 0.2696 0.4781
0.9401 0.4935 0.3564 0.2828 0.4760
1.3622 0.5038 0.3577 0.3312 0.5062

The negative correlation between the borehole variability (δB) and the components of the

variability in the amplification implies that if this correlation is taken into account in

the Bazurro and Cornell methodology, the resulting standard deviation would be reduced.

Equation 3.3 has to be modified to account for the correlation. Hence, the equation becomes

σlnSs
a(f) ≈

√
(c1 + 1)2 ∗ σ2

lnSr
a(f) + σ2

lnAF (f) + 2(c1 + 1)ρ(f)σlnSr
a(f)σlnAF (f) (5.26)

Inclusion of the negative correlation would decrease standard deviations at the surface and

hence result in a reduction in hazard curves.
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Table 5.13. Empirical check for Equation 5.25

Period Empirical Surface σ Surface σ from eq. 5.25
PGA 0.8181 0.8567
0.0384 0.8179 0.8428
0.0484 0.8192 0.8256
0.0582 0.8248 0.8199
0.0769 0.8684 0.8675
0.0844 0.8722 0.8767
0.0970 0.8939 0.8944
0.1167 0.8948 0.8965
0.1472 0.8838 0.8837
0.1691 0.8758 0.8798
0.2036 0.8736 0.8782
0.2340 0.8678 0.8689
0.3090 0.8537 0.8459
0.3551 0.8455 0.8366
0.3896 0.8413 0.8310
0.4274 0.8311 0.8212
0.4690 0.8121 0.8006
0.5913 0.7963 0.7853
0.7456 0.7773 0.7677
0.8180 0.7690 0.7635
0.9401 0.7558 0.7508
1.3622 0.7472 0.7448

Figures 5.62 to 5.64 show δS2SAMP as a function of V s30 and predominant period To.

Note how the standard deviations at all periods reduce with increasing shear wave velocity.

This would indicate lower variability in site response for stiffer soils.

5.3.4 Study of Single-Station Standard Deviations: path, magnitude,

and distance effects

Single station standard deviation was shown to be a lower bound to the standard deviation

that can be used in a PSHA analysis when the ergodic assumption on site response is

removed. There is, however, large variability in single-station standard deviation from

one station to another, as evidenced, for example, in Figure 5.50. One possibility for
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Figure 5.62. Mean residual amplification (δS2SAMP ) versus V s30 for peak
ground acceleration. Plus and minus 1 standard deviations are added to illustrate

dependency
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Figure 5.63. Mean residual amplification (δS2SAMP ) versus V s30 for spectral
period of 0.3 seconds. Plus and minus 1 standard deviations are added to illustrate

dependency
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Figure 5.64. Mean residual amplification (δS2SAMP ) versus V s30 for spectral
period of 1.0 seconds. Plus and minus 1 standard deviations are added to illustrate

dependency
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this large variation in single station standard deviation is that a single station samples

events from various sources and various azimuths. Figure 5.65 shows the single station

standard deviation for T = 0.3 as a function of the standard deviation of the station-to-

event azimuth. Observe a clear correlation of increasing standard deviation with increasing

standard deviation azimuth. A similar trend can be seen in Figure 5.66, where single station

standard deviations are shown only for records within a given bracket of station-to-event

azimuth. When the azimuth bracket is reduced to 8 degrees, the single station standard

deviation (intra-event) for T = 0.3 reduces to 0.424 from a value of 0.481 for all events.

Table 5.14 shows a comparison of φss and the bracketed φss.

Table 5.14. Single-Station Standard Deviations for Surface and Bracketed Az-
imuths

Period Surf φ Surf φ
for 8◦ bracket

PGA 0.4967 0.5216
0.0384 0.4857 0.4220
0.0484 0.4725 0.4038
0.0582 0.4660 0.4179
0.0769 0.4774 0.4166
0.0844 0.4837 0.4192
0.0970 0.4912 0.4305
0.1167 0.5028 0.4346
0.1472 0.5149 0.4774
0.1691 0.5124 0.4909
0.2036 0.5067 0.4834
0.2340 0.5010 0.4779
0.3090 0.4812 0.4239
0.3551 0.4777 0.4285
0.3896 0.4653 0.4150
0.4274 0.4583 0.3989
0.4690 0.4531 0.3963
0.5913 0.4442 0.3915
0.7456 0.4258 0.3874
0.8180 0.4264 0.3882
0.9401 0.4258 0.4073
1.3622 0.4178 0.3897

This study concentrated on removing the ergodicity assumption on site response from site
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response analyses. Figures 5.65 and 5.66 are an indication that if the ergodicity assumption

on path is also removed, the single station standard deviation can be reduced much further.

Studies in Taiwan (Lin et al., 2010; Chen and Tsai, 2002), Japan (Morikawa et al., 2008), and

Southern California (Atkinson, 2006) showed single-station, single-path standard deviations

for PGA as low as 0.365, 0.36, and 0.414, respectively. In this study, the value for a spectral

period 0.03 seconds computed for stations with an azimuth range of 8 degrees is 0.422, for

PGA the bracketed value is the only exception where higher than that obtained for all

azimuths were obtained. Similar reduction is seen at other spectral periods. Table 5.15

shows a comparison with other studies, note the remarkable agreement in σss from studies

across very different regions.

Table 5.15. Single-station standard deviations for PGA

This study Atkinson (2006) Lin et al. (2010) Chen & Tsai (2002)
σ 0.799 0.711 0.680 0.731
τ 0.493 0.405 0.490
φ 0.629 0.546 0.543
σss 0.672 0.617 0.619 0.631
φsp 0.387 0.414 0.365

It is also important to consider the variability in single station standard deviation with

magnitude and distance to rupture. Figure 5.67 shows the single station standard devia-

tions for two ranges of magnitudes. The differences in standard deviation for the different

magnitude ranges are significant, although it is important to note that the standard devi-

ations obtained are sample size sensitive. This behavior is consistent for all periods, and

as more data is gathered further validation would be desirable. When different ranges of

distance are used (Figure 5.68), it is seen that the standard deviation decreases with in-

creasing distance to the fault. This trend is also seen for intra-event residuals (e.g. Figure

5.22).
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Figure 5.65. Single station standard deviations for T = 0.3 versus standard devi-
ation of station-to-event azimuths. These two quantities are positively correlated
(ρ = 34%). Only stations with more than 15 records are considered for this plot.
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Figure 5.66. Single station standard deviations for T = 0.3 of records sampled
from a varying range of station-to-event azimuth. Only station with more than 15

records are considered for this plot.
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Figure 5.67. Single station standard deviations for different magnitude ranges for
T = 0.3. Only station with more than 10 records are considered for this plot, and
only those with 6 or more records are within each magnitude bracket are plotted.
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Figure 5.68. Single station standard deviations for T = 0.3 and for different
ranges of distance to the rupture plane. Only station with more than 10 records
are considered for this plot. Mean single station standard deviation of these records

is 0.48.
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5.4 PSHA Example

This section presents an example application of the proposed methodology along with

current ergodic estimates, and estimates using single-site ground motion records. All within

the framework of a probabilistic seismic hazard analysis (PSHA).

The seismicity affecting the sample site will be defined as follows,

• Areal Source of seismicity of 100 by 100 kilometers.

• Activity rate of 0.38, for Mw between 4 and 7

• Truncated exponential Mw distribution (λ = 0.8).

The selected site is is located at coordinates 34.4856o N and 130.9069 W and, corresponds

to station KMMH09 in the KiK-net database. The V s30 of the site is 399.79 (m/s), and

the shear-wave velocity profile is given in Figure 5.69.

In this example we will look at the ground motion predictions and hazard curve for a

spectral period of 0.1 seconds. Figure 5.70 shows the residuals of the records at the site,

with a mean deviation from the predicted Sa(T = 0.1) of δS2S= 0.28, this corresponds to

the site-to-site variability. The standard deviation of these residuals is σsss=0.36.

Figure 5.71 shows the hazard curve for the ergodic condition, that is using the median

GMPE prediction for the ground surface, and the corresponding standard deviation. Figure

5.72 shows the hazard curve for the site-specific case, that is when δS2S is known and σsss

can be used.
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Figure 5.69. Shear-wave velocity profile for site KMMH09

Figure 5.70. Total residuals at site KMMH09, for spectral period of 0.1 seconds.
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Figure 5.71. Ergodic Hazard Curve

Figure 5.72. Ergodic and Single-Site Hazard Curves

Note the that the reduction in design values for long return periods is significant. For short

return periods, the single-site hazard curve is increases because of the positive value of
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δS2S, this shows the bias of the ergodic prediction. Figure 5.73 shows the prediction of

the single-site hazard curve using the median borehole prediction, site response, and the

standard deviation known for the site (σsss). This last curve matches reasonably well the

single-site curve, but it is important to know that in a general case we do not have the

necessary information to use σsss .

Figure 5.73. Site-specific hazard curve using borehole ground motion estimate
and site response.

Using the second method proposed in Chapter 3, a fourth hazard curve is calculated with

the median estimate for borehole and the ergodic standard deviation but without the site-

to-site amplification variability (i.e. φS2SAMP ). This hazard curve is included in Figure

5.74, note the reduction on design values for long return periods is significant.

Figure 5.75 shows another important advantage of the proposed approach, the reduction of

bias in ground motion estimates. Because the selected site is positively bias with respect to

the median prediction (i.e. δS2S > 0), the predicted ground motion using site response is

higher than the median prediction, which impacts the seismic hazard and can be observed

in Figure 5.75.
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Figure 5.74. Hazard curve using site response and partially ergodic standard
deviation

Figure 5.75. Short return period portion of the hazard curves. Note the misfit of
the site response generated curves with respect to the ergodic curve, this reflects

the reduction of the bias in the ground motion predictions.
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All the hazard curves shown so far consider linear site response. The GMPE’s consider only

linear site terms because the KiK-net database is governed by low magnitude events that

in most cases did not produce nonlinear soil behavior. However, in our PSHA example long

return periods are considered, which imply higher intensities and therefore would induce

nonlinear soil behavior. To consider nonlinearity in site response, the Bazzurro and Cornell

approach is used.

Site response analyses were performed using the linear-equivalent approach. Modulus degra-

dation curve used for all layers was the Dobry and Vucetic (1987) curve for clays with

plasticity index between 10 and 20, and the density was taken as 1.8 g/cm3. The ground

motions used as input correspond to those used in Section 4.2.

Figure 5.76 shows the results of this exercise. Observe the significant reduction in the

design values for long return periods.

Figure 5.76. Hazard curves including nonlinear site response.
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Chapter 6

Conclusions

6.1 Summary

The results of seismic hazard analyses are strongly influenced by the uncertainty in the input

parameters. The motivation for this dissertation is to better account for the components

of these uncertainties. One important step towards reducing uncertainty is to identify the

parts of the phenomena that are epistemic, and therefore reducible, and the parts that

constitute aleatoric uncertainty.

Throughout this dissertation the total uncertainty in the predicted ground motion was

divided into different components. The components were explained and where possible

bounds to these uncertainties were set. This is significant in the context of Probabilistic

Seismic Hazard Analysis (PSHA), as if a part of the uncertainty is bounded it means that

when designs for long return periods (i.e. important structures) are needed the magnitudes

of the parameters involved (e.g. magnitude, site amplification) cannot increase indefinitely.

Although there is no evidence in the literature to cap the total uncertainty in ground motion

predictions, the ability to limit a part of it could be significant.
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In order to avoid counting the site variability twice in a site-specific hazard analysis, one

needs to use an input motion that does not include that uncertainty. This is not easily

done with current methodologies, as most GMPE are developed using records from multiple

earthquakes and multiple locations, hence the ground motion estimates includes site-to-site

variability. This dissertation approaches this problem by studying the site response part

of the total uncertainty, this is done using surface and borehole data available from the

KiK-net database.

Three different problems were studied . First, a random field model for shear wave velocity

profiles was developed. This model can be used to obtain realizations of random fields for

Monte Carlo type analyses. Second, a ground motion prediction equation for the Kik-net

database was developed. This database was selected because it has sufficient records to

compute stable estimates for the statistics of ground motion residuals at a single station.

Finally, the statistics of residuals at a single station were studied and their components

were analyzed.

6.2 Significant Findings

This dissertation provides means to perform site-specific seismic hazard analysis, relaxing

in part the ergodic assumption, and hence reducing uncertainty in the ground motion

estimates.

Site response can be a significant contributor to the seismic hazard. Moreover, this is a

component of ground motion uncertainty that could be reduced. For this reason random

fields were studied as an option to manage the variability of shear-wave velocity profiles

that in turn can result in site response variability. Random fields can be used to generate

profiles that match the observed profiles to the degree of uncertainty reached with the site

exploration, and then used to propagate bedrock ground motions. By using random fields
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the engineer is allowed to use all available information on the site of interest to constrain the

wave propagation characteristics of the site. Constraining the variability of the shear-wave

velocity profiles, produces three important benefits,

• Better reflecting the variability in all inputs to a PSHA analysis.

• Reducing bias in the ground motion estimate.

• Possible reduction of the total uncertainty.

One significant contribution of this dissertation to the use random fields in generating ver-

tical shear-wave velocity profiles is the use of stationary gaussian models. Typical random

profile generation approaches use non-stationary gaussian models, that require the fitting

of many of their parameters before the user is able to generate profiles appropriate for

his/her study. The proposed stationary gaussian model uses the strong correlation that

exists between adjacent layers rather than distance between points. This allows for very

simple and fast calibration of the model to any data set, in particular if at a site of interest

site exploration is performed the random field models can be used to account for the varying

degrees of knowledge on the site profile.

Several random field models were developed and compared in terms of reproducing the

statistics of the underlying database, its correlation structure, and their ability to reproduce

site response. The two models that compared the best with the database (i.e. the real

profiles), were the one layer lag stationary gaussian model and the non-stationary gaussian

model proposed by Toro (1995). The conclusion is that the one layer lag stationary model

is the simplest of all the tested models and the one with best behavior by the measures

that were tested.

The typical assumption in PSHA is that the uncertainty of the entire sample of sites

and earthquakes is equal to the uncertainty of an individual site. This so called ergodic
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assumption leads to high uncertainties because many different seismotectonic regions, wave

paths, and sites are lumped together. In this dissertation single-site data were examined.

A noteworthy observation is that the reduction of uncertainty is significant when moving

from using a general GMPE (i.e. one that uses the ergodic assumption), to that observed

uncertainty at single sites that have recorded more that 10 earthquakes.

In order to study the uncertainty at these sites, three ground motion prediction equation

were developed. One for the ground surface, one for the borehole, and one that used the

combined data set, for surface and borehole together. This last approach is novel in that

it uses borehole and surface data to constrain the terms that are not surface or borehole

specific. Conclusions from the analysis of the residuals from these GMPEs include that the

Combined model produces similar results to those of the models for surface or borehole.

The mean residuals for each earthquake are remarkably similar between the three equations,

which validates the use of a single measure for borehole and ground surface event residual.

Single station residuals are a sample of what would be the variability at a specific site

(i.e. without using ergodic assumption). This variability can be reduced even more if a

limited range of earthquake azimuths is considered for each station, forcing a unique path

and possibly source. Path and source effects are a significant contribution to the total

uncertainty, allowing to reduce the intra-event standard deviation by about 0.2 (log units

of pseudo-spectral acceleration). A striking observation is that while total uncertainty in

different regions of the world are significantly different, estimates of single-station standard

deviation and single-station, single-path standard deviation are very similar.

Finally, a methodology for site-specific PSHA studies for sites where site response is needed

was proposed. The methodology proposed by Bazzurro and Cornell (2004b) was used.

However, the methodology was modified in two important ways. First, it was demonstrated

that the standard deviation of the input ground motion should be that of the borehole

records, which is significantly lower than the standard deviation at the surface. Second, it

184



was demonstrated that borehole residuals are negatively correlated with the amplification

factor and this correlation can result in a reduction of the uncertainty at the surface.

6.3 Recommendations for Further Study

Several issues worth of additional study were identified throughout the conduct of the

research presented in this dissertation. The most important issues are highlighted below

• The ground motion prediction equations developed in this study assume linear soil

behavior. However, several indicators point to non-linear soil behavior for some sta-

tions. It is recommended that the GMPE developed herein be modified to account

for soil nonlinearity. The effect of nonlinearity on the distribution of the components

of single-station residuals and their interdependence must also be studied.

• Study of the KiK-net data clearly indicated that consideration of single-path would

reduce the single-station standard deviation. More systematic methods should be

used to compute single-path standard deviation. Moreover, methodologies to compute

path terms that would be used in PSHA must be developed.

• The proposed methodology takes advantage of the existence of borehole ground mo-

tion data at the KiK-net array. In a typical PSHA study, these data is unavailable.

This implies that the methodology should be generalized to cases where site response

is computed from surface records. This implies taking into consideration the strong,

but not perfect, correlation between rock outcrop and borehole ground motions.

• Residuals with respect to hypocenter depth were observed in the GMPE. This implies

that the GMPE can be improved by introducing this parameter in the equation.

Moreover, strong dependence of standard deviation with distance to the fault was

observed. Standard deviation can be parameterized to capture this dependency, with
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possible reduction in the overall uncertainty.
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Appendix A

Additional Plots of Ground Motion

Residuals

This appendix presents supplementary figures for the intra- and inter-event residuals.

Residuals are plotted against time-averaged upper 30 meter shear-wave velocity (V s30),

predominant period (To), depth to shear-wave velocity of 800 (m/s), and Magnitude con-

sidering only events that where recorded within 20 kilometers the fault.

A.1 Intra-Event Residuals
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Figure A.1. Intra-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus V s30.
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Figure A.2. Intra-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus predominant period (To).
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Figure A.3. Intra-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus depth to shear-wave velocity

of 800 (m/s).
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Figure A.4. Intra-Event Residuals for spectral period of 0.03 seconds and the
models for Surface, Borehole, and Combined versus Magnitude, considering only

events closer than 20 (km).
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Figure A.5. Intra-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus V s30.
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Figure A.6. Intra-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus predominant period (To).
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Figure A.7. Intra-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus depth to shear-wave velocity

of 800 (m/s).
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Figure A.8. Intra-Event Residuals for spectral period of 0.2 seconds and the
models for Surface, Borehole, and Combined versus Magnitude, considering only

events closer than 20 (km).
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Figure A.9. Intra-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus V s30.
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Figure A.10. Intra-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus predominant period (To).
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Figure A.11. Intra-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus depth to shear-wave velocity

of 800 (m/s).
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Figure A.12. Intra-Event Residuals for spectral period of 0.6 seconds and the
models for Surface, Borehole, and Combined versus Magnitude, considering only

events closer than 20 (km).
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Figure A.13. Intra-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus V s30.
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Figure A.14. Intra-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus predominant period (To).
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Figure A.15. Intra-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus depth to shear-wave velocity

of 800 (m/s).

210



Figure A.16. Intra-Event Residuals for spectral period of 1.0 second and the
models for Surface, Borehole, and Combined versus Magnitude, considering only

events closer than 20 (km).
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Figure A.17. Intra-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus V s30.
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Figure A.18. Intra-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus predominant period (To)
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Figure A.19. Intra-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus depth to shear-wave velocity

of 800 (m/s).
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Figure A.20. Intra-Event Residuals for spectral period of 1.4 seconds and the
models for Surface, Borehole, and Combined versus Magnitude, considering only

events closer than 20 (km)
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