Iterative image restoration using nonstationary priors
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In this paper, we propose an algorithm for image restoration based on fusing nonstationary edge-
preserving priors. We develop a Bayesian modeling followed by an evidence approximation inference
approach for deriving the analytic foundations of the proposed restoration method. Through a series
of approximations, the final implementation of the proposed image restoration algorithm is iterative
and takes advantage of the Fourier domain. Simulation results over a variety of blurred and noisy stan-
dard test images indicate that the presented method comfortably surpasses the current state-of-the-art
image restoration for compactly supported degradations. We finally present experimental results by
digitally refocusing images captured with controlled defocus, successfully confirming the ability of
the proposed restoration algorithm in recovering extra features and rich details, while still preserving

edges. © 2013 Optical Society of America
OCIS codes:

1. Introduction

Imaging systems are often affected by several degra-
dation sources, leading to blurry and noisy images
that are not necessarily a faithful representation
of the desired targets. Therefore, and regardless of
the employed modality, image restoration is a critical
task for recovering useful imagery for a variety of
applications, for example, remote sensing, surveil-
lance, medical diagnosis, and astronomy [1]. For
instance, optical imaging systems, such as digital
photographic or scientific cameras, are not exempt
from producing degraded imagery, despite the avail-
ability of modern CCD or CMOS imaging detectors
with improved resolution, extended dynamic range,
and increased quantum efficiency. In digital images,
blurring-like degradations can be produced by
optical aberrations or misalignments (optical blur),
turbulence (atmospheric blur), or motion due to the

1559-128X/13/10D102-09$15.00/0
© 2013 Optical Society of America

D102 APPLIED OPTICS / Vol. 52, No. 10 / 1 April 2013

100.3020, 100.1830, 100.3190, 110.3010.

nonzero aperture time (motion blur) [2]. In addition,
noise can appear due to quantum and thermal ef-
fects, detector nonuniformity, aliasing, electronics
readout, and quantization.

Unfortunately, the restoration of blurred and noisy
images is an ill-posed inverse problem [3]. Hence-
forth, it has to be typically solved by constrained op-
timization yielding iterative regularization methods
[4]. Nonetheless, regularized image restoration has
to solve two main problems: the choice of the regu-
larization function and the regularization parameter,
or Lagrange multiplier. The use of Bayesian methods
for image restoration has emerged as an elegant way
of describing the regularization term by means of a
prior distribution, with the additional ability of
allowing estimation of both the regularization and
noise variance weights. Although it has been success-
fully applied to smoothness promoting priors [5,6],
Bayesian modeling imposes restrictions on the choice
of the prior function, since some arbitrary priors may
lead to intractable inference problems. Nevertheless,
the variational Bayes approximation [7] has allowed



successful use of nonstationary sparsity promoting
priors within the Bayesian framework, such as total
variation (TV) in [8], Gaussian scale mixtures in [9],
and the product of student-t experts in [10,11].

In this paper we propose a new approach to the
combination of nonstationary edge-preserving image
priors. The novel approach follows the spirit of the
prior model based on the product experts first pro-
posed in [12], but this time without the need for
modifying the observation model, or the need for
using or setting any weighting parameters. The
inference procedure is now based on the evidence
approximation, or type-II maximum likelihood, con-
tinuing the same avenue introduced in [5] for station-
ary Bayesian image restoration. However, in this
particular case, the resulting iterative parameter es-
timation update algorithm is computationally intrac-
table. Consequently, we propose a series of empirical
approximations. In this way, the resulting iterative
restoration algorithm is not only effective, but also
efficient, as it can also be implemented in the Fourier
domain.

We provide simulations for testing the proposed
restoration algorithm and compare its performance
with state-of-the-art Bayesian restoration algorithms.
We also present results from a digital refocusing
experiment for images captured with different out-
of-focus levels. Quantitative and qualitative evalu-
ation of both simulated and real experimental results
confirms the extended capabilities of the proposed
restoration method in recovering more appealing
images with enhanced details.

The paper is organized as follows. Section 2
presents the Bayes modeling and introduces the pro-
posed new prior for the image restoration problem.
In Section 3, the inference procedure for image and
parameter estimation is derived. Empirical approx-
imations are explained in Section 4, leading to an
efficient implementation. Sections 5 and 6 present
the results obtained for the simulations and the dig-
ital refocusing experiment. Finally, conclusions are
drawn in Section 7.

2. Bayesian Modeling

A. Observation Model

A typical linear model for image degradation con-
siders that the observed image y, in lexicographical
order, is the result of the convolution of the original
and unknown image x with a blurring kernel opera-
tor H plus some additive noise n; that is,

y = Hx +n. (D
Assuming the noise component n follows a

Gaussian distribution, the probability density func-
tion of the observation model is expressed as

p(ylx.p) « N2 exp {—glly—HXIP}, (2)

with g the inverse of the noise variance, and N the
total number of pixels in the image.

B. Prior Model

Inspired by the results obtained when combining
more than one single prior, as in the Markov random
fields (MRF) experts used for image denoising in [13],
or the sparse prior approach used for image deconvo-
lution in [14] and the references therein, we continue
down the path of the product of experts used in [12],
but now following a different inference procedure
without approximating the covariance matrix for
the prior prematurely.

Therefore, as an image prior we define a zero-mean
multivariate Gaussian distribution that combines
the constraints given by a set of L filters C; as follows:

L 1& 1 2
> CIAC; exp{—§Z||A/ Cix|| }
i=1 i=1

3

1/2
p(x|ag,...,ar) x

where A; is an N x N diagonal matrix containing the
hyperparameters @’ associated with the inverse vari-
ance (precision) of the response of each correspond-
ing filter operator C; for any given pixel j. Thus,
A, = DIAG(a)), and a; = [a}, a2, ...,al].

The advantage of using the proposed prior model-
ing is twofold. First, we avoid the election of any
specific sparsity promoting shape for the prior distri-
bution, as is done in [10]. Second, by choosing a
multivariate Gaussian distribution, we are able to
seek a tractable inference mechanism.

3. Bayesian Inference
The joint probability density function is written as

ap) «x p(y|x, f)p(x|ay,....ar)

L 1/2
> ClAC| B2
i=1
1& 1/2 2
xexp{—ﬁ;nAi cixu}
pn

cewp{-Gly-muif. @

p(y7x7ﬂ9 ai, ..

X

We choose to perform the inference for the desired
hyperparameters based on the evidence analysis—
also known as empirical Bayes or type-II maximum
likelihood—previously used in image restoration
with stationary priors in [5,6]. Then, by marginal-
izing over x we have that

p(Y|ﬁ7alv"'vaL)a[p(Y7X~ﬂ7alv~--7aL)dX~ (5)
and thus
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Now, by taking the derivative with respect to the
hyperparameter «’, we have

5lnp(ylﬂ,a_1,---,aL)
ool

13

-1

1 L )
=5 (trace [ (Z chici) CEJJUCi:|

=1

L -1
-xX!CLJIC;x~trace [ (Z CIAC + ﬁHtH) CijjCi]) ,

i=1

)

where x is the maximum a posteriori estimate for the
unknown image obtained by solving

L -1
% = (Z CIA,C; + ﬁHtH) Hly, (8)

i=1

and J/ is a special selection matrix that is zero every-
where except for the entry (j7)- Note that Eq. (8) can
be iteratively solved using a conjugate gradient (CG)
minimization algorithm.

Now, by setting the derivative m Eq. (7) equal
to zero, and defining Xp = 1 CIAC, Zp =
YL, CtA C; + pH'H, and v; = C; X, Eq (7) can be
rewrltten as

trace[Zp! CIFC;] = (z/i‘)2 + trace[ZFCIWC;].  (9)

Then, following a similar approach for updating the
hyperparameters to the one in [5], we derived the
following iterative formula for any of the hyperpara-
meters o:i at iteration (& + 1):

k)-1 ii
jk+1) _ trace[Z}D) CltJJJCi] a‘.j(k)

/ ; —a; , (10)
(z/ij(k))2 + trace[Ege)_le-JﬂCi]

where x* (needed to calculate z/ik)) is computed at
each iteration (k) using Eq. (8) with the required

hyperparameter matrices Al(k) obtained from the
previous iteration of Eq. (10), along with the corre-

sponding covariances =" and %,
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4. Implementation

Unfortunately, the parameter—update formula in
Eq. (10) is not tractable as is, mostly due to the com-
putatlon of the inverse of the covariance matrices, 3!
and 7!, since they are extremely large. Therefore we
start tackling this problem by applying the Jacobl
diagonal approximation to the covariance matrices,
which leads to the straightforward inversion

s 4 DIAGE®), =W DIAGE®). D)

Here, ¢p ) and Cgfe) are N x 1 vectors with components
Zjl(k) =1/ gk) and CZT(k) 1 /0l(k), respectively, for
l=1,....N. Moreover, 6’ = YL D;a® and ol =
o 4 [)’hz, where D; are N xN filter matrices w1th
elementsD’ (C’ )*,fori = 1, ..., L. Also, the constant
h is obtained as the sum of the squares of the point
spread function (PSF) kernel elements, which in the
case of the boxcar (uniform) PSF is equivalent to the
value of any of the nonzero kernel coefficients.
Using a similar approach, we have

CI¥C; ~ S, (12)

where SJL.'j = DIAG(;/JL.'). Here y{ =F,j’ are N x 1 vec-
tors for i = 1,...,L, while j/ is an N x 1 vector that
is zero everywhere except at the position j. Similarly

to the matrices D;, F; are also N x N filter matrices
with elements F*, = (C’ )2. Thus, we finally have that

trace[S5! CLJIC;] ~ trace[Zp!SY]. (13)

Finally, by applying both approximations provided
by Egs. (11) and (13) over Eq. (10), in addltlon to
stacking into vector form for the different a] k+1)
components, a new update rule can be obtained for
each of the hyperparameter diagonal matrices as
follows:

(k+1)
A;

~ [DIAG(4" + F.2P7'1) | ' DIAG(Fizia®),
(14)

where ,u (zz(k))2 and, as explained before, each F;
is related to each respective filter C,, forj =1, ...,N.

Through experimentation we have found that bet-
ter and more stable results are finally obtained when
the filters F; are replaced by a unique filter F, whose
corresponding kernel f is given by

010
f=(1 1 1]. (15)
010

Due to the fact that Eq. (14) deals with diagonal
matrices, it can be efficiently implemented in the



Fourier domain. In this way, we have the advantage
of obtaining all the diagonal elements of the inverse
of each covariance matrix at once, leading to compute
the different hyperparameters «. in parallel,
fori=1,...,L.

5. Simulation Results

We performed several experiments for restoring
images with simulated blur and noise, using Matlab
implementations of state-of-the-art restoration algo-
rithms, and different versions of the herein-proposed
restoration method. We implemented our algorithm
in Eq. (14) using two options: NF2 that uses only the
first-order difference filters, such as

¢ = %[1 -1], co = i[1 -1 (16)

V2 V2

and NF4 that also adds the diagonal filters ¢; and ¢,
defined as follows:

11 0 1[0 1
75[0 _1j|, C4:E|:_1 0i| (17)

We compared the restoration performance of both
versions against implementations of the Bayesian to-
tal variation (BTV) approach [8], and the product of
student-t priors (BST) [10]. We tested the restoration
algorithms in a set of four standard images: camera-
man (CAM, 256 x 256), Lena (LEN, 256 x 256),
Shepp-Logan phantom (PHA, 256 x256) and
Barbara (BAR, 512 x 512. The images were degraded
by applying one of the following PSFs: a 9 x 9 uni-
form blur, or a Gaussian blur with variance ¢% = 9.
Also, Gaussian noise was added for achieving an
equivalent blurred signal-to-noise ratio (BSNR) of
40, 30, or 20 dB.

For all experiments, every algorithm received as in-
puts the blurred image, the blurring PSF kernel, and
the noise variance 6> = 1/4. In addition, the stopping
criterion for the iterative update of the hyperpara-
meters was that the condition |x* —x®*-V| <1073

C3 =

was met. Also, the CG iterative process for estimating
the restored image [Eq. (8)] was terminated using a
threshold of 10~ or a maximum of 1000 iterations. Fi-
nally, the performance for each restoration was mea-
sured in terms of the improvement in signal-to-noise
ratio (ISNR), which is defined as 20logo(||x—yll/
[Ix = X]|), with % the restored image. The average re-
sults obtained for the restoration performance for five
noise realizations are summarized in Table 1.

Analyzing the results in Table 1, we observe that in
the particular case of the boxcar uniform kernel, the
proposed algorithm in both of its versions presents
an overall superior ISNR for the majority of the
tested images and noise levels, except for the
phantom image at higher noise situations, where
BST performs better. This seems reasonable since
BST enforces sparsity in a stronger way, which
makes it more suitable for piecewise smooth
images.

Nevertheless, a different outcome is obtained from
Table 1 when restoring for the Gaussian PSF. Even
though both NF2 and NF4 perform better for the
cameraman image, they only surpass BTV when re-
storing a highly corrupted Lena with strong noise.
A similar situation can be observed for the phantom
image, where BST wins in low to mid noise levels,
while NF4 is the best with more noise, counterintui-
tively to what was previously noticed for the uniform
kernel restoration. Last, both versions of the
proposed algorithm reach a competitive quality for
Barbara compared to BTV for all noise levels.

Although NF2 performs great, or at least provides
competitive results when compared to BTV or BST,
the addition of two extra prior filters in the case of
NF4 allows us to often significatively boost the per-
formance. Note that for images degraded by the uni-
form PSF, NF4 outperforms BTV, and often BST, for
more than 10%, leading to a considerable improve-
ment of more than 1 dB in ISNR for both the camera-
man and Lena images for all noise levels. Restoration
samples for the 40 dB degraded cameraman can be
seen in Fig. 1, where the recovered images with both
versions of the proposed algorithm (NF2 and NF4)

Table 1. Comparative Restoration Performance Results in Terms of the ISNR (dB)

Uniform Kernel (9 x 9)

Gaussian Kernel (62 = 9)

BSNR Method CAM LEN PHA BAR CAM LEN PHA BAR
40 dB BTV 8.60 8.51 17.74 3.22 3.49 4.85 7.87 1.61
BST 8.80 8.13 19.02 3.16 3.25 4.34 10.34 1.36
NF2 9.34 9.13 20.03 3.74 3.56 3.87 5.39 1.54
NF4 9.75 9.63 23.05 3.65 3.71 4.03 8.06 1.52
30 dB BTV 5.08 5.89 11.00 1.71 2.73 3.96 5.29 1.27
BST 5.89 5.50 12.51 1.61 2.69 3.08 7.97 1.04
NF2 6.38 6.40 10.44 2.01 3.03 3.37 5.71 1.18
NF4 6.61 6.86 12.14 1.93 3.17 3.49 6.43 1.20
20 dB BTV 2.42 3.59 5.52 1.15 1.81 2.84 2.79 1.14
BST 3.18 2.65 8.25 0.73 2.03 1.93 5.16 0.79
NF2 3.85 4.22 6.83 1.35 2.36 3.18 5.10 1.11
NF4 3.70 4.45 7.84 1.33 241 3.11 5.70 1.09
1 April 2013 / Vol. 52, No. 10 / APPLIED OPTICS D105



Fig. 1. Restoration results for cameraman corrupted with a 9 x 9 uniform kernel and 40 dB BSNR. (a) Degraded; (b) original; (¢c) BTV,
ISNR = 8.60 dB; (d) BST, ISNR = 8.80 dB; (e) NF2, ISNR = 9.34 dB; and (f) NF4, ISNR = 9.75 dB.

seem to have more details than with BTV or BST,
while still preserving edges and diminishing noise.

By examining Fig. 1 we notice that the results
by NF2 and NF4 are comparable in terms of visual
quality, which is confirmed by the reported ISNR.
A naked-eye evaluation allows us to perceive that
the restored images using NF2 or NF4 are smoother
and less piecewise-like than the BTV and BST ver-
sions. Now, when closely inspecting the zoomed-in
portions in Fig. 2, we can see that in the regular
areas, such as the skin, the smooth degrade and
shadowing effects due to illumination are better re-
covered. Nevertheless, even though some edges are
better defined—see the tripod pivot and handler—
we are able to notice the appearance of some artifacts
near some of the edges. Although not displayed here,
we can report that those artifacts are mostly reduced
when using more priors, such as in the case of NF4
compared to NF2. Furthermore, and as seen in
Fig. 2, at lower noise levels these artifacts tend to
be perceived only at very magnified inspections,
while the overall perceived quality of the proposed
restoration method is very good in terms of recovered
details.

6. Experimental Results

We designed an experiment for systematically defo-
cusing a target picture, while also retrieving the

D106 APPLIED OPTICS / Vol. 52, No. 10 / 1 April 2013

respective PSF from an illuminated optical fiber.
For that, we mounted in a standard optical table a
QImaging RETIGA EXi Monochrome 12 bit cooled
CCD camera attached to a Computar H6Z0812
8-48 mm F1.2 C-mount zoom lens. We placed the
desired target pictures at a distance of 1 m from
the main lens. We set the lens by fixing the f-stop
at 4, and the focal distance at 30 mm. The idea
was to allow a proper focusing at the chosen distance,
with enough depth of field in order to assure the near-
est spatially invariant optical transfer function (OTF)
at the widest area in the field of view (FOV). We bal-
anced the lighting conditions and integration time for
compensating for the small aperture. In addition, we
mounted at the same target distance one end of an
optical fiber right at the center of the FOV, illumi-
nated at the other end by a Thorlabs OSL 1-EC hal-
ogen lamp fiber illuminator. In this way, we are able to
interchange between the target image and the end of
the optical fiber, and the procedure for the experiment
is explained as follows. First, by turning off all the
lights except the fiber illuminator, we focus the fiber
light source onto the detector, changing the integra-
tion time for not saturating it until we see a PSF with
the smallest possible support, hopefully within 1 pixel
and its closest neighbors. Second, we place the target
picture in place, turn on the ambient lights, and
take a picture, adjusting the integration time for



maximum SNR. This will become the focused, or
ground-truth, image. Finally we change the focus
and repeat the first two steps without concern for
the PSF size, but recording it for all the different
levels of defocus as wanted, as well as alternately cap-
turing the corresponding defocused target images.
From all the experiments made using the afore-
mentioned procedure for several defocus levels and
different target images, we applied all the imple-
mented algorithms as described in the previous
section. However, now we utilized the procedure for-
merly proposed in [15] for confidently estimating the
noise precision parameter g, using it as an input to all
the deconvolution methods. In addition, we retrieve
from the pictures of the illuminated fiber the associ-

(a)

(b) (€)
Fig. 2. Zoomed-in restoration results for cameraman corrupted with a 9 x 9 uniform kernel and 40 dB BSNR. (a) Original; (b) BTV,
ISNR = 9.34 dB; and (c) NF4, ISNR = 9.75 dB.

ated PSF for each target image, normalizing it
for being handed to the algorithms as the effective
blurring kernel that degraded the images to be
restored.

The first experiment consisted of using a picture of
several image thumbnails of natural images. Each
image was finally captured by a small area of the
CCD detector, leading to a resolution of 100 x 80
pixels each. Also, the illumination and integration
time were adjusted for not saturating any of the
images. From the images located near the center
of the FOV, where we can assure that the estimated
PSF is actually the most likely to have caused the
degradation, we present some sample results in
Figs. 3 and 4.

Fig. 3. Digital refocusing image samples using a medium defocus. (a) Focused image, (b) defocused image (inset: measured PSF), (c) BTV

restoration, and (d) NF4 restoration.

1 April 2013 / Vol. 52, No. 10 / APPLIED OPTICS D107



() (d)

Fig. 4. Digital refocusing image samples using a strong defocus. (a) Focused image, (b) defocused image (inset: measured PSF), (¢c) BTV

restoration, and (d) NF4 restoration.

Figure 3 presents the restoration results from de-
focused images with medium size defocus, whose
PSF support has a diameter of around 6 pixels
[see inset in the blurred images of Fig. 3(b)], where
we can notice a clear difference in terms of restora-
tion quality between BTV in Fig. 3(c) and NF4 in
Fig. 3(d). For instance, inspecting the first row, we
can check that NF4 was able to recover details from
the windows of the house that are lost in BTV. An-
other feature, already visualized in the simulations,
was that NF4 is able to recover smooth transitions of
nontextured areas, such as the roof and the light
source from the house image, the mouth of the man-
drills, and the background from the owl image. In
addition, NF4 generates restorations that have less
piecewise appearance—which often resemble some
quantization effects—than those restored with BTV,
producing more appealing images. Nonetheless, even
though NF4 produces more pleasant restorations,
some of the anticipated artifacts that arose in the
simulations presented in Section 5 may be noticed,
specially in the owl image (third row).

Similarly, images restored from a larger defocus
are shown in Fig. 4, where the retrieved PSF has
nearly 12 pixels of diameter, which produces severely
defocused images as displayed in Fig. 4(b). Again,
NF4 seems to reconstruct images with enhanced de-
tails in comparison to BTV. An analysis similar to
that previously performed for Fig. 3 also holds.
Although the support of the PSF is larger, which usu-
ally makes the deconvolution task more difficult, the
camel image restored by NF4 has plenty of
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details, such as the mouth, nose, and accessories of
the camel, that have been lost when using BTV.
The snowflake shown in the second row also makes
clear the ability of NF4 in recovering finer details
and well-defined edges. The eye of the tiger in the
last row is a good example of the smooth transitions
allowed by NF4 restorations, while BTV still produ-
ces piecewise results, which is a typical feature in
pure sparsity promoting priors, such as BST as well.

Finally in Fig. 5, we present the results of the last
experiment that uses as a target a single larger
image of a printed black and white photography
(400 x 210) pixels. Fig. 5(a) shows the ground truth
focused image and its respective PSF (inset). Note
the cross-like shape of the PSF, concentrating most
of the energy in the center pixel. Figures 5(b)-5(d)
show images obtained for progressive increases in
defocus, where the support of the associated PSF's
(see insets) varies from values near 5, 7, and 11 pix-
els, respectively. Also note that the larger PSF no
longer follows a circular shape, but it has a shape
that resembles the aperture iris of the lens. The re-
stored images obtained by using the proposed NF4
are displayed in Figs. 5(e)-5(g). At a first sight, from
an appropriate distance of the screen or a printed
version (1 m away may suffice), all the restored im-
ages seem, at least, to be in focus. On the other hand,
and as is expected, when closely inspecting the re-
sults we can verify that more details can be recovered
when restoring less degraded images. In particular,
Fig. 5(e) shows a very good restoration, recovering
the majority of the most significative details such



(e)

(9)

Fig. 5. Digital refocusing experiment. (a) Focused image (inset: 4x measured PSF), (b) moderate defocus image (inset: 4x measured PSF),
(¢) medium defocus image (inset: 4x measured PSF), (d) strong defocus image (inset: 4x measured PSF), (e) restored image (b) using NF4,

(f) restored image (c) using NF4, (g) restored image (d) using NF4.

as the blouse wrinkles and flowers, the hat textures,
while wiping out only the finest details of the make
up on the face, when compared to the ground truth
image. Despite performing the restoration of a larger
blur see Fig. 5(f) NF4 is still able to recover the most
noticeable blouse features, and also most of the shad-
ows and diffuse reflections on the face. Last, from
Fig. 5(g) we can still appreciate most of the important
features of the face, marked by well-defined edges
such as the nose and eyebrow contour, but most of
the details have been smeared, which would most
likely happen as well when using any other edge pre-
serving deconvolution algorithm, such as BTV,
although not as smoothly as with NF4.

7. Conclusion

In this paper, we proposed a new algorithm for image
restoration based on combining nonstationary edge-
preserving priors. We developed a Bayesian model-
ing followed by an evidence analysis inference
approach for deriving the initial parameter-update
algorithm. From there, the iterative algorithm was

empirically approximated tackling its computational
difficulties, mostly related to the inversion of large
and ill-posed covariance matrices, and also allowing
a fast and efficient implementation through the
Fourier domain. When comparing the restoration re-
sults of the proposed method with some of the latest
state-of-the-art image restoration algorithms (BTV
[8] and BST [10]) on a set of standard test images
with simulated blurring and noise, we concluded that
despite some exceptions, the proposed algorithm
outperformed the current available methods in
terms of ISNR and visual quality, especially when re-
storing natural images from blur kernels with
compact support. The reported ISNR values, in
particular for the uniform PSF, indicate that the
proposed algorithm, in all its implemented versions,
surpassed by more than 10% the other methods,
reaching a gap of more than 1 dB for the classic
cameraman and Lena test images for all noise levels.
Nevertheless, for the Gaussian PSF case the results
were not the most prominent ones, but they were
competitive.

1 April 2013 / Vol. 52, No. 10 / APPLIED OPTICS D109



We finally tested the algorithms with a digital re-
focusing experiment for a variety of defocused natu-
ral images. As expected, the proposed NF4 clearly
outperformed BTV in visual quality, producing
pleasing images that remarkably presented a wider
recovery of details, while allowing realistic smooth
transitions instead of piecewise solutions typically
found when employing TV and sparse regularizers.
In summary, we proposed a restoration algorithm
that comfortably surpassed the state-of-the-art im-
age restoration in terms of ISNR for the majority
of the standard tested cases, especially for compactly
supported degradations. The proposed method also
proved to be suitable for restoring defocused images
with a clear enhancement in the perceivable visual
quality. The latter makes it especially interesting
for restoring the boxcar pixel PSF found in super-
resolution reconstruction applications, and for coded
aperture image recovery problems. Further work
may include the development of new and improved
ways of approximating the parameter estimation
stage of the algorithm, while also extending its usage
to blind deconvolution and computational photogra-
phy applications.

This work was supported in part by the Ministerio
de Ciencia e Innovacién under contract TIN2010-
15137. Esteban Vera is grateful to Dr. Sergio Torres
and Dr. Carlos Saavedra at the Center for Optics and
Photonics (CEFOP), University of Concepcion, Chile,
for providing partial financial support through grant
PFB08024.

References

1. M. Banham and A. Katsaggelos, “Digital image restoration,”
IEEE Signal Process. Mag. 14(2), 24—41 (1997).

2. H. C. Andrews and B. R. Hunt, Digital Image Restoration
(Prentice-Hall, 1977).

D110 APPLIED OPTICS / Vol. 52, No. 10 / 1 April 2013

10.

11.

12.

13.

14.

15.

. M. Bertero and P. Boccacci, Introduction to Inverse Problems
in Imaging (Taylor & Francis, 1998).

. A. Katsaggelos, S. Babacan, and C.-J. Tsai, “Iterative image
restoration,” in The Essential Guide to Image Processing,
A. Bovik, ed. (Elsevier, 2009), Chap. 15.

. R. Molina, “On the hierarchical Bayesian approach to
image restoration: applications to astronomical images,”
IEEE Trans. Pattern Anal. Mach. Intell. 16, 1122-1128
(1994).

. R. Molina, A. Katsaggelos, and J. Mateos, “Bayesian and
regularization methods for hyperparameter estimation in im-
age restoration,” IEEE Trans. Image Process. 8, 231-246
(1999).

. D. Tzikas, A. Likas, and N. Galatsanos, “The variational
approximation for Bayesian inference,” IEEE Signal Process.
Mag. 25(6), 131-146 (2008).

. S. Babacan, R. Molina, and A. Katsaggelos, “Parameter esti-
mation in tv image restoration using variational distribution
approximation,” IEEE Trans. Image Process. 17, 326-339
(2008).

. R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T.

Freeman, “Removing camera shake from a single photo-

graph,” ACM Trans. Graph. 25, 787-794 (2006).

G. Chantas, N. Galatsanos, A. Likas, and M. Saunders,

“Variational Bayesian image restoration based on a product

of t-distributions image prior,” IEEE Trans. Image Process.

17, 1795-1805 (2008).

G. Chantas, N. Galatsanos, R. Molina, and A. Katsaggelos,

“Variational Bayesian image restoration with a product of

spatially weighted total variation image priors,” IEEE Trans.

Image Process. 19, 351-362 (2010).

G. Chantas, N. Galatsanos, and A. Likas, “Bayesian restora-

tion using a new nonstationary edge-preserving image prior,”

IEEE Trans. Image Process. 15, 2987-2997 (2006).

S. Roth and M. J. Black, “Fields of experts,” Int. J. Comput.

Vis. 82, 205-229 (2009).

S. Babacan, R. Molina, M. Do, and A. Katsaggelos, “Blind de-

convolution with general sparse image priors,” in Proceedings

of European Conference on Computer Vision (ECCV)

(Springer, 2012), pp. 341-355.

R. Molina, J. Mateos, and A. Katsaggelos, “Blind deconvolu-

tion using a variational approach to parameter, image,

and blur estimation,” IEEE Trans. Image Process. 15,

3715-3727 (2006).



