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ABSTRACT

In this paper, we propose a novel algorithm for image restoration
based on combining nonstationary edge-preserving priors. We de-
velop a Bayesian modeling followed by an evidence analysis in-
ference approach for deriving the foundations of the proposed it-
erative restoration algorithm. Simulation results over a variety of
blurred and noisy standard test images indicate that the presented
method outperforms current state-of-the-art image restoration algo-
rithms. We finally present experimental results by digitally refocus-
ing images captured with controlled defocus, successfully confirm-
ing the ability of the proposed restoration algorithm in recovering
extra features and details, while still preserving edges.

1. INTRODUCTION

Imaging systems are affected by several degradation sources, leading
to blurry and noisy images that are not necessarily a faithful repre-
sentation of the desired targets. Therefore, and regardless of the em-
ployed modality, image restoration is a critical task for recovering
useful imagery for a variety of applications such as remote sensing,
surveillance, medical diagnosis, and astronomy [1].

Unfortunately, the restoration of blurred and noisy images is an
ill-posed inverse problem, typically solved by constrained optimiza-
tion yielding to iterative regularization methods [2]. Nonetheless,
regularized image restoration needs to address two main issues: the
choice of the regularization function and the regularization parame-
ter, or Lagrange multiplier. On the other hand, the use of Bayesian
methods for image restoration has emerged as an elegant way of im-
posing the regularization term by means of a prior distribution, with
the additional ability of allowing the estimation of both the regular-
ization parameter and noise variance. Although it has been success-
fully applied to smoothness promoting priors [3, 4], Bayesian mod-
eling imposes restrictions on the choice of the prior function and
its distribution, which sometimes lead to untractable inference prob-
lems. The variational Bayes approximation [5] has allowed the suc-
cessful usage of non-stationary sparsity promoting priors within the
Bayesian framework, such as Total Variation (TV) in [6], Gaussian
scale mixtures in [7], and the product of student-t experts in [8, 9].

This work has been supported by the Spanish “Comisión Nacional de
Ciencia y Tecnologia” under contract TIN2010-15237. This work was par-
tially done while Esteban Vera was pursuing his Phd degree in Electrical
Engineering at the University of Concepción in Chile.

In this paper we propose a new approach for the combination
of nonstationary edge-preserving image priors, in a similar spirit of
the prior model based on the product of experts proposed in [10],
but this time without the need of modifying the observation model,
neither the need of using or setting any weighting parameters. The
inference procedure is now based on the evidence analysis, or type-
II maximum likelihood, following the work for stationary Bayesian
restoration in [3]. However, as the resulting iterative parameter esti-
mation update algorithm is computationally intractable, we derive an
approximated algorithm by applying the Jacobi approximation to the
inverse covariance matrices, that can be implemented in the Fourier
domain.

We provide simulations for testing the novel restoration algo-
rithm and compare its performance with state-of-the-art Bayesian
restoration algorithms. We also present results from a digital refo-
cusing experiment for images with different out-of-focus levels. The
numerical and subjective evaluation of the results confirms the ex-
tended capabilities of the proposed restoration method in recovering
more appealing images with enhanced details.

The paper is organized as follows. Section 2 presents the Bayes
modeling and introduces the proposed new prior for the image
restoration problem. In Section 3, the inference procedure for the
image and parameters estimation is derived. Implementation issues
are addressed in Section 4, using the proposed approximation for
the estimation of the parameters. Section 5 and 6 present the results
obtained for the simulations and the digital refocusing experiment.
Finally, conclusions are summarized in Section 7.

2. BAYESIAN MODELING

2.1. Observation Model

A typical linear model for image degradation considers that the ob-
served image y in lexicographical order, is the result of the convo-
lution of the original and unknown image x with a blurring kernel
operator H, plus some additive noise n, that is:

y = Hx + n,

If the noise component n is assumed to follow a Gaussian dis-
tribution, then the pdf of the observation model is expressed as:

p(y|x, β) ∝ βN/2 exp

{
−β

2
‖y −Hx‖2

}
,



with β the inverse of the noise variance, and N the total number of
pixels in the image.

2.2. Prior Modeling

Inspired by the prominent results obtained when combining more
than one single prior as in the case of the field of experts Markov
random fields (MRF) used for image denoising in [11], or the sparse
prior approach used for image deconvolution in [12], we continue
down the path of [10], but following a different inference procedure
without approximating the covariance matrix for the prior prema-
turely.

Therefore, as image prior we define a zero-mean multivariate
Gaussian distribution that combines the constraints given by a set of
L filters Ci as follows:

p(x|a1, . . . ,aL) ∝
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where Ai is a N × N diagonal matrix containing the hyperparam-
eters aji associated with the inverse variance (precision) of the re-
sponse of each corresponding filter operator Ci for any given pixel
j. Thus, Ai = DIAG(ai), and ai = [a1i , a

2
i , . . . , a

N
i ]t.

The advantage of using the proposed prior modeling is twofold.
First, we avoid the election of any specific sparsity promoting shape
for the prior distribution, since it is inherited in the non-stationarity
of the precision hyperparameters. And second, by choosing a Gaus-
sian distribution we are able to seek a tractable inference mechanism.
In addition, in contrast to the previous approach proposed in [8], we
have not imposed any informative hyperprior distribution on the hy-
perparameters.

3. BAYESIAN INFERENCE

The joint probability is written as follows:

p(y,x, β,a1, . . . ,aL) ∝ p(y|x, β)p(x|a1, . . . ,aL)

∝
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We choose to perform the inference for the desired hyperparameters
based on the evidence analysis, or type-II maximum likelihood, also
used in image restoration using stationary priors in [3, 4]. Then, by
marginalizing over x we have that:
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Now, by taking the derivative with respect to the hyperparameter aji
corresponding to the element j of the diagonal matrix Ai, we have

that:

δ ln p(y|β,a1, . . . ,aL)
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where x̄ is the MAP estimate for the unknown image, obtained by
solving the following expression:

x̄ =

(
L∑

i=1

Ct
iAiCi + βHtH

)−1

Hty, (2)

and Jij is the single-entry matrix which is zero everywhere except
at the entry (i, j).

Now, by setting the derivative equal zero, and defining ΣP =∑L
i=1 C

t
iAiCi and ΣT =

∑L
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t
iAiCi + βHtH, Eq. 1 can be

written as:
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Then, by following a similar approach for updating the hyperparam-
eters as in [3], we are finally able to derive the iterative formula for
any of the hyperparameters aji at iteration (k + 1) as follows:

aji
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where x̄(k) is computed at each iteration k using Eq. 2 with the corre-
sponding hyperparameter matrices A(k)

i obtained from the previous
iteration of Eq. 3.

4. IMPLEMENTATION

Unfortunately, the parameters update formula in Eq. 3 is not im-
plementable as is, mostly due to the computation of the inverse of
the covariance matrices, Σ−1

P and Σ−1
T , since they are extremely

large, which is computationally challenging. Therefore, we tackle
this problem by applying the Jacobi diagonal approximation to the
covariance matrices, which leads to a straightforward inversion pro-
cess.

Matrix HtH can be successfully approximated by a weighted
identity matrix such as HTH ≈ h2I, where h is a constant equiv-
alent to the energy of the blurring kernel. In the case of a uniform
(boxcar) kernel, h is the value of any of the filter coefficients. Let
us now examine the matrices Ct

iAiCi. By closely inspecting their
diagonal elements, we realize that they can be obtained by following
a certain rule, which at the end is related to the associated filter Ci.
Therefore, if bi = diag(Ct

iAiCi) is the vector that contains all the
diagonal elements of each Ct

iAiCi matrix, then bi = Dt
iai, where

each Di is a filter related to each Ci. For example, if Ci is the ma-
trix for the first order horizontal difference filter [1 -1], then Di is
the matrix for the linear filter [1 1]. In this way we found a diagonal
approximation that resembles the original diagonal elements of any
of the matrices Ct

iAiCi, and it has the advantage of allowing us to
compute all the diagonal elements of the inverse of each covariance
matrix at once.

Now, in order to both stabilize the estimation process and also
to regularize the covariance matrix elements, we apply the following



approximation Ct
iJ

jjCi ≈ Ct
iS

jjCi, where Sjj is an extended se-
lecting matrix that not only selects the jth-element such as Jjj , but
also selects the corresponding 4-connected neighbors. Thus, for any
filter i and pixel position j, notice that the proposed approximation
introduces regularization on the aji parameters by combining its esti-
mation with the estimation of its corresponding ali parameters of its
four l neighbor pixels.

The applied approximations allow us to perform the computa-
tion of the different aji hyperparameters in parallel, by stacking in
vector form the different equations. Note that the combination of
the trace operator along with the matrix Sjj is equivalent to a mov-
ing average filter. Thus for any given associated filter Ci and any
approximated covariance ˆΣ−1 we have:[

tr[ ˆΣ−1Ct
iS

11Ci], . . . , tr[ ˆΣ−1Ct
iS

NN )Ci]
]t
≈ 2B diag( ˆΣ−1),

where B is a 4-connected spatial moving average filter. Finally we
arrive at the following iterative update formula for the hyperparam-
eters, which can be efficiently implemented in the Fourier domain:
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5. SIMULATION RESULTS

We implemented the algorithm in Eq. 4 using two options: NF2 that
uses only the first order difference filters c1 = [1 − 1] and c2 =
[1−1]t, and NF4 that also adds the diagonal filters c3 and c4 defined
as follows:

c3 =

[
1 0
0 −1

]
, c4 =

[
0 1
−1 0

]
. (5)

We compared the restoration performance of both versions against
implementations of the Bayesian Total Variation (BTV) approach [6],
and the product of student’s- t priors (BST) [8]. We tested the
restoration algorithms in a set of four standard images: Cameraman
(CAM, 256×256), Lena (LEN, 256×256), Shepp-Logan Phantom
(PHA, 256 × 256) and Barbara (BAR, 512 × 512. The images
were degraded by applying a 9× 9 uniform blur as the point spread
functions (PSF), plus the addition of Gaussian noise for achieving
an equivalent blurred to signal-to-noise ratio (BSNR) of 40dB, 30dB
or 20dB.

For all experiments, every algorithm received as inputs the
blurred image, the blurring PSF kernel, and the noise variance
σ = 1/β. In addition, the stopping criteria for the iterative update
of the hyperparameters was either ‖x(k) − x(k−1)‖ < 10−3, or
up to 30 iterations, whichever was met first. Also, the CG iterative
process for estimating the restored image (Eq. 2) was terminated
using a threshold of 10−4 or a maximum of 1000 iterations. Finally,
the performance for each restoration was measured in terms of the
improvement in signal-to-noise ratio (ISNR), which is defined as
20 log10(‖x − y‖/‖x − x̂‖|). The averaged results obtained for
the restoration performance given five realizations of the noise are
summarized in Table 1.

Analyzing the results in Table 1, we can verify that both NF2
and NF4 present an overall superior ISNR for almost all images and

Table 1. Comparative restoration performance results in ISNR (dB).
Uniform Kernel (9× 9)

BSNR Method CAM LEN PHA BAR
40 dB BTV 8.60 8.51 17.74 3.22

BST 8.80 8.13 19.02 3.16
NF2 9.34 9.13 20.03 3.74
NF4 9.75 9.63 23.05 3.65

30 dB BTV 5.08 5.89 11.00 1.71
BST 5.89 5.50 12.51 1.61
NF2 6.38 6.40 10.44 2.01
NF4 6.61 6.86 12.14 1.93

20 dB BTV 2.42 3.59 5.52 1.15
BST 3.18 2.65 8.25 0.73
NF2 3.85 4.22 6.83 1.35
NF4 3.70 4.45 7.84 1.33

noise levels, except for the Phantom image for higher noise levels,
where BST performs better. This is reasonable since BST enforces
sparsity in a stronger way, which makes it more suitable for piece-
wise images. A similar situation occurs with other tested PSF shapes
such as the Gaussian (not reported). Although NF2 clearly outper-
forms BTV, note that the addition of two extra prior filters in the
case of NF4 allows to significant improve the performance for higher
BSNR, outperforming BTV, and often BST, in more than 10%, lead-
ing to a considerable improvement of more than 1 dB in ISNR for
both Cameraman and Lena for all noise levels.

When closely inspecting the images from the simulations (not
shown due to space limitations), we notice that the restored images
using NF4 are smoother and less piecewise-like than the BTV and
BST versions. Overall, soft transitions and shadowing effects due to
illumination are better recovered, as well as some textures. Never-
theless, even though some edges are better defined, we are able to
notice the appearance of some artifacts near some of the edges at
lower BSNR.

6. EXPERIMENTAL RESULTS

We designed an experiment for systematically defocusing a target
picture, while also retrieving the respective PSF from an illuminated
optical fiber. For that, we mounted in a standard optical table a
QImaging RETIGA EXi Monochrome 12-Bit Cooled CCD camera
attached to a Computar H6Z0812 8-48 mm F1.2 C-mount zoom lens.
We placed the desired target pictures, taken from a magazine (Com-
munication Arts Photography Annual 48), at a distance of 1 meter
from the main lens. We set the lens by fixing the f-stop at 4, and
the focal distance at 30mm. The idea was to allow a proper focusing
at the chosen distance, with enough depth of field in order to assure
a near spatial invariant optical transfer function (OTF) at the widest
area as possible in the field of view (FOV). We balanced the lighting
conditions and integration time for compensating for the small aper-
ture. In addition, we mounted at the same target distance one end
of an optical fiber just in the center of the FOV, illuminated at the
other end by a Thorlabs OSL 1-EC halogen lamp fiber illuminator.
In this way, we are able to interchange between the target image and
the end of the optical fiber.

From all the experiments made using several defocus levels and
different target images, we applied all the implemented algorithms
as explained in the previous section. However, now we utilized the
procedure formerly proposed in [13] for confidently estimating the
noise precision parameter β, using it as an input to all the decon-
volution methods. In addition, we provide the algorithms with the



Fig. 1. Digital refocusing image samples. (a) Focused image; (b)
Defocused image (Inset: measured PSF); (c) BTV restoration; (d)
NF4 restoration.

retrieved normalized PSF for each target image. The experiment
finally consisted of taking pictures of several image thumbnails of
natural images. Each image was finally captured by a small area of
the center of the CCD detector, leading to a resolution of 100 × 80
pixels each. Sample in-focus and out-of-focus images are displayed
in Fig. 1(a) and Fig. 1(b), respectively.

Fig. 1 presents the restoration results from defocused images
with medium (first two rows) and large size (third row) defocus,
whose PSF support has a diameter of around 6 and 12 pixels, re-
spectively (see inset in the blurred images of Fig. 1(b)), where we
can notice a clear difference in terms of restoration quality between
BTV in Fig. 1(c), and NF4 in Fig. 1(d). For instance, inspecting the
first row we can check that NF4 was able to recover details from the
windows of the house that are lost in BTV. Another feature, already
visualized in the simulations, was that NF4 is able to recover smooth
transitions of nontextured areas, such as the roof and the light source
from the house image, the mouth of the mandrills, and also the nose
and accessories of the camel, that have been lost when using BTV.
In addition, NF4 generates restorations that have less of a piecewise
appearance than those restored with BTV, producing more appealing
natural images. Nonetheless, even though NF4 presents more pleas-
ant restorations, some of the anticipated artifacts that arose in the
simulations presented in Section 5 may be noticed near some edges.

7. CONCLUSION

In this paper, we proposed a new algorithm for image restoration
based on combining many nonstationary edge-preserving priors. We
developed a Bayesian modeling followed by an evidence analysis
inference approach for deriving the parameters update algorithm,
which was empirically approximated for tackling its computational
difficulties mostly related to the inversion of large and ill-posed co-
variance matrices, also allowing a fast implementation. When com-
paring the restoration results of the proposed method with some of
the latest state-of-the-art image restoration algorithms (BTV [6] and
BST [8]) for a set of standard test images with simulated blurring and
noise, we can conclude that in despite of some exceptions, specially
the Phantom image with higher noise, the proposed algorithm out-
performed the available methods in terms of ISNR and visual qual-
ity. The reported ISNR values indicate that the proposed algorithm
surpasses by more than 10% the other methods, reaching a gap of
more than 1 dB for the classic Cameraman and Lena test images for
all noise levels. In addition, from the digital refocusing experiment
performed for a variety of defocused natural images, the proposed

algorithm clearly outperformed BTV in visual quality, recovering
pleasant images plenty of details, while allowing realistic smooth
transitions instead of pure piecewise solutions, which might be a de-
sired feature when recovering natural images. Finally, it is foreseen
that excellent results may be achieved by extending the proposed
restoration algorithm for solving blind deconvolution and superres-
olution problems as well.
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