

A Novel Iterative Image Restoration Algorithm using Nonstationary Image Priors

Esteban Vera 1* , Miguel Vega 2 , Rafael Molina 3 , and Aggelos K. Katsaggelos 4

- ¹ Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85750
- ² Departamento de Lenguajes y Sistemas Informáticos, Universidad de Granada, 18071, Granada, Spain
- ³ Departamento de Ciencias de la Computación e I.A., Universidad de Granada, 18071, Granada, Spain
- ⁴ Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, IL 60208-3118

Abstract: We propose a novel algorithm for image restoration based on a combination of nonstationary edge-preserving priors. We develop a Bayesian modeling followed by an evidence approximation inference approach for deriving the iterative algorithm, making use of a diagonal covariance matrix approximation for a fast implementation.

Introduction

Image restoration is the process of recovering a clean image \mathbf{x} from a degraded blurry and noisy image \mathbf{y} . A classical linear model for image degradation is:

$$y = Hx + n,$$

where ${\bf H}$ is the blurring kernel operator, and ${\bf n}$ is an additive noise component. Thus, image restoration is an ill-posed inverse problem, where ${\bf H}$ is typically given and often considered to be a space-invariant Point Spread Function (**PSF**).

Bayesian Modeling

Observation Model

If the noise is Gaussian the pdf of the observation model is:

$$p(\mathbf{y}|\mathbf{x},\beta) \propto \beta^{N/2} \exp\left\{-\frac{\beta}{2}||\mathbf{y} - \mathbf{H}\mathbf{x}||^2\right\}.$$

Prior Model

As image prior we define a zero-mean multivariate Gaussian distribution that combines the constraints given by a set of L filters C_i (e.g. high-pass first order differences) as follows:

$$p(\mathbf{x}|\mathbf{a}_1,\ldots,\mathbf{a}_L) \propto \left|\sum_{i=1}^L \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i\right|^{1/2} \exp\left\{-\frac{1}{2}\sum_{i=1}^L \|\mathbf{A}_i^{1/2} \mathbf{C}_i \mathbf{x}\|^2\right\},$$

where A_i is the diagonal matrix of the hyperparameters a_i^j associated with the precision of the corresponding response of each filter operator C_i for any pixel j. Thus, $A_i = \text{DIAG}(\mathbf{a}_i)$, and $\mathbf{a}_i = [a_i^1, a_i^2, \dots, a_i^N]^t$.

Bayesian Inference

The joint probability $p(\mathbf{y}, \mathbf{x}, \beta, \mathbf{a}_1, \dots, \mathbf{a}_L)$ is proportional to:

$$\left| \sum_{i=1}^{L} \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i \right|^{1/2} \beta^{N/2} \exp \left\{ -\frac{1}{2} \sum_{i=1}^{L} \|\mathbf{A}_i^{1/2} \mathbf{C}_i \mathbf{x}\|^2 - \frac{\beta}{2} \|\mathbf{y} - \mathbf{H} \mathbf{x}\|^2 \right\}.$$

Now, to perform the inference for the hyperparameters based on the evidence analysis, by marginalizing over \mathbf{x} we have that the marginal distribution is as follows:

$$p(\mathbf{y}|\beta, \mathbf{a}_1, \dots, \mathbf{a}_L) = \int_{\mathbf{x}} p(\mathbf{y}, \mathbf{x}, \beta, \mathbf{a}_1, \dots, \mathbf{a}_L) d\mathbf{x}$$

$$\propto \left| \sum_{i=1}^{L} \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i \right|^{1/2} \beta^{N/2} \left| \sum_{i=1}^{L} \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i + \beta \mathbf{H}^t \mathbf{H} \right|^{-1/2}$$

$$\times \exp \left\{ -\frac{1}{2} \sum_{i=1}^{L} \| \sqrt{\mathbf{A}_i} \mathbf{C}_i \bar{\mathbf{x}} \|^2 - \frac{\beta}{2} \| \mathbf{y} - \mathbf{H} \bar{\mathbf{x}} \|^2 \right\}.$$

Thus, the marginal logarithm is equal to:

$$\ln p(\mathbf{y}|\beta, \mathbf{a}_1, \dots, \mathbf{a}_L) = \frac{1}{2} \ln \left| \sum_{i=1}^{L} \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i \right| - \frac{\beta}{2} \|\mathbf{y} - \mathbf{H}\bar{\mathbf{x}}\|^2$$
$$+ \frac{N}{2} \ln \beta - \frac{1}{2} \sum_{i=1}^{L} \|\mathbf{A}_i^{1/2} \mathbf{C}_i \bar{\mathbf{x}}\|^2 - \frac{1}{2} \ln \left| \sum_{i=1}^{L} \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i + \beta \mathbf{H}^t \mathbf{H} \right|$$

Next, by taking the derivative with respect to the hyperparameter a_i^j corresponding to the element j of the diagonal matrix A_i , we have that:

$$\frac{\delta \ln p(\mathbf{y}|\beta, \mathbf{a}_1, \dots, \mathbf{a}_L)}{\delta a_i^j} = \frac{1}{2} \left(\operatorname{trace}\left[\left(\sum_{i=1}^L \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i \right)^{-1} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i \right] - \bar{\mathbf{x}}^t \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i \bar{\mathbf{x}} - \operatorname{trace}\left[\left(\sum_{i=1}^L \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i + \beta \mathbf{H}^t \mathbf{H} \right)^{-1} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i \right] \right)$$

where \mathbf{J}^{ij} is the single-entry matrix which is zero everywhere except at the entry (i,j), and $\bar{\mathbf{x}}$ is the **MAP** estimate for the unknown image to be recovered.

Parameter Estimation

By setting the marginal derivative equal to zero, and defining $\Sigma_P = \sum_{i=1}^L \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i$ and $\Sigma_T = \sum_{i=1}^L \mathbf{C}_i^t \mathbf{A}_i \mathbf{C}_i + \beta \mathbf{H}^t \mathbf{H}$, then:

$$\operatorname{trace}[\Sigma_P^{-1} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i] = \bar{\mathbf{x}}^t \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i \bar{\mathbf{x}} + \operatorname{trace}[\Sigma_T^{-1} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i].$$

Using an **EM** approach the hyperparameters are found as:

$$a_i^{j(k+1)} = \frac{a_i^{j(k)} \operatorname{trace}[\Sigma_P^{-1} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i]}{\bar{\mathbf{x}}^{t(k)} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i \bar{\mathbf{x}}^{(k)} + \operatorname{trace}[\Sigma_T^{-1} \mathbf{C}_i^t \mathbf{J}^{jj} \mathbf{C}_i]}, \tag{1}$$

where $\bar{\mathbf{x}}^{(k)}$ is the **MAP** estimate computed as follows:

$$ar{\mathbf{x}}^{(k)} = \left(\sum_{i=1}^{L} \mathbf{C}_i^t \mathbf{A}_i^{(k)} \mathbf{C}_i + \beta \mathbf{H}^t \mathbf{H}\right)^{-1} \beta \mathbf{H}^t \mathbf{y},$$
 (2)

Implementation

To simplify their inversion, we use a diagonal approximation for the covariance matrices in Eq. 1, Σ_P and Σ_T , leading to the proposed iterative update formula as follows:

$$\mathbf{a}_{i}^{(k+1)} = \operatorname{diag}\left[\operatorname{DIAG}\left(\mathbf{B}\operatorname{diag}(\Sigma_{P}^{(k)^{-1}})\right)\right] \times \operatorname{DIAG}\left(\operatorname{diag}((\mathbf{C}_{i}\bar{\mathbf{x}}^{(k)})(\mathbf{C}_{i}\bar{\mathbf{x}}^{(k)})^{t}) + \mathbf{B}\operatorname{diag}(\Sigma_{T}^{(k)^{-1}})\right)^{-1}\right],$$

which can be implemented in the Fourier domain, and where $\Sigma_P^{(k)} = \sum_{i=1}^L \mathrm{DIAG}(\mathbf{D}_i^t \mathbf{a}_i^{(k)})$ and $\Sigma_T^{(k)} = \sum_{i=1}^L \mathrm{DIAG}(\mathbf{D}_i^t \mathbf{a}_i^{(k)}) + \beta h^2 \mathbf{I}$, \mathbf{B} is a 4-connected filter, \mathbf{D}_i is a filter related to each filter \mathbf{C}_i , and h is a constant related to the blurring matrix \mathbf{H} .

Simulation Results

We implemented two variants of the proposed algorithm: **NF2** uses only the first order horizontal and vertical difference filters, whereas **NF4** also add the first order diagonal filters. We compared the restoration performance against **BTV** [1] and **BST** [2] using a variety of **PSF** kernels and noise levels. We used four standard images: Cameraman (CAM, 256×256), Lena (LEN, 256×256), Shepp-Logan Phantom (PHA, 256×256) and Barbara (BAR, 512×512 . The noise variance $\sigma^2 = 1/\beta$ is known, and the **ISNR** is defined as $20\log_{10}(\|\mathbf{x}-\mathbf{y}\|/\|\mathbf{x}-\hat{\mathbf{x}}\|)$.

Comparative Restoration Performance - ISNR (dB):

		Uniform Kernel (9×9)				Gaussian Kernel ($\sigma^2 = 9$)			
BSNR	Method	CAM	LEN	PHA	BAR	CAM	LEN	PHA	BAR
40 dB	BTV	8.60	8.51	17.74	3.22	3.49	4.85	7.87	1.61
	BST	8.80	8.13	19.02	3.16	3.25	4.34	10.34	1.36
	NF2	9.34	9.13	20.03	3.74	3.56	3.87	5.39	1.54
	NF4	9.75	9.63	23.05	3.65	3.71	4.03	8.06	1.52
30 dB	BTV	5.08	5.89	11.00	1.71	2.73	3.96	5.29	1.27
	BST	5.89	5.50	12.51	1.61	2.69	3.08	7.97	1.04
	NF2	6.38	6.40	10.44	2.01	3.03	3.37	5.71	1.18
	NF4	6.61	6.86	12.14	1.93	3.17	3.49	6.43	1.20
20 dB	BTV	2.42	3.59	5.52	1.15	1.81	2.84	2.79	1.14
	BST	3.18	2.65	8.25	0.73	2.03	1.93	5.16	0.79
	NF2	3.85	4.22	6.83	1.35	2.36	3.18	5.10	1.11
	NF4	3.70	4.45	7.84	1.33	2.41	3.11	5.70	1.09

Restoration example for Cameraman (CAM): (a) Degraded with a 9×9 uniform kernel and 40 dB BSNR:; (b) Original; (c) BTV, ISNR = 8.60 dB; (d) BST, ISNR = 8.80 dB; (e) NF2, ISNR = 9.34 dB; (f) NF4, ISNR = 9.75 dB.

Digital Refocusing Experiment

We designed an experiment for systematically defocusing a target picture, while also retrieving the respective PSF from an illuminated optical fiber. We used a Qlmaging RETIGA EXi Monochrome 12-Bit Cooled CCD camera attached to a Computar H6Z0812 8-48 mm F1.2 zoom lens. First we retrieved pictures of several image thumbnails of natural images of 100×80 pixels each, while the second experiment used a larger target image of 350×500 pixels.

Digital refocusing comparison: (a) Focused images; (b)
Defocused images (Inset: measured PSF); (c) BTV restored images; (d) NF4 restored images.

Digital refocusing experiment: (a) Focused image; (b) Moderate defocus; (c) Medium defocus; (d) Strong defocus (Insets: 4× measured PSF); (e) NF4 restored image (b); (f) NF4 restored image (d).

Conclusion

We presented a novel image restoration algorithm that comfortably surpassed the state-of-the-art in terms of **ISNR** for compactly supported **PSF** blurring kernels. We also empirically demonstrated that the algorithm is successfully suitable for restoring defocused images, showing a clear improvement in the perceivable visual quality.

References

- [1] S.D. Babacan *et al.*, "Parameter estimation in tv image restoration using variational distribution approximation," *IEEE TIP*, vol. 17, no. 3, pp. 326 –339, Mar 2008.
- [2] G. Chantas *et al.*, "Variational bayesian image restoration based on a product of t-distributions image prior," *IEEE TIP*, vol. 17, no. 10, pp. 1795 –1805, Oct 2008.

