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ABSTRACT

In this paper, a novel color space transform is presented. It is an adaptive transform based on the application of
independent component analysis to the RGB data of an entire color image. The result is a linear and reversible
color space transform that provides three new coordinate axes where the projected data is as much as statistically
independent as possible, and therefore highly uncorrelated. Compared to many non-linear color space transforms
such as the HSV or CIE-Lab, the proposed one has the advantage of being a linear transform from the RGB
color space, much like the XYZ or YIQ. However, its adaptiveness has the drawback of needing an estimate of
the transform matrix for each image, which is sometimes computationally expensive for larger images due to the
common iterative nature of the independent component analysis implementations. Then, an image subsampling
method is also proposed to enhance the novel color space transform speed, efficiency and robustness. The new
color space is used for a large set of test color images, and it is compared to traditional color space transforms,
where we can clearly visualize its vast potential as a promising tool for segmentation purposes for example.
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1. INTRODUCTION

Computer vision is mainly about retrieving useful information from images, generally simulating the way the
Human Vision System (HVS) performs it. In this way, color images are the natural information source and
they are normally captured in the trichromatic RGB color space. Although widely used due to its simplicity,
the RGB color space suffers from a high degree of correlation between its color channels, making harder the
information extraction process from them. Therefore, many different color spaces have been suggested1, 2 and
they are often used for achieving better results in several computer vision tasks such as color quantization,
segmentation, compression, noise reduction, contrast enhancement, etc. . . 3–8

Color space transforms are commonly based on fixed linear or non-linear operations from the RGB color space,
with their respective advantages and drawbacks regarding for example the proportionality between the coordi-
nates distance and the color difference, similarity to the HVS perception, separation of chromatic and achromatic
channels, etc. . . . Nevertheless, none of the generic color spaces available such as HSV, HSI, YUV, YIQ, CIE-Lab
or CIE-Luv, can really adapt to the color image content, performing in different ways for different computer
vision tasks, so none of them is a real optimum for any kind of color images, having to choose by try and
error which color space best fits to every specific application.9–12 For this reason, the seek for new color space
transforms is a constant concern in the color image processing research community. For example, and based on
the color opponent model of the HVS, new color spaces have been defined in order to match the needs of color
image segmentation13 and quantization14 algorithms.

However, in the specific case of adaptive color spaces, special attention is given to the X1X2X3 color space
based on the discrete Karhunen-Loeve (K-L) Transform,2 which is commonly achieved by applying Principal
Component Analysis (PCA) to the RGB color space data. It has the main advantage of being a linear trans-
formation that leads to three new orthogonal channels that are uncorrelated to each other. This color space is
widely accepted for image compression applications10 and it has been extended to other applications such as
Local Contrast Enhancement15 and Face Recognition.16
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Nonetheless, in the early 80’s, and after applying X1X2X3 color space to a large amount of data for segmentation
purposes, Ohta el al.9 found an approximation to the K-L Transform by a fixed transform matrix, leading to the
Ohta’s color space I1I2I3, which usually allows very similar results at much less computational cost, in despite of
the loose of adaptiveness. Lately, a similar approximation has been performed after applying the K-L transform
to the CIE-Lab space as well.17

Thinking in the constraints of the K-L color space, and also based on the successful applications to multispectral
imagery,18, 19 in this paper we propose a novel color space transform based on the direct use of independent
component analysis20, 21 (ICA) to entire RGB color space images. Lately, ICA has already being used in color
image processing for many applications, but it has being used with small patches of color images to find basis
functions that are finally useful for feature extraction and denoising.22, 23 However, in this particular new
adaptive color space case, ICA finds a linear, but not necessarily orthogonal coordinate system where the RGB
data is projected onto three new variables that are as statistically independent as possible from each other.
Therefore ICA is a generalization of PCA and, like PCA, it has proven to be a useful tool for finding structure
in data, so there are no reasons why not applying ICA to an entire color image and don’t expect that at least
the obtained results might equal or outperform the ones obtained by the K-L color space. Nonetheless, ICA has
the disadvantage of being obtained by an iterative algorithm.

We test the proposed color space transform by applying it to different kind of images, and then comparing its
results to the ones obtained by commonly used color spaces such as the HSI, CIE-Lab, I1I2I3 and X1X2X3.
From the results, we describe some special properties of the new color space, and we also show some potential
applications.

This paper is organized as follows. In Section 2, a brief description of independent component analysis is
presented. In Section 3 the new color space is described. A comparison between the proposed color space and
classical ones applied to color images is shown in Section 4 . The conclusions of the paper are finally summarized
in Section 5.

2. INDEPENDENT COMPONENT ANALYSIS

In this section an overview of independent component analysis20, 21 is presented. First the basics of the ICA
model is described. Then, the fundamental principles of statistical independence are reinforced and characterized
by higher order statistics. In this way several methods for achieving ICA are mentioned, and finally the used
implementation is explained.

2.1. Definition of ICA

Assume that we observe n linear mixtures x1, . . . , xn of n independent components

xj = aj1s1 + aj2s2 + . . . + ajnsn,∀j (1)

where each mixture xj and each independent component si is a zero-mean random variable. In vector notation
the above mixing model is written as

x = As (2)

where A is the mixing matrix whose elements are the coefficients aij . This statistical model is called independent
component analysis, or ICA model. The ICA model is a generative model that describes how the observed data
are generated by a process of mixing the components si, that cannot be directly observed otherwise. The mixing
matrix is also assumed to be unknown, so all we observe is the random vector x, and we must estimate both A
and s from it.

The starting point for ICA is that the components si are statistically independent, which finally implies that
the independent components must have nongaussian distributions. If we assume a square mixing matrix, so we
have same number of observations than independent components, then after estimating the matrix A we can
compute its inverse W, and thus obtain the independent components by:

s = Wx (3)
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2.2. Statistical Independence

Considering two scalar-valued random variables y1 and y2, then this variables are independent if the information
on the value of y1 does not give any information on the value of y2, and vice versa. In statistical terms,
independence can be defined by probabilities densities. Let us denote by p(y1, y2) the joint probability density
function (pdf) of y1 and y2, and denote by p1(y1) and p2(y2) the marginal pdf of y1 and y2 respectively:

p1(y1) =
∫

p(y1, y2)dy2

p2(y2) =
∫

p(y1, y2)dy1
(4)

Then, y1 and y2 are independent if and only if its joint pdf is factorizable as

p(y1, y2) = p1(y1)p2(y2) (5)

From the definition of independence above it can be derived the most important property of independent random
variables. Given two functions h1 and h2, we always have

E{h1(y1)h2(y2)} = E{h1(y1)}E{h2(y2)} (6)

If we know that two random variables are uncorrelated if their covariance is zero, then

E{y1y2} − E{y1}E{y2} = 0 (7)

Therefore, if the variables are independent, they are uncorrelated. On the other hand, uncorrelatedness does not
imply independence.

2.3. ICA Implementation

The key for estimating the ICA model is nongaussianity. Following the Central Limit Theorem, a sum of
independent random variables tends toward a gaussian distribution. Thus, a sum of two independent random
variables has a distribution that is closer to gaussian than any of the two original random variables. If we assume
that the data vector x is a mix of independent components, then the distribution of each mixed vector is more
gaussian than any of the independent components in s. Therefore if we can choose the unmixing matrix W
in order to maximize the nongaussianity of each estimated component, then they will finally correspond to the
independent components.

Thus, a measure of nongaussianity is needed in order to estimate the ICA model. Using a statistical approach,
kurtosis will define if a distribution is subgaussian or supergaussian, and therefore is a good measure of the
nongaussianity degree. On the other hand, by using an information theory approach, negentropy is an adequate
choice.

Other approaches to solve the ICA model are related to minimization of mutual information, maximum likelihood
by infomax, and projection pursuit, but they are very related to the maximization of nongaussianity at the end.

In this case we will make use of the widely used and accepted ICA algorithm called FastICA.24 The preprocessing
steps to apply the ICA method is basically: centering the data, or removing its mean value leading to zero-mean
variables; and whitening the data, leading to uncorrelated unit variance data. Centering is a very trivial step,
and whitening can be easily achieved by Principal Component Analysis, or PCA. The algorithm is of an iterative
nature, and basically it needs to setup initially the startup for the unmixing matrix W and the selection of the
nonlinear function used to estimate an approximation value for the negentropy.

3. NEW COLOR SPACE TRANSFORM

The adaptive color space transform here proposed is based on the application of independent component analysis
to a RGB color image. At the end this is an improved, and generalized natural extension of the X1X2X3

Karhunen-Loeve color space obtained by using PCA.2
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3.1. Description

In this particular color space transform case, each RGB channel is treated as a sample measurement with
a different point-of-view of the same scene, which can lead us to discover up to three different independent
components that are supposed to be mixed in each observation in the R, G and B channels. The only big
assumption is that the statistical distributions of the unknown independent components are nongaussian, then
what the ICA algorithm pursues is to find the best tridimensional linear projection into the RGB cube that
maximize the nongaussianity of each estimated component, that can be at the end statistically independent from
each other.

We are assuming that each of the three RGB channels has a mix of three independent (nongaussian) components,
which might not be necessarily true, so what we are finally doing at the end is seeking for three components
the most independent as possible. Every resulting estimated independent component is expected to be more
uncorrelated to each other compared to the original RGB channels, and also to other color spaces. Of course, each
of these three supposed independent components can contain a mix of even more real independent components,
because we will commonly have more independent components than mixtures, but we are finally constrained to
estimate a maximum of three.

3.2. Practical Considerations

To apply the proposed transform first we reorder each RGB channel of a given image into a vector, and then once
we apply the independent component analysis algorithm (FastICA24) to the three vectors we get as a result the
separation (unmixing) matrix W, which will define our color space transform matrix for a particular image, like
any linear color space transform. This separation matrix, and its inverse (the mixing matrix A), can be further
used to perform the color space transform back and forth for the same image. Then, some clear advantages
of the adaptive color space proposed here are: the linearity of the transform and, of course, its adaptiveness.
In addition, we should state as a major advantage the lack of constraints regarding the orthogonality of the
projections, such as in PCA, which is an extra degree of freedom to perform an estimation that fits better the
data distribution in the statistical independence sense. However this extra degree of freedom is also adding
complexity to the ICA algorithm itself, which sometimes leads that the tuning of the FastICA algorithm can
become tricky. However, the worst result we could get is as good or bad as performing only the whitening on
the data, obtaining the same result as the K-L only transformation.

Typically we choose as a starting mixing matrix for the iteration algorithm the identity matrix, but a random
vector could also be used. The main difference is that if we apply the algorithm several times to the same image,
the order of the estimated independent components can change randomly as well, but generally the same results
are achieved. The other important point is the selection of the nonlinearity for the algorithm. We typically
selected the tanh, but normally any other choice used to work well in the same way. The only problem was
related when no convergence was achieved, so the change of nonlinearity sometimes helped in making it work.

Additionally, for larger images the convergence time in a normal Personal Computer (PC) can be too long for
certain difficult images in particular, so a subsampling scheme helped to accelerate the convergence time, and
also helped in making the estimation more robust. At the beginning we tried fractal subsampling scanning as
proposed in,25 but at the end using normal vector downsampling was enough to guarantee proper and repeatable
results. In all the test images used, we tried with good confidence up to a factor of 100 in downsampling leading
to similar results, but with a significative reduction on the number of iterations needed, increasing even further
the speed up of the convergence time. It seems that there are less distraction points that used to confuse the
algorithm, avoiding local minima for example.

Finally, it is worth to mention that the FastICA algorithm includes the mean removal for the initial data vectors
and also realizes the whitening to the data through PCA, so the preprocessing step is the entire K-L X1X2X3

color space transform.

4. RESULTS

In order to test the behavior of the new adaptive color space transform, we applied it to a large collection of color
images extracted from the Berkeley Segmentation Database,26 the Image Quality Assessment Database,27 and

SPIE-IS&T/ Vol. 6497  64970P-4



the USC-SIPI Image Database28 where we extracted some classical color test image processing such as Lenna,
Peppers and Mandrill.

The obtained new color space projections are identified by IC1IC2IC3, and we typically compared them to
the original RGB channels and also to the ones obtained by applying the: HSI, CIE-Lab, I1I2I3 (Ohta), and
X1X2X3 K-L color space transforms. However due to space limitations, only one sample picture of each image
database was selected to be used as the test images used throughout this paper, as shown in figure 1.

(a) (b) (c)

Figure 1. Color Test Images. a) Mandrill. b) Monarch. c) Face.

4.1. Overall Color Space Comparison
We will start the analysis by checking the results obtained for the Mandrill image28 in figure 2. This image is
very special and is a tough test for any image processing algorithm, including a color space. In fact, it took
several iteration for the FastICA algorithm to converge, so after using downsampling it was fine, but still difficult
compared to most of the images.

First of all, it is easy to realize that the RGB color space is highly correlated, specially between the G and
B channels that appear like different black and white versions of the original image. Nonetheless, due to the
prominent big red nose, the R channel looks particularly different than the usual. In the corresponding left
columns, we tried to align the channels related to the luminance estimation component of each color space, and
we can see that all of them are quite similar, regardless some brighter or darker appearance. However, special
attention is given to the IC1, where compared to its counterparts the eyes look with less bright than the expected,
and therefore it might not be a good luminance estimation as the K-L case.

Looking at the second column, it can be seen that the nose is noticeable in all the shown channels, except in the
HSV channel H where the image should be inverted to see this effect. Both I2 and X2 channels emphasize not
only the nose but also the eyes and the yellow beard of the ape. On the other hand, channel IC2 looks more like
channel a in Lab, where the nose is evidently separated from the rest, and even the eyes are less brighter.

After watching the third columns, it can be seen that HSV S and Lab b channels are quite similar, still clearly
showing the nose and the eyes, which is comparable to channels X2 and I2 as well, in despite of a slightly darker
nose. In addition, IC3 and X3 are very alike, showing the ape yellowish hair, beard and the eyes, which is even
stronger in the ICA color space. Therefore, it seems that the proposed color space found projections much like
in the direction of the real color of the nose, the eyes, and in a sort of color average.

Following the next example, we will check the results for the Monarch image27 in figure 3, which is a butterfly
picture where the yellow and pink colors dominates the scene.

In the same way as the previous analysis we started by examining the RGB channels, where a strong correlation
is seen between channels R and G, and channel B is mostly showing the white part of the flower plants and the
white butterfly points as well. Analogous to , all luminance estimates are in the left column, where it can be
seen that most of them (I, I1 and X1) are very similar to the G channel, and the L in Lab is very similar to the
R channel. On the other hand, the IC1 channel is resembling the B channel in some way, reinforcing the white
parts of the image, and hardly representing a luminance estimate for the original color image.

SPIE-IS&T/ Vol. 6497  64970P-5



(a) R (b) G (c) B

(d) I (e) H (f) S

(g) L (h) a (i) b

(j) I1 (k) I2 (l) I3

(m) X1 (n) X2 (o) X3

(p) IC1 (q) IC2 (r) IC3

Figure 2. Mandrill represented in several Color Spaces: a-c)RGB; d-f)HSI; g-i)Lab; j-l)Ohta; m-o)PCA; p-r)ICA.
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(a) R (b) G (c) B

(d) I (e) H (f) S

(g) L (h) a (i) b

(j) I1 (k) I2 (l) I3

(m) X1 (n) X2 (o) X3

(p) IC1 (q) IC2 (r) IC3

Figure 3. Monarch represented in several Color Spaces: a-c)RGB; d-f)HSI; g-i)Lab; j-l)Ohta; m-o)PCA; p-r)ICA.
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Checking the remaining channels, it can be seen that the HSI S channel is very similar to the b channel in Lab,
representing mostly the butterfly wings, analogous to the behavior of channels I2, X2 and IC2, where mainly
only the yellow part of the wings is stand out. Although, X2 is displaying parts of the pink flower plants, which
is even more noticeable in channels I3 and X3. However, parts of the butterfly wings are still visible, but they
almost disappear in channels a from Lab, and the proposed IC3, where only the pink flower is clearly present.

From both analyzed images, it can be seen that instead of generating one achromatic channel plus two chromatic
ones, the proposed adaptive color space generates projections in the chromatic direction of what we could call
the main independent colors. In this way, at least some of the projections are very similar to the ones achieved
by the widely spread used CIE-Lab color space, but through a linear transformation.

In addition, we can notice some huge separation of certain noticeable and specific image features projected onto
the different transformed independent channels, just like our own HVS performs, which might enhance later
segmentation and recognition tasks for example, compared mainly to the results obtained by the K-L transform.

Similar behavior is mainly found in most of the images used but not shown here, However, this is not the case
for all the images, because some of them never converged at all, maybe because they do not accomplish the
requirement for the existence of independent components, such as the desired nongaussianity.

4.2. Adaptive Color Space Comparison
Then, a comparison on the performance of both adaptive color space transform described here is presented.
In this sense, we would like to project back to the original RGB color space every channel by itself, filling
the other channels with zeros. Therefore, we will be able to see the colors where each channel are mainly
projected. Anyway, some considerations may be taken in account. For example, for almost all of the X2 and
X3 projected components derived from the K-L transform, a gain was applied in order to proper visualize the
data. Furthermore, some projections in both cases have negative values, so when they are projected back onto
the RGB plane they cannot be visualized directly, so sometimes we have some truncation on the visualizations,
which allow us to see some behavior in the case of hard thresholding as a segmentation approach. Finally, in
any case, by summing all the projections at the RGB level we get the reconstruction of the original color image.

First, the results for the Mandrill image are shown in figure 4. In the case of the K-L transform results, it can be
seen that the first component is projected onto a light blue color. On the other hand the other two components
are projected into red and green colors respectively. For the ICA results it is clear that the projections are in a
blue-violet, red, and yellow colors, most likely the real images main colors at a first sight. In addition, the nose
is almost left alone in IC2, and the eyes and hair are isolated in IC3.

Then, by checking the Monarch image in figure 5, we can see a similar behavior than the previous analysis. For
the first K-L component we have a sepia like projection, which is clearly the luminance component, and the
second and third components are again projected onto green and red colors. Now seeing the ICA components,
the first one is obviously not a valid luminance estimation, and it displaying all the related white features of the
original image. In the same way, the yellow part of the butterfly wing is clearly separated from the rest of the
scene in IC2, and in the same yellow color, and also the pink flowers are isolated in component IC3 in the same
color as in the original image.

Last, in figure 6 we present the color projections of the last image, Face,26 whose channel values for the other
color spaces were not shown here like for the other presented images due to space limitations.

For the Face image then, similar characteristics can be seen for the K-L projections, where the first component
resides again in a sepia like color, and the X2 component clear separates the skin projected onto a red color,
while X3 displays mainly the lips in a violet like one. In the case of the ICA projection, the components are
very analogous to the K-L ones, however as discussed before, the first component is not necessarily a luminance
estimation, showing signs of representing the white color in the original image. So in the case of IC2, the skin
is separated in the same way as in X2, however the color is more accurate regarding the skin. And in the last
component, the lips appear in a more realistic red color.

In conclusion we can say that what was found by Ohta9 is right. The first component X1 is always a sort of
summed average of all RGB channels, and X2 and X3 are projections of the form (R − B) and (G − R − B),
which coincides with the fact of finding positive projections in the red and green colors mostly. In addition, all
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(a) X1 (b) X2 (c) X3

(d) IC1 (e) IC2 (f) IC3

Figure 4. Manrill Image. a-c)PCA Color Projections; d-f)ICA Color Projections.

(a) X1 (b) X2 (c) X3

(d) IC1 (e) IC2 (f) IC3

Figure 5. Monarch Image. a-c)PCA Color Projections; d-f)ICA Color Projections.

projections from both adaptive color spaces in gray level at least seems to be quite similar, trying to separate
and enhance image features. Nonetheless, from the color projections it can be seen that the ICA projections
shows image features that are even more enhanced and separated, and also the projected colors are more realistic
compared to the original color images. This can be related to the fact of the orthogonality constraint in the PCA
projections, which may allow to match one of the image colors, but not more than that.

Finally to end our tests on color images, we would like to present the following experiment, where we play with
the latest Face image by manipulating the independent components IC1IC2IC3. In this case we apply gain
factors to IC2 (the skin) and IC3 (the lips). In figure 7 some examples of mixed gain factors applied to the
mentioned components are displayed. There, it is hard to notice which one is the original image (in the middle),
because all of them look quite natural. So in this particular case we can say that we found three main components
of the color image that are not only uncorrelated, but also independent, and thus nongaussian. Then we could
also call them the independent colors of the image.
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(a) X1 (b) X2 (c) X3

(d) IC1 (e) IC2 (f) IC3

Figure 6. Face Image. a-c)PCA Color Projections; d-f)ICA Color Projections.

(a) IC1 (b) IC2 (c) IC3 (c) IC3 (c) IC3

Figure 7. Face Image Experiment. a)1.75× IC2 + 0.7× IC3. b)1.35× IC2 + 1.8× IC3; c)Original Image; d)0.3× IC2 +
1.3 × IC3; e)0.5 × IC2 + 0.7 × IC3.

5. CONCLUSIONS

We presented a new color space transform. It is an image dependent adaptive transform based on the application
of independent component analysis to the RGB data. Furthermore it is a linear and reversible color space
transform that provides three new not necessarily orthogonal coordinate axes where the projected data is as
much as statistically independent as possible, and therefore highly uncorrelated. When compared to common
fixed color space transforms it shows in the chosen test images impressive results, separating color features in a
very special way. Nevertheless, the new color representation lacks of a luminance channel, but on the other hand
it utilizes its third channel to display additional color features. Also, when compared to other adaptive color
spaces such as the Karhunen-Loeve one, it seems to outperform it because it is able to spread the information
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over the different channels, separating color features in a unseen way, instead of concentrating the energy in the
first component like in the K-L case, which can be a great advantage in segmentation of color images. As seen
in the RGB color projections, the proposed color space can adapts in a better way to fit the data distribution
in any color direction, with no orthogonality constraints, allowing interesting image processing manipulations.
However, it is not usable for all kind of color images, because the statistical constraints regarding performing
independent component analysis successfully are not always accomplished by the data itself. It was also shown
that by using downsampling in the input data, alleviates the ICA algorithm work, making it faster and even
more robust. Therefore, the application of independent component analysis as a new color space transform tool
is more than advisable, in despite of the algorithm convergence issue. So it is finally up to the image processing
research community to adopt the proposed color space in order to test it extensively and finally proof it as an
useful alternative to novel or even older computer vision algorithms.
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