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Abstract: We propose a novel algorithm for image
restoration based on a combination of nonstationary edge-
preserving priors. We develop a Bayesian modeling followed
by an evidence approximation inference approach for deri-
ving the iterative algorithm, making use of a diagonal co-
variance matrix approximation for a fast implementation.

Introduction
Image restoration is the process of recovering a clean image
x from a degraded blurry and noisy image y. A classical
linear model for image degradation is:

y = Hx + n,

where H is the blurring kernel operator, and n is an additive
noise component. Thus, image restoration is an ill-posed in-
verse problem, where H is typically given and often consid-
ered to be a space-invariant Point Spread Function (PSF).

Bayesian Modeling
Observation Model
If the noise is Gaussian the pdf of the observation model is:

p(y|x, β) ∝ βN/2 exp

{
−β

2
‖y −Hx‖2

}
.

Prior Model
As image prior we define a zero-mean multivariate Gaussian
distribution that combines the constraints given by a set of L
filters Ci (e.g. high-pass first order differences) as follows:

p(x|a1, . . . , aL) ∝
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where Ai is the diagonal matrix of the hyperparameters
aji associated with the precision of the corresponding re-
sponse of each filter operator Ci for any pixel j. Thus,
Ai = DIAG(ai), and ai = [a1

i , a
2
i , . . . , a

N
i ]t.

Bayesian Inference
The joint probability p(y,x, β, a1, . . . , aL) is proportional to:∣∣∣∣∣∣
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Now, to perform the inference for the hyperparameters
based on the evidence analysis, by marginalizing over x we
have that the marginal distribution is as follows:

p(y|β, a1, . . . , aL) =
∫
x
p(y,x, β, a1, . . . , aL)dx

∝
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Thus, the marginal logarithm is equal to:

ln p(y|β, a1, . . . , aL, ) =
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Next, by taking the derivative with respect to the hyperpa-
rameter aji corresponding to the element j of the diagonal
matrix Ai, we have that:

δ ln p(y|β, a1, . . . , aL)
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where Jij is the single-entry matrix which is zero everywhere
except at the entry (i, j), and x̄ is the MAP estimate for the
unknown image to be recovered.

Parameter Estimation
By setting the marginal derivative equal to zero, and defining
ΣP =

∑L
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t
iAiCi and ΣT =
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Using an EM approach the hyperparameters are found as:
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where x̄(k) is the MAP estimate computed as follows:
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Implementation
To simplify their inversion, we use a diagonal approximation
for the covariance matrices in Eq. 1, ΣP and ΣT , leading to
the proposed iterative update formula as follows:
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which can be implemented in the Fourier domain, and where
Σ
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βh2I, B is a 4-connected filter, Di is a filter related to each
filter Ci, and h is a constant related to the blurring matrix H.

Simulation Results
We implemented two variants of the proposed algorithm:
NF2 uses only the first order horizontal and vertical differ-
ence filters, whereas NF4 also add the first order diagonal
filters. We compared the restoration performance against
BTV [1] and BST [2] using a variety of PSF kernels and
noise levels. We used four standard images: Cameraman
(CAM, 256×256), Lena (LEN, 256×256), Shepp-Logan Phan-
tom (PHA, 256 × 256) and Barbara (BAR, 512 × 512. The
noise variance σ2 = 1/β is known, and the ISNR is defined
as 20 log10(‖x− y‖/‖x− x̂‖|).

Comparative Restoration Performance - ISNR (dB):
Uniform Kernel (9× 9) Gaussian Kernel (σ2 = 9)

BSNR Method CAM LEN PHA BAR CAM LEN PHA BAR
40 dB BTV 8.60 8.51 17.74 3.22 3.49 4.85 7.87 1.61

BST 8.80 8.13 19.02 3.16 3.25 4.34 10.34 1.36
NF2 9.34 9.13 20.03 3.74 3.56 3.87 5.39 1.54
NF4 9.75 9.63 23.05 3.65 3.71 4.03 8.06 1.52

30 dB BTV 5.08 5.89 11.00 1.71 2.73 3.96 5.29 1.27
BST 5.89 5.50 12.51 1.61 2.69 3.08 7.97 1.04
NF2 6.38 6.40 10.44 2.01 3.03 3.37 5.71 1.18
NF4 6.61 6.86 12.14 1.93 3.17 3.49 6.43 1.20

20 dB BTV 2.42 3.59 5.52 1.15 1.81 2.84 2.79 1.14
BST 3.18 2.65 8.25 0.73 2.03 1.93 5.16 0.79
NF2 3.85 4.22 6.83 1.35 2.36 3.18 5.10 1.11
NF4 3.70 4.45 7.84 1.33 2.41 3.11 5.70 1.09

Restoration example for Cameraman (CAM): (a) Degraded
with a 9× 9 uniform kernel and 40 dB BSNR:; (b) Original; (c)

BTV, ISNR = 8.60 dB; (d) BST, ISNR = 8.80 dB; (e) NF2,
ISNR = 9.34 dB; (f) NF4, ISNR = 9.75 dB.

Digital Refocusing Experiment
We designed an experiment for systematically defocusing a
target picture, while also retrieving the respective PSF from
an illuminated optical fiber. We used a QImaging RETIGA
EXi Monochrome 12-Bit Cooled CCD camera attached to
a Computar H6Z0812 8-48 mm F1.2 zoom lens. First we
retrieved pictures of several image thumbnails of natural im-
ages of 100 × 80 pixels each, while the second experiment
used a larger target image of 350× 500 pixels.

Digital refocusing comparison: (a) Focused images; (b)
Defocused images (Inset: measured PSF); (c) BTV restored

images; (d) NF4 restored images.

Digital refocusing experiment: (a) Focused image; (b)
Moderate defocus; (c) Medium defocus; (d) Strong defocus

(Insets: 4× measured PSF); (e) NF4 restored image (b); (f) NF4
restored image (c); (g) NF4 restored image (d).

Conclusion
We presented a novel image restoration algorithm that com-
fortably surpassed the state-of-the-art in terms of ISNR for
compactly supported PSF blurring kernels. We also empir-
ically demonstrated that the algorithm is successfully suit-
able for restoring defocused images, showing a clear im-
provement in the perceivable visual quality.
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