

# A molecular structure based model for predicting surface tension of organic compounds

E. J. DELGADO\* and G. A. DIAZ

Faculty of Chemical Sciences, Theoretical and Computational Chemistry Group (QTC), Universidad de Concepción, Casilla 160-C, Concepción, Chile

(Received 13 December 2005; in final form 15 June 2006)

A Quantitative Structure-Property Relationship (QSPR) model for the prediction of surface tension of organic compounds was derived from a data set of 320 chemicals including N, O, F, Cl, Br, and/or S atoms and covering a range of about  $14-45 \, dyn \, cm^{-1}$ . The model, only involving six molecular descriptors obtained solely from the chemical structures, yielded an  $r^2$  of 0.96. Its predictive capability was estimated from an external test set containing 55 structures not considered in the training set ( $r^2 = 0.94$ ). It was shown that the selected molecular descriptors presented a physical meaning corresponding to the different intermolecular interactions occurring in the bulk solution. The model is applicable to a wider variety of compounds, includes less parameters and correlates better than other QSPR models reported in literature.

Keywords: Surface tension; QSPR; Organic compounds; Molecular structure

## 1. Introduction

A liquid surface tends to contract to the minimum area as a result of unbalanced forces of molecular attraction at the surface. The molecules at the surface are attracted into the body of the liquid because the attraction of the underlying molecules is greater than the attraction by the vapor molecules on the other side of the surface. This inward attraction causes the surface contraction and gives rise to a force in the plane of the surface.

The surface tension of a liquid,  $\gamma$ , is defined as the force per unit length on the surface that opposes the expansion of the surface area. Surface tension is an important physical property about which accurate and detailed experimental information are of primary importance. Knowledge about surface tension, and the mechanisms underlying its origin, is critical in addressing such basic surface science issues as wetting, adhesion, friction, spreading and detergency [1]. Accordingly, experimental data for surface

<sup>\*</sup>Corresponding author. Email: edelgado@udec.cl

tension are abundant at present, however, there are some justifications to develop models that can predict it. This is especially important in those cases when it is not practical to measure the surface tension due to the lack of the appropriate equipment or to the immediate need for a value for an engineering estimate.

The different approaches for the prediction of surface tension can be classified into the following categories: (1) correlations with other experimentally determined physicochemical properties such as density, viscosity; (2) correlations based on the corresponding states theorem; (3) models based on group contributions; (4) quantitative-structure-property relationships (QSPR).

The first approach requires a sufficient quantity of purified compound and therefore is not applicable for compounds not isolated or in development. In the second approach, due to the lack of critical properties for most substances and the difficulty of their accurate measurements, the estimation errors are considerably high and consequently its application is limited. The third approach provides good results for a large number of compounds. However, difficulties can arise in decomposing some structures into appropriate fragments whose constants are available or for compounds with fragments for which no group contributions have been fitted before. The fourth approach, based on molecular structure, is important not only from a fundamental physical point of view, since it allows a more transparent interpretation of the phenomenon on physical ground, but it is also technologically useful for the efficient production of materials with specific properties for a given application [1]. Thus, predictive models based on molecular structure are important for the design of novel chemicals since properties can be thus predicted prior to synthesis. In this way, the design of novel compounds may be guided by the calculation results.

In this article we report a QSPR model for the prediction of surface tension of organic compounds based on six molecular descriptors having definite physical meaning corresponding to the different intermolecular interactions occurring in the bulk solution.

# 2. Materials and methods

#### 2.1 Data

The data set of surface tension, at 298 K and atmospheric pressure, of organic compounds was taken from literature [2]. A total of 320 structurally diverse organic compounds were selected to develop the model. The number and types of structures was considered enough to reach an adequate compromise between chemical variety and computation time. The compound data set, grouped according to the compound family, namely, alkanes, alkenes, aldehydes, ketones, ethers, carboxylic acids, esters, alcohols, amides, amines, nitriles, aromatics, nitro-, sulfured-, fluorinated-, chlorinated-, and brominated-hydrocarbons and covering a range of about 14–45 dyn cm<sup>-1</sup> is listed in table 1.

# 2.2 Computational methods

The QSPR model was developed using the Microsoft Windows version of the Codessa program [3]. This program performs the calculation of molecular descriptors and

| Name                          | CAS number | Exp. | Calcd | Res. |
|-------------------------------|------------|------|-------|------|
| Alkanes                       |            |      |       |      |
| Decane                        | 124-18-5   | 23.4 | 22.5  | -0.9 |
| 2,3-Dimethylbutane            | 79-29-8    | 16.9 | 19.5  | 2.6  |
| 2,4-Dimethylheptane           | 2213-23-2  | 20.9 | 21.3  | 0.4  |
| 2,5-Dimethylheptane           | 2216-30-0  | 20.9 | 22.2  | 1.3  |
| 2,6-Dimethylheptane           | 1072-05-5  | 20.6 | 21    | 0.4  |
| 2.2-Dimethylpentane           | 590-35-2   | 17.6 | 18.6  | 1.0  |
| 2,3-Dimethylpentane           | 565-59-3   | 19.5 | 21.3  | 1.8  |
| 3.3-Dimethylpentane           | 562-49-2   | 19.1 | 21.8  | 2.7  |
| Dodecane                      | 112-40-3   | 24.9 | 24.4  | -0.5 |
| 3-Ethylpentane                | 617-78-7   | 20   | 21.1  | 1.1  |
| Heptane                       | 142-82-5   | 19.7 | 19.3  | -0.4 |
| Hexadecane                    | 544-76-3   | 27.1 | 28.2  | 1.1  |
| Hexane                        | 110-54-3   | 17.9 | 18.2  | 0.3  |
| 2-Methylhexane                | 591-76-4   | 18.8 | 19.1  | 0.3  |
| 3-Methylhexane                | 589-34-4   | 19.3 | 20.3  | 1.0  |
| 2-Methyloctane                | 3221-61-2  | 21.4 | 20.5  | _0.2 |
| 4-Methyloctane                | 2216-34-4  | 21.4 | 21.2  | 0.2  |
| 2-Methylpentane               | 107-83-5   | 16.9 | 17.8  | 0.0  |
| 3-Methylpentane               | 96-14-0    | 17.6 | 19.7  | 2.1  |
| Nonane                        | 111.84.2   | 22.4 | 22.5  | 0.1  |
| Octane                        | 111-64-2   | 22.4 | 22.5  | 0.1  |
| Pontadagana                   | 620.62.0   | 21.2 | 20.4  | -0.8 |
| Pentane                       | 100 66 0   | 20.7 | 27.2  | 0.5  |
| Tetra decare                  | 109-00-0   | 15.5 | 10.9  | 1.4  |
| Tridecane                     | 629-39-4   | 20.2 | 20.5  | 0.1  |
|                               | 629-30-3   | 25.0 | 25.4  | -0.2 |
| 2,2,3-1 rimethylpentane       | 564-02-3   | 20.2 | 22.6  | 2.4  |
| 2,2,4-1 rimethylpentane       | 540-84-1   | 18.4 | 18.9  | 0.5  |
| Undecane                      | 1120-21-4  | 24   | 23.5  | -0.5 |
| Alkenes                       |            |      |       |      |
| Cyclohexene                   | 110-83-8   | 26.2 | 23.9  | -2.3 |
| Cyclopentene                  | 142-29-0   | 22.2 | 23.7  | 1.5  |
| 1-Decene                      | 872-05-9   | 23.6 | 23.2  | -0.4 |
| 1-Heptene                     | 592-76-7   | 19.8 | 20.6  | 0.8  |
| 1-Hexene                      | 592-41-6   | 17.9 | 19.7  | 1.8  |
| 2-Methyl-2-butene             | 513-35-9   | 16.5 | 19.1  | 2.6  |
| 1-Nonene                      | 124-11-8   | 22.6 | 22.3  | -0.3 |
| 1-Octene                      | 111-66-0   | 21.3 | 21.5  | 0.2  |
| cis-2-Pentene                 | 627-20-3   | 16.8 | 18.7  | 1.9  |
| trans-2-Pentene               | 646-04-8   | 16.4 | 18.7  | 2.3  |
| 1-Tridecene                   | 2437-56-1  | 25.8 | 25.8  | 0.0  |
| Aldehvdes                     |            |      |       |      |
| Benzaldehvde                  | 100-52-7   | 38   | 39.8  | 1.8  |
| Butyraldehyde                 | 123-72-8   | 24.4 | 25.3  | 0.9  |
| 2-Furaldehyde                 | 98-01-1    | 43.1 | 43.1  | 0.0  |
| Heptanaldehyde                | 111-71-7   | 26.3 | 26.8  | 0.5  |
| <i>o</i> -Methoxybenzaldehyde | 135-02-4   | 42.6 | 39.8  | -2.8 |
| <i>p</i> -Methoxybenzaldehyde | 123-11-5   | 42.1 | 39.6  | -2.5 |
| Paraldehyde                   | 123-63-7   | 25.6 | 26.8  | 1.2  |
| Pentanaldehyde                | 110-62-3   | 25.4 | 25.7  | 0.3  |
| Katones                       |            |      |       |      |
| Acetone                       | 67-64-1    | 23.5 | 25.1  | 1.6  |
| Acetophenone                  | 98-86-2    | 39.1 | 38.1  | _1.0 |
| 2-Butanone                    | 78-93-3    | 24   | 25.2  | 1.0  |
| Carvone                       | 99-49-0    | 34.2 | 34.1  | -0.1 |
| Cyclopentanone                | 120-92-3   | 32.8 | 31.1  | -1.7 |

Table 1. Experimental and calculated surface tension values  $(dyn cm^{-1})$  for the training set.

| Name                                 | CAS number | Exp. | Calcd | Res. |
|--------------------------------------|------------|------|-------|------|
| 2-Heptanone                          | 110-43-0   | 26.1 | 25.4  | -0.7 |
| 3-Heptanone                          | 106-35-4   | 25.7 | 25.5  | -0.2 |
| 4-Heptanone                          | 123-19-3   | 25.5 | 25    | -0.5 |
| 2-Hexanone                           | 591-78-6   | 25.5 | 24.7  | -0.8 |
| 2,4-Hexanedione                      | 3002-24-2  | 29.7 | 32    | 2.3  |
| 2-Methylcyclohexanone                | 583-60-8   | 31.5 | 31    | -0.5 |
| 3-Methylcyclohexanone                | 591-24-2   | 30.8 | 30    | -0.8 |
| 4-Methylcyclohexanone                | 589-92-4   | 30.5 | 31.4  | 0.9  |
| 2,4-Pentanedione                     | 123-54-6   | 30.4 | 32.1  | 1.7  |
| 2-Pentanone                          | 107-87-9   | 23.3 | 24.2  | 0.9  |
| 3-Pentanone                          | 96-22-0    | 24.8 | 25.6  | 0.8  |
| Ethers                               |            |      |       |      |
| Butyl ethyl ether                    | 628-81-9   | 20.2 | 19.8  | -0.4 |
| Butyl methyl ether                   | 628-28-4   | 19.6 | 19.3  | -0.3 |
| Dibutyl ether                        | 142-96-1   | 22.5 | 21.4  | -1.1 |
| 1,1-Diethoxyethane                   | 105-57-7   | 20.9 | 21.5  | 0.6  |
| Diethoxymethane                      | 462-95-3   | 20.7 | 21    | 0.3  |
| Diethyl ether                        | 60-29-7    | 16.7 | 18.2  | 1.5  |
| Diisopentyl ether                    | 544-01-4   | 22.6 | 22.8  | 0.2  |
| Dipropyl ether                       | 111-43-3   | 20   | 19.3  | -0.7 |
| Diisopropyl ether                    | 108-20-3   | 17.3 | 18.8  | 1.5  |
| 1,1-Dimet-oxyethane                  | 534-15-6   | 21   | 21.6  | 0.6  |
| Dimetoxymethane                      | 109-87-5   | 20.6 | 20.7  | 0.1  |
| 1,2-Dimet-oxybenzene                 | 91-16-7    | 32.8 | 32.3  | -0.5 |
| Dipenthyl ether                      | 693-65-2   | 24.4 | 23.1  | -1.3 |
| 1,1-Dipropoxyethane                  | 105-82-8   | 22.6 | 22.2  | -0.4 |
| Ethylene oxide                       | 75-21-8    | 23.5 | 22.8  | -0.7 |
| Ethyl methyl ether                   | 540-67-0   | 15.3 | 17.7  | 2.4  |
| Ethyl pentyl ether                   | 17952-11-3 | 21.7 | 20.7  | -1.0 |
| Ethyl propyl ether                   | 628-32-0   | 19.3 | 18.7  | -0.6 |
| Ethoxybenzene                        | 103-73-1   | 32.4 | 29.9  | -2.5 |
| o-Methoxyphenol                      | 90-05-1    | 38.9 | 37.2  | -1.7 |
| Phenyl propyl ether                  | 622-85-5   | 31.7 | 29.3  | -2.4 |
| Amines                               |            |      |       |      |
| Butylamine                           | 109-73-9   | 23.4 | 23.8  | 0.4  |
| sec-Butylamine                       | 13952-84-6 | 21.1 | 23.6  | 2.5  |
| Cyclohexylamine                      | 108-91-8   | 31.2 | 29    | -2.2 |
| Dibenzylamine                        | 103-49-1   | 40.6 | 39.6  | -1.0 |
| Dibutylamine                         | 111-92-2   | 24.1 | 24.6  | 0.5  |
| Diethylamine                         | 109-89-7   | 19.9 | 21.7  | 1.8  |
| N,N-Diethylaniline                   | 91-66-7    | 34   | 33.1  | -0.9 |
| Diisobutylamine                      | 110-96-3   | 21.7 | 21.9  | 0.2  |
| Diisopentylamine                     | 544-00-3   | 23.9 | 25.7  | 1.8  |
| Diisopropylamine                     | 108-18-9   | 19.2 | 21.5  | 2.3  |
| <i>N</i> , <i>N</i> -Dimethylaniline | 121-69-7   | 35.5 | 34.2  | -1.3 |
| Diphenylamine                        | 122-39-4   | 42.8 | 40.4  | -2.4 |
| Dipropylamine                        | 142-84-7   | 22.3 | 22.6  | 0.3  |
| Isobutylamine                        | 78-81-9    | 21.8 | 23.7  | 1.9  |
| <i>N</i> -Methylaniline              | 100-61-8   | 36.9 | 35.1  | -1.8 |
| 2-Methylpropylamine                  | 78-81-9    | 21.8 | 23.7  | 1.9  |
| Phenylhydrazine                      | 100-63-0   | 44.9 | 42.6  | -2.3 |
| Propylamine                          | 107-10-8   | 21.8 | 23.4  | 1.6  |
| <i>m</i> -loluidine                  | 108-44-1   | 37.9 | 35.2  | -2.7 |
| <i>p</i> -1 oluidine                 | 106-49-0   | 37.2 | 35.6  | -1.6 |
| Iriphenylamine                       | 603-34-9   | 43.8 | 43.6  | -0.2 |
| Tripropylamine                       | 102-69-2   | 22.4 | 24.6  | 2.2  |

Table 1. Continued.

| Name                   | CAS number | Exp. | Calcd | Res. |
|------------------------|------------|------|-------|------|
| Nitriles               |            |      |       |      |
| Benzonitrile           | 100-47-0   | 38.8 | 41.4  | 2.6  |
| Butyronitrile          | 109-74-0   | 26.9 | 29.6  | 2.7  |
| Ethylcyanoacetate      | 105-56-6   | 36.1 | 37.5  | 1.4  |
| Hexanenitrile          | 628-73-9   | 27.4 | 28.8  | 1.4  |
| Methylcyanoacetate     | 105-34-0   | 38.7 | 40    | 1.3  |
| 4-Methylpentanenitrile | 542-54-1   | 26.6 | 27.8  | 1.2  |
| Octanenitrile          | 124-12-9   | 27.6 | 29.1  | 1.5  |
| Phenylacetonitrile     | 140-29-4   | 41.7 | 41.7  | 0.0  |
| Succinonitrile         | 110-61-2   | 50.6 | 49.1  | -1.5 |
| Nitrate hydrocarbons   |            |      |       |      |
| Nitrobenzene           | 98-95-3    | 43.5 | 42.7  | -0.8 |
| Nitroethane            | 79-24-3    | 32.2 | 31.1  | -1.1 |
| Nitromethane           | 75-52-5    | 36.6 | 35.9  | -0.7 |
| o-Nitrophenol          | 88-75-5    | 44.4 | 45.3  | 0.9  |
| 1-Nitropropane         | 108-03-2   | 30.1 | 28.6  | -1.5 |
| 2-Nitropropane         | 79-46-9    | 29.3 | 28.7  | -0.6 |
| o-Nitrotoluene         | 88-72-2    | 41.2 | 39.9  | -1.3 |
| <i>m</i> -Nitrotoluene | 99-08-1    | 40.8 | 39.6  | -1.2 |
| <i>p</i> -Nitrotoluene | 99-99-0    | 39.8 | 39.7  | -0.1 |
| Piperidine             | 110-89-4   | 28.9 | 27.4  | -1.5 |
| Pyrrole                | 109-97-7   | 37.1 | 37.3  | 0.2  |
| Pyrrolidine            | 123-75-1   | 29.2 | 27.6  | -1.6 |
| Quinoline              | 91-22-5    | 42.6 | 41.2  | -1.4 |
| Sulfured hydrocarbons  |            |      |       |      |
| 1-Butanethiol          | 109-79-5   | 25.2 | 22.4  | -2.8 |
| Dietyl sulfide         | 352-93-2   | 24.6 | 22.2  | -2.4 |
| Dipentyl sulfide       | 872-10-6   | 27.4 | 28.6  | 1.2  |
| Ethyl phenyl sulfide   | 622-38-8   | 36.5 | 34.3  | -2.2 |
| 1-Propanethiol         | 107-03-9   | 24.2 | 21    | -3.2 |
| Thiophene              | 110-02-1   | 30.7 | 31.6  | 0.9  |
| Aromatics              |            |      |       |      |
| Biphenyl               | 92-52-4    | 39.2 | 37.9  | -1.3 |
| Butylbenzene           | 104-51-8   | 28.7 | 28.5  | -0.2 |
| sec-Butylbenzene       | 135-98-8   | 28.1 | 29.6  | 1.5  |
| tert-Butylbenzene      | 98-06-6    | 27.7 | 28.4  | 0.7  |
| 4-tert-Butylpyridine   | 3978-81-2  | 33.1 | 33.3  | 0.2  |
| <i>p</i> -Cymene       | 99-87-6    | 26.7 | 28.7  | 2.0  |
| Ethylbenzene           | 100-41-4   | 28.8 | 28.9  | 0.1  |
| o-Ethyltoluene         | 611-14-3   | 29.7 | 29.2  | -0.5 |
| <i>p</i> -Ethyltoluene | 622-96-8   | 28.3 | 28.8  | 0.5  |
| Isobutylbenzene        | 538-93-2   | 27   | 27.8  | 0.8  |
| Isopropylbenzene       | 98-82-8    | 27.7 | 28.6  | 0.9  |
| l-Methylnaphthalene    | 90-12-0    | 37.6 | 36.9  | -0.7 |
| 4-Methylpyridine       | 108-89-4   | 34.9 | 37.4  | 2.5  |
| Naphthalene            | 91-20-3    | 40.1 | 37.8  | -2.3 |
| Propylbenzene          | 103-65-1   | 28.5 | 28.3  | -0.2 |
| Pyridine               | 110-86-1   | 36.6 | 35.9  | -0.7 |
| Toluene                | 108-88-3   | 28   | 29.3  | 1.3  |
| 1,2,3-Trimethylbenzene | 526-73-8   | 28.3 | 30    | 1.7  |
| 1,2,4-Trimethylbenzene | 95-63-6    | 29.2 | 29.3  | 0.1  |
| 1,3,5-Trimethylbenzene | 108-67-8   | 27.6 | 28.2  | 0.6  |
| <i>o</i> -Xylene       | 95-47-6    | 29.8 | 29.5  | -0.3 |
| <i>m</i> -Xylene       | 108-38-3   | 28.5 | 28.6  | 0.1  |
| <i>p</i> -Xylene       | 106-42-3   | 28   | 28.8  | 0.8  |
| * *                    |            |      |       |      |

Table 1. Continued.

| Name                       | CAS number | Exp. | Calcd | Res.        |
|----------------------------|------------|------|-------|-------------|
| Carboxylic acids           |            |      |       |             |
| Acetic acid                | 64-19-7    | 29.4 | 31.5  | 2.1         |
| Formic acid                | 64-18-6    | 37.2 | 37.7  | 0.5         |
| Heptanoic acid             | 111-14-8   | 27.8 | 29.7  | 1.9         |
| Isobutyric acid            | 79-31-2    | 24.6 | 26.6  | 2.0         |
| 3-Methylbutyric acid       | 503-74-2   | 25.1 | 26.8  | 1.7         |
| Pentanoic acid             | 109-52-4   | 26.7 | 26.5  | -0.2        |
| Tetradecanoic acid         | 544-63-8   | 31.6 | 33.8  | 2.2         |
| Fluorinated hydrocarbons   |            |      |       |             |
| 1-Fluorohexane             | 373-14-8   | 20.9 | 19.1  | -1.8        |
| 1-Fluoropentane            | 592-50-7   | 19.5 | 18    | -1.5        |
| <i>m</i> -Fluorotoluene    | 352-70-5   | 29.2 | 30.6  | 1.4         |
| <i>p</i> -Fluorotoluene    | 352-32-9   | 27.7 | 30.7  | 3.0         |
| Chlorinated hydrocarbons   |            |      |       |             |
| Chlorobenzene              | 108-90-7   | 33   | 34.5  | 1.5         |
| 2-Chlorobutane             | 78-86-4    | 21.6 | 19.6  | -2.0        |
| 1-Chlorododecane           | 112-52-7   | 29.3 | 26.3  | -3.0        |
| Chloroform                 | 67-66-3    | 26.7 | 28.5  | 1.8         |
| Chloromethane              | 74-87-3    | 15.4 | 14.9  | -0.5        |
| 1-Chloro-2-methylpropane   | 513-36-0   | 21.7 | 19.5  | -2.2        |
| 1-Chloronaphthalene        | 90-13-1    | 41.6 | 41.1  | -0.5        |
| 2-Chloropropane            | 75-29-6    | 19.2 | 16.1  | -3.1        |
| 3-Chloro-1-propene         | 107-05-1   | 23.2 | 22    | -1.2        |
| <i>p</i> -Chlorotoluene    | 106-43-4   | 32.2 | 32.7  | 0.5         |
| <i>m</i> -Dichlorobenzene  | 541-73-1   | 35.5 | 38.3  | 2.8         |
| 1,1,2,2-Tetrachlroethane   | 79-34-5    | 35.6 | 34.4  | -1.2        |
|                            | 11 55 0    | 23.2 | 27.2  | 1.0         |
| Brominated hydrocarbons    | 100 (5.0   | 25.0 | 22.1  | 2.0         |
| 1-Bromobutane              | 109-65-9   | 25.9 | 23.1  | -2.8        |
| I-Bromodecane              | 112-29-8   | 29.1 | 26.9  | -2.2        |
| I-Bromododecane            | 143-15-7   | 30.4 | 28.5  | -1.9        |
| Bromoetnane                | /4-96-4    | 23.7 | 21.2  | -2.5        |
| 1 Dramahawaya              | 112-82-3   | 31.2 | 31.8  | 0.0         |
| I-Bromonexane              | 74.82.0    | 27.4 | 24.1  | -3.3        |
| Bromometnane               | /4-83-9    | 25.7 | 23.7  | 0.0         |
| 1 Drama 2 mathedramana     | 107-82-4   | 25.0 | 23    | -2.0        |
| 1 Bromo-2-methylpropane    | /8-//-3    | 24.5 | 23    | 0.7         |
| 1-Bromonaphinalene         | 90-11-9    | 43.9 | 44.8  | 0.9         |
| 1 Promonronano             | 106 04 5   | 29.1 | 20.2  | -2.9        |
| 1 Bromotetradecane         | 112 71 0   | 25.5 | 20.5  | -1.8        |
| n-Bromotoluene             | 106-38-7   | 33.0 | 36.6  | -0.7        |
| 1 Bromoundecane            | 603 67 4   | 20.8 | 27.7  | 2.7         |
| Dibromomethane             | 74-95-3    | 30.1 | 30.3  | 0.2         |
| 1.2-Dibromonronane         | 78-75-1    | 33.0 | 35.4  | 1.5         |
| 1,2,3-Tribromopropane      | 96-11-7    | 44.8 | 49.1  | 4.3         |
| Fsters                     |            |      |       |             |
| Allyl acetate              | 591-87-7   | 25.8 | 26.9  | 1.1         |
| Butyl acetate              | 123-86-4   | 22.0 | 23.9  | _1.1        |
| <i>tert</i> -Butyl acetate | 540-88-5   | 21.9 | 22.7  | 0.8         |
| Butyl butyrate             | 109-21-7   | 25.3 | 24.4  | 0.0<br>-0 0 |
| Butyl formate              | 592-84-7   | 23.5 | 24.7  | -0.3        |
| Butyl propionate           | 590-01-2   | 24.9 | 24.2  | -0.7        |
| Diethyl carbonate          | 105-58-8   | 25.9 | 25.6  | -0.3        |
| Diethyl maleate            | 141-05-9   | 32.1 | 30.8  | -1.3        |
| ~                          |            |      |       |             |

Table 1. Continued.

488

| Name                     | CAS number           | Exp. | Calcd | Res. |
|--------------------------|----------------------|------|-------|------|
| Diethyl malonate         | 105-53-3             | 31.3 | 29.2  | -2.1 |
| Diethyl oxalate          | 95-92-1              | 31.6 | 29.9  | -1.7 |
| Dimethyl carbonate       | 616-38-6             | 28.6 | 28.3  | -0.3 |
| Dipropyl carbonate       | 623-96-1             | 26.4 | 25.1  | -1.3 |
| Ethyl acetate            | 141-78-6             | 23.4 | 24.1  | 0.7  |
| Ethyl acetoacetate       | 141-97-9             | 31.9 | 31.2  | -0.7 |
| Ethyl benzoate           | 43-89-0              | 34.5 | 33.9  | -0.6 |
| Ethyl butyrate           | 105-54-4             | 24   | 23.8  | -0.2 |
| Ethyl crotonate          | 623-70-1             | 26.7 | 26.1  | -0.6 |
| Ethyl dodecanoate        | 106-33-2             | 27.9 | 28.6  | 0.7  |
| Ethyl formate            | 109-94-4             | 23.2 | 25.2  | 2.0  |
| Ethyl fumarate           | 623-91-6             | 31.3 | 30.8  | -0.5 |
| Ethyl hexadecanoate      | 628-97-7             | 30.7 | 31.7  | 1.0  |
| Ethyl hexanoate          | 123-66-0             | 25.3 | 24.7  | -0.6 |
| Ethyl isobutyrate        | 97-62-1              | 22.7 | 23.7  | 1.0  |
| Ethyl lactate            | 97-64-3              | 28.3 | 29.6  | 1.3  |
| Ethyl-3-methyl butyrate  | 108-64-5             | 23.3 | 23.6  | 0.3  |
| Ethyl pentanoate         | 539-82-2             | 24.7 | 24.2  | -0.5 |
| Ethyl propionate         | 105-37-3             | 23.8 | 23.9  | 0.1  |
| Hexyl acetate            | 142-92-7             | 26   | 24.7  | -1.3 |
| Isobutyl acetate         | 110-19-0             | 23.1 | 23.3  | 0.2  |
| Isobutyl butyrate        | 539-90-2             | 22.1 | 23.8  | 14   |
| Isobutyl formate         | 542-55-2             | 23.3 | 23.6  | 0.3  |
| Isobutyl propionate      | 540-42-1             | 26.1 | 23.6  | -2.5 |
| Isopentyl acetate        | 123-92-2             | 24.3 | 25.0  | _0.2 |
| Isopentyl butyrate       | 106-27-4             | 25.1 | 24.1  | -0.3 |
| Isopropyl acetate        | 108-21-4             | 21.8 | 23.2  | 14   |
| Isopropyl formate        | 625-55-8             | 21.0 | 25.2  | 2 3  |
| Methyl acetate           | 79-20-9              | 21.7 | 25 4  | 0.6  |
| Methyl acetoacetate      | 105 45 3             | 32.6 | 23.7  | 0.0  |
| Methyl benzoate          | 03-58-3              | 37.2 | 35.7  | _1.5 |
| 2-Methylbutyl acetate    | 624-41-9             | 24.3 | 25    | -1.5 |
| Methyl butyrate          | 623-42-7             | 24.5 | 23    | _0.4 |
| Methyl decapoate         | 110 42 9             | 24.0 | 27.2  | -0.4 |
| Methyl dodecapoate       | 111 82 0             | 20.1 | 27.1  | -1.0 |
| Methyl bentanoate        | 106 73 0             | 29.2 | 26.5  | -0.7 |
| Methyl hevadecanoate     | 112 30 0             | 20.5 | 25.5  | -1.2 |
| Methyl hexadecalloate    | 106 70 7             | 29.0 | 24.8  | 1.9  |
| Methyl isobutyrate       | 547 62 7             | 23.9 | 24.0  | -1.1 |
| Methyl aster aste        | 54/-05-/             | 23.2 | 24.2  | 1.0  |
| Method wester ante       | (24.24.8             | 27.4 | 23.8  | -1.0 |
| Methyl pentanoate        | 624-24-8             | 23.3 | 24.5  | -0.8 |
| Methyl propionale        | 554-12-1<br>105 46 4 | 24.5 | 24.0  | 0.1  |
| 2 Mathemanul actuate     | 105-46-4             | 23.1 | 24.4  | 1.5  |
| 2-ivieinyipropyl acetate | 110-19-0             | 23.1 | 23.3  | 0.2  |
| 2-ivieury/propyl formate | 542-55-2             | 23.3 | 23.0  | 0.3  |
| Methyl salicylate        | 119-36-8             | 39.2 | 38.8  | -0.4 |
| Metnyl tetradecanoate    | 124-10-7             | 29   | 29.9  | 0.9  |
| Pentyl acetate           | 628-63-7             | 25.2 | 24.2  | -1.0 |
| Pentyl formate           | 638-49-3             | 25.5 | 24.4  | -1.1 |
| Propyl acetate           | 109-60-4             | 23.8 | 23.6  | -0.2 |

2315-68-6

105-66-8

110-74-7

644-49-5

141-06-0

106-36-5

33.9

24.6

24

23.3

25.3

24.2

32.9

23.8

24.2

23.8

24.4

23.8

Table 1. Continued.

Propyl benzoate

Propyl butyrate

Propyl formate

Propyl pentoate

Propyl isobutyrate

Propyl propionate

(Continued)

-1.0

-0.8

0.2

0.5

-0.9

-0.4

| Name                              | CAS number | Exp. | Calcd | Res. |
|-----------------------------------|------------|------|-------|------|
| Alcohols                          |            |      |       |      |
| Benzyl alcohol                    | 100-51-6   | 34.8 | 35.7  | 0.9  |
| 1-Butanol                         | 71-36-3    | 25   | 23.2  | -1.8 |
| o-Cresol                          | 95-48-7    | 36.9 | 35.8  | -1.1 |
| <i>m</i> -Cresol                  | 108-39-4   | 35.7 | 35.1  | -0.6 |
| p-Cresol                          | 106-44-5   | 36.2 | 35.2  | -1.0 |
| 1-Decanol                         | 112-30-1   | 28.5 | 28.5  | 0.0  |
| 2,4-Dimethylphenol                | 105-67-9   | 32.4 | 33.4  | 1.0  |
| 2,5-Dimethylphenol                | 95-87-4    | 34.6 | 33.3  | -1.3 |
| 3,4-Dimethylphenol                | 95-65-8    | 33.5 | 35.5  | 2.0  |
| 3,5-Dimethylphenol                | 108-68-9   | 32.1 | 34.2  | 2.1  |
| 1-Dodecanol                       | 112-53-8   | 29.4 | 30.3  | 0.9  |
| Ethanol                           | 64-17-5    | 22.1 | 21.2  | -0.9 |
| 1-Hexanol                         | 111-27-3   | 25.8 | 25    | -0.8 |
| Methanol                          | 67-56-1    | 22.1 | 21    | -1.1 |
| 2-Methyl-2-butanol                | 75-85-4    | 22.3 | 23.1  | 0.8  |
| 3-Methyl-1-butanol                | 123-51-3   | 23.7 | 23.8  | 0.1  |
| cis-2-Methylcyclohexanol          | 7443-70-1  | 30.5 | 29.4  | -1.1 |
| 2-Methyl-1-pentanol               | 105-30-6   | 25   | 25.4  | 0.4  |
| 3-Methyl-1-pentanol               | 589-35-5   | 25   | 25.9  | 0.9  |
| 4-Methyl-1-pentanol               | 626-89-1   | 24.1 | 24.6  | 0.5  |
| 2-Methyl-2-pentanol               | 590-36-3   | 22.9 | 23.1  | 0.2  |
| 3-Methyl-2-pentanol               | 565-60-6   | 24.9 | 25.5  | 0.6  |
| 4-Methyl-2-pentanol               | 108-11-2   | 22.6 | 23.5  | 0.9  |
| 2-Methyl-3-pentanol               | 565-67-3   | 24.2 | 23.6  | -0.6 |
| 3-Methyl-3-pentanol               | 77-74-7    | 23.3 | 24.6  | 1.3  |
| 2-Methyl-1-propanol               | 78-83-1    | 22.6 | 22.3  | -0.3 |
| 1-Nonanol                         | 143-08-8   | 27.8 | 27.6  | -0.2 |
| 1-Octanol                         | 111-87-5   | 27.0 | 26.8  | -0.3 |
| 2-Octanol                         | 123-96-6   | 25.9 | 26.1  | 0.2  |
| 2-Pentanol                        | 6032-29-7  | 23.5 | 22.8  | -0.7 |
| 1-Propanol                        | 71-23-8    | 23.3 | 21.9  | -1.4 |
| 2-Propanol                        | 67-63-0    | 21   | 20.5  | -0.5 |
| 2-Propen-1-ol                     | 107-18-6   | 25.3 | 25.9  | 0.6  |
| 1-Tetradecanol                    | 112-72-1   | 31   | 32    | 1.0  |
| Thymol                            | 89-83-8    | 31.9 | 34 2  | 2 3  |
| Amidaa                            | 0,000      | 0119 | 0.112 | 210  |
| Annues                            | 102 84 4   | 42.0 | 41.7  | 2.2  |
| Acetannide<br>Denzemide           | 55 21 0    | 45.9 | 41.7  | -2.2 |
| Earmanilida                       | 102 70 8   | 43.3 | 44.7  | -0.8 |
| 2 Phanylagetamide                 | 103-70-8   | 42.1 | 43.5  | 1.2  |
| 2-Phenylacetallide                | 70.05.0    | 44.5 | 45.5  | -1.0 |
| Propionannue                      | /9-03-0    | 30.8 | 54.1  | -2.7 |
| Miscellaneous                     | (10.22.(   | 12.1 | 12.4  | 1.0  |
| Benzoylbromide                    | 618-32-6   | 42.4 | 43.4  | 1.0  |
| Benzoylchloride                   | 98-88-4    | 38.6 | 39.4  | 0.8  |
| <i>p</i> -Bromophenol             | 106-41-2   | 46.2 | 44.8  | -1.4 |
| o-Chloroaniline                   | 95-51-2    | 41.2 | 41    | -0.2 |
| o-Chloronitrobenzene              | 88-73-3    | 45.2 | 46.5  | 1.3  |
| <i>m</i> -Chloronitrobenzene      | 121-73-3   | 46.2 | 46.1  | -0.1 |
| <i>p</i> -Chloronitrobenzene      | 100-00-5   | 43.2 | 46.2  | 3.0  |
| o-Chlorophenol                    | 95-57-8    | 39.7 | 39.9  | 0.2  |
| <i>m</i> -Chlorophenol            | 108-43-0   | 41.2 | 40.4  | -0.8 |
| 2,4-Dichlorophenol                | 120-83-2   | 43.5 | 43.2  | -0.3 |
| Ethyl chloroformate               | 541-41-3   | 26.2 | 28.8  | 2.6  |
| Ethyl dichloroacetate             | 535-15-9   | 32   | 30.6  | -1.4 |
| Ethyl thiocyanate                 | 542-90-5   | 34.2 | 36.8  | 2.6  |
| Methyl dichloroacetate            | 116-54-1   | 34   | 32.1  | -1.9 |
| Phenyl isothiocyanate             | 103-72-0   | 40   | 40.9  | 0.9  |
| <i>p</i> -Toluenesulfonylchloride | 98-59-9    | 40.2 | 40.7  | 0.5  |
| Triethyl phosphate                | 78-40-0    | 29.5 | 29.9  | 0.4  |

Table 1. Continued.

searches for the best multiple linear relationships between predicted and experimental property data.

Prior to the descriptor calculation and fitting of these descriptors to the experimental data, modeling was performed in order to set the chemicals in their lowest energy 3D conformations. To do this, initial three-dimensional geometries of the chemical structures were generated using the Hyperchem 7.0 molecular modeling package [4]. These 3D structures were refined later using Ampac 5.0, a semiempirical molecular modeling program [5], using AM1 parametrization. The Ampac output files containing the refined geometries and electron wave functions of individual compounds, along with the experimental values of surface tension, were loaded into the Codessa program to calculate the molecular descriptors and fitting of these descriptors to the experimental data.

#### 3. Results

The correlation analysis to find the best QSPR model was carried out using the best multilinear regression analysis method available in the Codessa program. The procedure begins with the computation of the molecular descriptors, in this study a total of 650 molecular descriptors were calculated for all 320 compounds. Then, the pool of molecular descriptors was reduced by removing descriptors that could not be calculated for every structure in the data set, and those descriptors with an essentially constant value for all the structures. Thereafter, the intercorrelations between all the remaining descriptors were calculated, and orthogonal pairs of descriptors i and j(with  $r_{i,i}^2 < 0.1$ ) were selected. From the pairs of descriptors which did not meet this criterion only one descriptor was retained, that which correlated better with the property. From this set of orthogonal pairs, the best descriptors pairs defined as those with the highest two parameter regression correlation coefficients were selected for further development to higher order regressions. Next, for each of these pairs selected, an orthogonal descriptor was added, and the three-parameter regression was calculated. This procedure was repeated with all orthogonal descriptors to a given pair of descriptors, and the best triplets, defined as those with highest correlation coefficients, was selected for the next higher order regression analysis. In this way, the number of orthogonal descriptors in the model was incrementally increased up to the optimum as determined by the Fisher criterion at a given probability level and the cross-validated correlation coefficient. The model obtained with this procedure was expected to yield maximum predictive ability.

The best correlation found involved six descriptors, four constitutional parameters (relative number of carbon atoms  $(N_C^R)$ , relative number of oxygen atoms  $(N_O^R)$ , relative number of N atoms  $(N_N^R)$ , relative molecular weight  $(M_W^R)$ ), one topological index (Kier and Hall index order 3,  $({}^3\chi^V)$ ), and one descriptor accounting for hydrogen bonding (HA dependent HDSA-1):

$$\gamma = -6.45 + 56.60 N_{\rm C}^{\rm R} + 48.40 N_{\rm O}^{\rm R} + 83.09 N_{\rm N}^{\rm R} + 0.98 M_{\rm W}^{\rm R} + 3.47^{3} \chi^{\nu} + 0.16 \,\rm HA$$

where the relative parameters  $(N_{\rm C}^{\rm R}, N_{\rm O}^{\rm R}, N_{\rm N}^{\rm R}, M_{\rm W}^{\rm R})$  are obtained dividing the respective figures by the number of atoms in the molecule. The statistics for the fit was the following:  $r^2 = 0.96$ , F = 1317, s = 1.43 and  $r_{\rm CV}^2 = 0.95$ . Where  $r^2$  is the squared

| Descriptor                  | Coefficient      | t-test |
|-----------------------------|------------------|--------|
| Intercept                   | $-6.45 \pm 0.43$ | -14.89 |
| Relative number of C atoms  | $56.60 \pm 1.11$ | 51.14  |
| Relative number of O atoms  | $48.40 \pm 1.42$ | 34.22  |
| Relative number of N atoms  | $83.09 \pm 3.08$ | 26.99  |
| Relative molecular weight   | $0.98 \pm 0.03$  | 37.86  |
| Kier & Hall index (order 3) | $3.47 \pm 0.12$  | 28.60  |
| HA dependent HDSA-1         | $0.16\pm0.01$    | 23.01  |

Table 2. Correlation coefficients for the six descriptors involved in the model.



Figure 1. Scatter plot of the calculated vs. experimental surface tension values.

correlation coefficient, F is the Fisher test value, s is the standard deviation, and  $r_{CV}^2$  is the squared cross-validated correlation coefficient. This last coefficient provides an estimation of the stability of the obtained regression model, i.e. the sensitivity of the model to the elimination of any single data point. For each experimental data point, the regression is recalculated with the same descriptors but for the data set without this point. The obtained regression is used to predict the value of this point, and the set of calculated surface tension in this way is correlated with the experimental values. For this model, the squared cross-validated coefficient has the value 0.95, as compared to the value of 0.96 of the squared correlation coefficient, indicating a good stability of the regression model.

Addition of more descriptors in the regression equation resulted in higher correlation coefficients, but lower F statistics values, suggesting that the additional descriptors were not contributing to improve the fit to the actual property but rather to the error in the measurements. On the other hand, it is important to develop regressions with as few parameters as possible. Although, the model found includes six parameters, four of them (constitutional descriptors) are easily obtained from the molecular formula.

In table 2, the descriptors involved in the best correlation equation along with their respective correlation coefficients, standard errors and the *t*-test values are shown. The calculated and experimental values of surface tension are compared in table 1, and the scatter plot is shown in figure 1.

The predictive performance of the model was estimated from an external test set of chemicals not included in the training set. The validation set included 55 compounds with a diverse selection of chemical structures. Table 3 lists the experimental and

| Name                      | CAS number | Exp. | Calcd. | Res. |
|---------------------------|------------|------|--------|------|
| 1,1,2,2-Tetrachloroethane | 79-34-5    | 35.6 | 34.2   | -1.4 |
| 1,1-Dichloroethane        | 75-34-3    | 24.1 | 22.4   | -1.7 |
| 1-Bromo-4-chlorobenzene   | 106-39-8   | 37.5 | 37.4   | -0.2 |
| 1-Bromopentane            | 110-53-2   | 26.9 | 25.1   | -1.8 |
| 1-Chloro-3-methylbutane   | 107-84-6   | 22.8 | 21.9   | -0.9 |
| 1-Chlorobutane            | 109-69-3   | 23.2 | 22.3   | -0.9 |
| 1-Chloropropane           | 540-54-5   | 21.3 | 20.9   | -0.4 |
| 1-Iodo-2-methylpropane    | 513-38-2   | 29.8 | 30.5   | 0.7  |
| 1-Iodo-3-methylbutane     | 541-28-6   | 28.1 | 27.3   | -0.8 |
| 1-Iodoheptane             | 4282-40-0  | 30.0 | 28.4   | -1.6 |
| 1-Iodohexadecane          | 544-77-4   | 32.3 | 33.8   | 1.6  |
| 1-Iodohexane              | 638-45-9   | 29.5 | 28.0   | -1.5 |
| 1-Iodooctane              | 629-27-6   | 30.2 | 28.8   | -1.4 |
| 1-Iodopentane             | 628-17-1   | 28.9 | 27.9   | -1.0 |
| 1-Iodopropane             | 107-08-4   | 28.8 | 27.9   | -0.9 |
| 2-Bromopropane            | 75-26-3    | 23.3 | 22.1   | -1.1 |
| 2-Ethoxyethanol           | 110-80-5   | 28.4 | 30.4   | 2.0  |
| 2-Iodobutane              | 513-48-4   | 27.7 | 28.6   | 0.9  |
| 2-Iodopropane             | 75-30-9    | 26.6 | 28.6   | 2.0  |
| 2-Methoxyethanol          | 109-86-4   | 30.9 | 31.2   | 0.4  |
| 2-Propanethiol            | 75-33-2    | 21.3 | 23.6   | 2.3  |
| 3-Methylpyridine          | 108-99-6   | 34.5 | 36.1   | 1.6  |
| 4-Oxopentanoic acid       | 123-76-2   | 39.8 | 38.6   | -1.2 |
| Benzylamine               | 100-46-9   | 39.3 | 35.9   | -3.4 |
| Bromobenzene              | 108-86-1   | 35.2 | 34.2   | -1.0 |
| Carbondisulfide           | 75-15-0    | 31.6 | 32.3   | 0.7  |
| Chloroacetic acid         | 79-11-8    | 40.5 | 41.1   | 0.6  |
| Cyclohexane               | 110-82-7   | 24.7 | 23.8   | -0.9 |
| Cyclohexanol              | 108-93-0   | 32.9 | 31.5   | -1.5 |
| Cycloheptanol             | 502-41-0   | 32.7 | 32.5   | -0.2 |
| Cyclohexanone             | 108-94-1   | 34.6 | 32.9   | -1.7 |
| Cyclopentane              | 287-92-3   | 21.9 | 23.0   | 1.1  |
| Cyclopentanol             | 96-41-3    | 32.5 | 31.5   | -1.0 |
| Diethylsulfate            | 64-67-5    | 33.1 | 32.2   | -0.8 |
| Dimethylamine             | 124-40-3   | 26.4 | 26.2   | -0.1 |
| Dimethylsulfide           | 75-18-3    | 24.1 | 24.1   | 0.0  |
| Dipropoxymethane          | 505-84-0   | 22.8 | 24.2   | 1.4  |
| Ethanethiol               | 75-08-1    | 23.1 | 24.2   | 1.1  |
| Ethylcyclohexane          | 1678-91-7  | 25.2 | 26.3   | 1.2  |
| Ethylmethylsulfide        | 624-89-5   | 24.4 | 25.5   | 1.0  |
| Fluorobenzene             | 462-06-6   | 26.7 | 28.7   | 2.1  |
| Iodobenzene               | 591-50-4   | 38.7 | 37.7   | -1.0 |
| Iodoethane                | 75-03-6    | 28.5 | 27.7   | -0.8 |
| Iodomethane               | 74-88-4    | 30.4 | 32.9   | 2.6  |
| Methanethiol              | /4-93-1    | 23.9 | 23.8   | -0.1 |
| Methylcyclohexane         | 108-87-2   | 23.3 | 25.0   | 1.7  |
| Methylcyclopentane        | 96-37-7    | 21.7 | 24.2   | 2.5  |
| Methylphenylsulfide       | 100-68-5   | 39.7 | 36.5   | -3.3 |
| o-Bromotoluene            | 95-46-5    | 34.2 | 34.2   | 0.0  |
| <i>p</i> -Dibromobenzene  | 106-37-6   | 39.3 | 41.0   | 1.7  |
| <i>p</i> -Dichlorobenzene | 106-46-7   | 32.5 | 33.7   | 1.2  |
| Phenylsalicylate          | 118-55-8   | 42.8 | 43.5   | 0.7  |
| <i>p</i> -lodotoluene     | 624-31-7   | 36.8 | 35.8   | -1.0 |
| <i>p</i> -1 olunitrile    | 104-85-8   | 3/.0 | 3/.9   | 0.9  |
| I ribenzylamine           | 620-40-6   | 40.0 | 41.7   | 1.7  |

Table 3. Experimental and calculated surface tension values  $(dyn cm^{-1})$  for the test set.

calculated surface tension values for the validation set. The respective statistical analysis for calculated *versus* experimental values for validation is as follows:  $r^2 = 0.94$ ; F = 133.4; s = 1.52. This result confirms the predictive capability of the model.

#### 4. Discussion

Surface tension is closely related to the forces of intermolecular attraction. The stronger the intermolecular forces are, the more tightly the molecules are held together in the liquid phase and, therefore the higher the surface tension will be. The main attractive interactions between uncharged species are the van der Waals and hydrogen-bond interactions. Van der Waals interactions between neighboring molecules are always attractive and non-specific. This is true no matter how different in polarity the interacting molecules are. Van der Waals interactions comprise the following components: dipole–dipole interactions, dipole-induced dipole interactions, and induced dipole-induced dipole interactions, known also as London forces. In general, the London dispersion energy is the dominant contribution of the van der Waals interactions.

In contrast to van der Waals interactions, hydrogen-bond interactions may not always be present. They only occur between interaction partners with complementary properties, i.e., between a H-donor and a H-acceptor. Thus, hydrogen-bond are specific interactions and, like van der Waals interactions, are always attractive.

In order to allow a more transparent physical-chemical interpretation of the descriptors involved in the model, the different types of intermolecular interactions which may occur in the bulk are discussed separately below. The relative constitutional descriptors in the model account for the significance of the respective interactions in a molecule in particular.

## 4.1 Descriptors involved in dispersion interactions

Experimental findings [6, 7] show that surface tension increases as a function of the number of carbon atoms and molecular weight for a set of congeners. Light-scattering and heats of mixing measurements have shown that in the higher *n*-alkanes, adjacent chains are oriented parallel to one another, giving rise to an appreciable enhancement in adhesion as consequence of the much greater polarizability parallel to the chains.

It is well known that molecular polarizability is directly proportional to the number of electrons in the molecule. On the other hand, molecular weight is roughly related to the number of electrons in the molecule, the higher the molecular weight the higher the size of the electron cloud, and in consequence the higher the polarizability of the molecule. Therefore, molecular weight encodes information related to molecular polarizability.

The Kier and Hall index (order 3),  ${}^{3}\chi^{V}$ , encodes information related to geometrical features of the molecules, namely, the molecular van der Waals volume [8]. The excellent correlation between the molecular volume and  ${}^{3}\chi^{V}$  is not surprising because the connectedness of halogens, introduced by Kier and Hall, was calculated using molecular refraction, a well-known measure of the van der Waals volume. Since it has been well established that the polarizability of an atom or a molecule is proportional to

its volume, it may be concluded, in consequence, that  ${}^{3}\chi^{V}$  represents a measure of the molecular polarizability.

Therefore, it is evident from the above discussion that the above three descriptors  $(N_{\rm C}^{\rm R}, M_{\rm W}^{\rm R}, {}^3\chi^{\rm v})$  encode information related to the polarizability of the molecules. This affirmation is supported with a squared correlation coefficient of 0.75 for the multilinear correlation between these three descriptors and the molecular polarizability, the ease with which the molecular electron cloud can distort by an electric field. This deformation in the molecular charge distribution generates an induced dipole moment which is proportional to the strength of the electric field, being the molecular polarizability the proportionality constant between them. Thus polarizability of the molecule is closely related to the strength of the London forces, consequently the above three descriptors account for dispersion interaction between molecules.

# 4.2 Descriptors involved in polar interactions

The number of atoms of oxygen and nitrogen in the molecules encodes information concerning polar interactions among molecules in the bulk. The introduction of substituents into organic compounds with increasing differences in electronegativity with respect to carbon, e.g. nitrogen or oxygen atoms, produces a charge separation in the bond generating a dipole moment, and provided the dipole moment orientations of neighboring molecules. There will be an attractive interaction among them which will be seen reflected in an enhanced value of surface tension. The positive values of the model correlation coefficients for these descriptors support this interpretation.

## 4.3 Descriptors involved in hydrogen-bond interactions

The hydrogen acceptor dependent hydrogen donor surface area descriptor, HA dependent HDSA-1, is connected with the hydrogen-bonding ability of the molecule. It is expected that the adhesion of the molecules in the surface layer to those in the underlying bulk liquid would be strongly enhanced by the presence of hydrogen bonding interactions. Accordingly, there have been many generalized statements made which associate hydrogen-bonding intermolecular interactions with increased surface tension of pure liquids.

## 5. Conclusions

The model reported in this article allows the prediction of surface tension of a wider variety of organic compounds, with less parameters and with better statistics than other QSPR models reported in literature. Thus, a ten-parameter model having a squared correlation coefficient of 0.983 for a dataset of 146 structures, including alkanes, esters and alcohols; has been published by Stanton and Jurs [9]. Kauffman and Jurs [10] have designed an eight-descriptor model for a data set of 159 structures. Their model predicts surface tension with a squared correlation coefficient of 0.83. On the other hand, Freitas *et al.* [11] report a six-parameter model, developed from a linear free energy analysis, which predicts surface tension of a data set of 299 compounds with a squared correlation coefficient of 0.88. The Parsimony Principle (Occam's Razor Principle) calls for using models and procedures that contain all that is necessary for the modeling

but nothing more, i.e. given a number of models with nearly the same predictive error, that containing fewer parameters should be preferred because simplicity is desirable in itself [12].

The six descriptors involved in our model, which can be calculated from the molecular structure, have definite physical meaning corresponding to the different intermolecular interactions which take place in the bulk solution, namely, dispersion, polar, and hydrogen-bond interactions. Since the model is based only on molecular descriptors, it is applicable to new and developing compounds for which no group contributions have been fitted before. Therefore, the prediction of surface tension can be made prior to synthesis and the design of novel compounds with certain desired value of surface tension may, in this way, be guided by the results of calculations.

#### Acknowledgment

The authors acknowledge financial support from Fondecyt under project No. 1020464.

#### References

- P. Mach, C.C. Huang, T. Stoebe, E.D. Wedell, T. Nguyen, W.H. De Jeu, F. Guittard, J. Naciri, R. Shashidhar, N. Clark, I.M. Jiang, F.J. Kao, H. Liu, H. Nohira. *Langmuir*, 14, 4330 (1998).
- [2] J.A. Dean. Lange's Handbook of Chemistry, 14th Edn, McGraw-Hill, New York (1992).
- [3] A.R. Katritzky, V.S. Lobanov and M. Karelson, Codessa version 2.0, Reference Manual (1994).
- [4] Hyperchem 7.0; Hypercube, Inc., 1115 NW 4th Street, Gainesville, Fl 32601, USA (2002).
- [5] Ampac 5.0; Semichem, 7128 Summit, Shawnee, KS 66216, USA (1994).
- [6] F.M. Fowkes. J. Phys. Chem., 84, 510 (1980).
- [7] D.G. Legrand, G.L. Gaines Jr. J. Colloid Interface Sci., 42, 181 (1973).
- [8] J.K. Labanowski, I. Motoc, R.A. Dammkoehler. Comput. Chem., 15, 47 (1991).
- [9] D.T. Stanton, P.C. Jurs. J. Chem. Inf. Comput. Sci., 32, 109 (1992).
- [10] G.W. Kauffman, P.C. Jurs. J. Chem. Inf. Comput. Sci., 41, 408 (2001).
- [11] A.A. Freitas, F.H. Quina, F.A. Caroll. Langmuir, 16, 6689 (2000).
- [12] E. Estrada, E.J. Delgado, J.B. Alderete, G.A. Jaña. J. Comput. Chem., 25, 1787 (2004).