
Abstract Leaf litter accumulation can have

either positive, negative or neutral effects on seed

germination and seedling recruitment. In mon-

tane woodlands of the Mediterranean zone of

central Chile, large amounts of leaf litter accu-

mulate beneath the crowns of the summer semi-

deciduous tree Kageneckia angustifolia and no

regeneration of this or other plant species has

been observed beneath this tree throughout the

year. In a sample plot of 5000 m2 we selected ten

K. angustifolia trees and measured (1) leaf litter

accumulation beneath and outside canopy; (2) the

effects of time elapsed since burial on viability of

K. angustifolia seeds with and without a leaf litter

cover; (3) field seed germination with presence or

absence of leaf litter and (4) the possible chemical

effects of K. angustifolia leaf litter leachates on

seed germination of its own seeds and of other

two co-occurring native shrubs species (Guindilia

trinervis and Solanum ligustrinum). Our results

show that a considerable accumulation of leaf

litter occurred beneath K. angustifolia, and litter

negatively affected seed viability and germination

of this species in the field. Under laboratory

conditions, K. angustifolia leaf litter leachates

inhibited seed germination of its own seeds and of

the two native shrub species. Chemical effects are

likely involved in the negative effects of leaf litter

on the recruitment of K. angustifolia in the

montane sclerophyllous woodland of central

Chile.
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Introduction

Leaf litter accumulation is an important factor

involved in the regeneration dynamics of many

plant communities (Facelli and Pickett 1991a;

Xiong and Nilsson 1999). The recruitment of new

individuals is very sensitive to the presence of leaf

litter (Xiong and Nilsson 1997; 1999; Suding and

Goldberg 1999) because leaf litter accumulation

may modify the physical, chemical, and biological

environment in which seeds germinate and
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seedlings establish (Facelli and Pickett 1991a).

The effects of leaf litter accumulation on plant

recruitment can be positive, negative or neutral,

direct or indirect, and can vary among species and

seasons (Facelli 1994; Hastwell and Facelli 2000).

For example, leaf litter negatively affects seed

germination acting as a mechanical barrier for

radicular growth (Clark and Clark 1989; Fowler

1986; Bosy and Reader 1995) and shoot emer-

gence (Hamrick and Lee 1987; Green 1999). Leaf

litter may also modify the quantity and quality of

the light received by a seed in the ground, trans-

mitting wavelengths that may be strongly inhibi-

tory for seed germination (Vasquez-Yañes et al.

1990; Facelli and Pickett 1991a, b; Yirdaw and

Leinonen 2002). Additionally, leaf litter can have

negative effects on recruitment through phyto-

toxins that are leached to the soil, a phenomenon

known as allelopathy (Rice 1979; Williamson

1990; Facelli and Pickett 1991a; Bosy and Reader

1995; Hilhorst and Karssen 2000). Leaf litter

phytotoxins leached into the soil can impede

either seed germination, seedling recruitment or

both (Myster 1994; Al-Humaid and Warrag 1998;

Preston and Baldwin 1999; Vellend et al. 2000).

For instance, the bare zones around Californian

shrubs such as Adenostoma fasciculatum and

Arctostaphylos glandulosa are produced by phy-

totoxins that are leached from live and dead

leaves after each rain, accumulating in the soil

and inhibiting the germination and growth of

herbaceous species (McPherson and Muller 1969;

Chou and Muller 1972; Christensen and Muller

1975). Although the generality of the allelopathic

effect of leaf litter in the Californian chaparral

has been doubted (Keeley et al. 1985), similar

patterns have been proposed for other Mediter-

ranean-type climate zones such as the Mediter-

ranean basin (Ballester and Vieitez 1979; Li and

Romane 1997; Blondel and Aronson 1999) and

Australia (del Moral et al. 1978; May and Ash

1990; Hobbs and Atkins 1991; Barrit and Facelli

2001), although there are also studies that do not

support it (e.g., Hastwell and Facelli 2000; Harris

et al. 2003). The importance of the allelopathic

effect of leaf litter in species from the Mediter-

ranean-type climate zone of central Chile has

been seldom evaluated (see Montenegro et al.

1978; Fuentes et al. 1987).

Kageneckia angustifolia D. Don (Rosaceae) is

the dominant tree species in the montane sclero-

phyllous forest of the Mediterranean-type climate

zone of central Chile, growing from 1000 to

2100 m elevation. Above 1600 m elevation, it

forms open woodlands where it is the only tree

species present (Rundel 1981; Rodriguez et al.

1983). K. angustifolia is a summer semi-deciduous

species that loses part of its foliage in order to

endure the strong summer drought that charac-

terizes central Chile (León 1993; Peñaloza 1996).

The shed leaves accumulate mainly below the

canopy, completely covering the soil beneath

trees (Peñaloza 1996). Field observations indicate

that beneath the canopy of K. angustifolia trees

there is poor regeneration of this and other plant

species throughout the year, even when native

and introduced herbivores are excluded (Peña-

loza 1996). The absence of plants below the can-

opy could be related with the negative effects of

leaf litter accumulation on these sites. Chemical

analyses of leaves of K. angustifolia have shown

the occurrence of several compounds that can

have inhibitory effects on seed germination (e.g.,

cucurbitacins and triterpenoids; Muñoz et al.

2002), suggesting that chemical inhibition of leaf

litter is likely to be involved.

The aim of the present study was to quantify

the accumulation of leaf litter below and outside

the canopy of K. angustifolia trees and to evaluate

its effect on the viability and germination of its

seeds. The experiments were designed to answer

the following questions: (1) Does leaf litter de-

crease seed viability? (2) Does leaf litter affect

seed germination under field conditions? and (3)

Do leachates of K. angustifolia leaf litter inhibit

seed germination of its own seeds and other co-

occurring shrub species?

Methods

Study area

Field work was conducted at Santuario de la

Naturaleza Yerba Loca, located 50 Km east of

the city of Santiago (33�20¢ S, 70�20¢ W, 1600 m

a.s.l.). On the study area, mean monthly temper-

atures varies from a maximum of 22.9�C in
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January (summer) to a minimum mean of 1.2�C in

July (winter) (Peñaloza 1996). The summer

drought period extends from October to March,

while rains are concentrated during the south

hemisphere winter months with an annual aver-

age of 445 mm (Santibáñez and Uribe 1992).

For measurements and experiments, we se-

lected a monospecific stand of K. angustifolia on a

gentle northeast-facing slope. To avoid browsing

and destruction of the experiments by livestock,

an exclusion plot of 5000 m2 was built inside the

stand.

Studied species

Kageneckia angustifolia D. Don (Rosaceae) is a

dioecious tree, endemic to the Mediterranean-

type climate zone of central Chilean (Rodriguez

et al. 1983). At 32�–33�S latitude, this species

occupies an ecotonal position between the

montane forest, in which it is the single tree

species present, and the high Andean vegeta-

tion, forming the treeline at 2200 m elevation

(Rundel 1981; Piper et al. 2006). K. angustifolia

can be described as a small tree species that

forms open woodlands, with open canopies that

do not produce sharp microclimatic differences

between open areas and beneath canopy (Pe-

ñaloza et al. 2001). Additionally, this species

undergo partial foliage loss during the summer

season (León 1993; Peñaloza 1996). K. angusti-

folia flowering period occurs between November

and December, whereas seed dispersal begins in

February and it is extended until the end of

April (León 1993). Seeds are small (6.3 mg) and

wind-dispersed, with germination in the field

occurring from July to October (Peñaloza et al.

2001). Unpublished seed germination trials at

laboratory conditions indicated that this species

is not light-demanding, and can germinate either

at dark or light conditions with very high per-

centages in both cases ( > 90%).

Leaf litter accumulation

To quantify spatial differences in leaf litter

accumulation, 10 individual trees of Kageneckia

angustifolia were selected at random. At each

tree, two microhabitats were defined: (1) below

canopy, defined as the area comprised between

the trunk and the projection of its crown border;

and (2) open spaces, defined as the area between

the external limit of the crown border to a dis-

tance of five times the radius of the crown, with-

out contact with neighboring trees. At each

selected tree, and at each microhabitat, four

plastic trays of 500 cm2 each were placed at ran-

dom during the summer (February 1–April 31,

1993). The leaf litter accumulated at each tray

was collected monthly and carried to the labora-

tory where it was dried in stoves at 70�C for 48 h,

and weighed in a digital balance (precision

0.0001 g). Additionally, at the end of the growing

season (April 2004) we measured the leaf litter

remaining on the ground in both microhabitats.

We randomly selected other ten K. angustifolia

individuals and beneath each individual we col-

lected all the leaf litter inside a quadrat of 1 m2.

This procedure was repeated in a paired sample

taken in open spaces for each individual. Differ-

ences in the quantity of leaf litter accumulated

between the two microhabitats as well as differ-

ences in the leaf litter remaining on the ground

were analyzed with a paired samples t-test.

Viability of buried seeds that remain

ungerminated

To monitor the viability of Kageneckia angusti-

folia seeds that remain ungerminated according

to the elapsed time buried in soil with and

without leaf litter cover, at the beginning of the

seed dispersal season (end of February 1993) six

burial sites (1 m2 each) were chosen at random

outside canopies. At each burial site the scarce

leaf litter present was completely removed and

16 nylon-mesh envelopes with 100 seeds each

were buried at 5 cm depth, and distanced 5 cm

from each other. The eight buried envelopes

placed in the left-hand side of each burial site

were covered with a layer of 3 cm depth of

K. angustifolia leaf litter, while the remaining

eight envelopes (placed in the right-hand side)

were covered with a wire mesh to exclude

subsequent litterfall. Leaf litter employed in this

experiment was a mixture of the leaf litter

found in a 0.5 m2 plot placed beneath each of

the 10 adult trees used in the evaluation of leaf
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litter accumulation. The layer of 3 cm

depth corresponded to the average depth of

K. angustifolia leaf litter beneath that adult

trees. Since March, and during the eight sub-

sequent months, an envelope from each burial

site and treatment was recovered monthly. The

viability of the seeds that remained ungermi-

nated within the envelopes was assessed by

germination trials in standard conditions of light

and temperature during 30 days (12 h light,

25�C). Seeds remaining ungerminated after the

trials were subjected to the tetrazolium test in

order to verify their viability. The comparison

of germination between months and treatments

was carried out with a two-way repeated mea-

sures ANOVA.

Field germination

In March 1993, ten sites outside canopies were

chosen in order to evaluate the effect of leaf

litter on field seed germination. At each site,

four bottomless plastic trays of 500 cm2 each

were placed on the soil. Two hundred seeds of

K. angustifolia were deposited per tray and

buried at 5 cm of depth using a homogeneous

mixture of soil obtained from several areas in-

side the plot in order to avoid uncontrolled ef-

fects of the soil composition on seed

germination. Two of the trays were covered

with K. angustifolia leaf litter while the other

two were left as a control. As in the previous

experiment, trays were covered with a 3 cm

depth layer of leaf litter, which corresponded to

the average depth of the leaf litter found be-

neath adult trees. All the trays were buried at

soil level, and were covered with a wire mesh in

order to prevent the entrance or exit of seeds.

This way, at each site, a total of 400 seeds m–2

was obtained per treatment, a density that cor-

responded with the normal seed rain of this

species in the area (León 1993). The number of

germinated seeds was registered monthly during

seven months. Germination phenology of

control and leaf litter covered trays was com-

pared with a Kolmogorov–Smirnov goodness of

fit test, whereas differences in the mean

germination per tray were assessed with a non-

parametric Mann–Whitney U test.

Leaf litter leachate effects

Germination trails in the laboratory (bioassays

technique sensu Inderjit and Dakshini 1995) were

carried out in order to test possible chemical ef-

fects of K. angustifolia leaf litter on germination

of K. angustifolia, and two native shrub species,

Guindilia trinervis (Sapindaceae) and Solanum

ligustrinum (Solanacea), the most common native

shrubs at the study site, which grow only on open

areas away from K. angustifolia canopy (León

1993; Peñaloza 1996). For each species, 10 petri

dishes with 50 seeds were prepared using wet fil-

ter paper as substratum in order to avoid the loss

of humidity. Five petri dishes were watered with a

leached extract of K. angustifolia leaf litter,

whereas the remaining five petri dishes (control)

were watered with distilled water. The leached

extract was obtained following a similar proce-

dure to that used in other studies (e.g., Noor

et al. 1995, González et al. 1995, Al-Humaid

and Warrag 1998). We soaked 150 g of dry

K. angustifolia leaf litter, which corresponded ca.

1/3 of the leaf litter remaining on the ground at

the end of summer, in 2 liters of distilled water

for 36 h. In our study area, rains mainly occur

during the fall (during winter precipitation occurs

as snow; Santibáñez and Uribe 1992), and rain

events can last up to 36 h with an accumulated

total precipitation of ca. 6 mm (6 L m–2, op. cit.),

indicating that 150 g of leaf litter can be exposed

to 2 liter of water during 36 h. All petri dishes

were watered once at the beginning of the

experiment and placed in a growth chamber with

12 hours of light and 25�C constant temperature.

Germination was registered daily during a

30 days period. The statistical analyses were car-

ried out with one-way Anova for each species,

previous arcsin transformation of seed germina-

tion percentage.

Results

Leaf litter accumulation

The average dry weight of the leaf litter

accumulated during the summer season below

K. angustifolia was 7556.5 g/m2 ( ± 353.5 g/m2),

16 Plant Ecol (2007) 190:13–22

123



while away from trees this figure was significantly

lower (t = 26.6; df = 9; P < 0.001), with 88.8 gr/

m2 ( ± 9.2 g/m2). This indicates that only 1.2% of

leaf litter accumulation was deposited outside the

canopies, while the rest remained below the

canopy of K. angustifolia. This difference in

the distribution of leaf litter was reinforced with

the comparison of the leaf litter remaining on the

ground at a single day. While 514.9 g/m2 were

found beneath K. angustifolia trees, 63.9 g/m2

were found outside (t = 16.7; P < 0.01).

Viability of buried seeds that remain

ungerminated

The presence of leaf litter significantly reduced

the viability of seeds that remain ungerminated in

the field (F1,10 = 67.5; P < 0.001), specially dur-

ing the first four months of burial (Fig. 1, a pos-

teriori Tukey’s test, P < 0.05). Overall, viability

of buried seeds, regardless of leaf litter treatment,

varied significantly with time (F3,30 = 114.2;

P < 0.001). For a given treatment, no differences

in viability among the first three months after

burial were observed, however an abrupt decay

was observed at the fourth month (Fig. 1).

Nonetheless, independently of the presence of

leaf litter, buried seeds completely lost their via-

bility after the fifth month of burial (Fig. 1). For

those seeds that did not germinate in the labora-

tory, the tetrazolium test showed that they were

unviable.

Field germination

Leaf litter reduced field germination at each date

(Fig. 2, mean ± 2 SE were 45.5 ± 4.1 without

litter and 20.7 ± 2.2 with litter, Mann–Whitney

U = 0.01, P < 0.001). Seed germination in the

field extended from July 31 through October 12,

with a maximum on September 13 (Fig. 2). The

first record of seed germination corresponded to

trays not covered with leaf litter (Fig. 2),

but overall germination phenology was not sig-

nificantly affected by leaf litter (Kolmogorov–

Smirnov, D = 14, P = 0.079; Fig. 2).

Leaf litter leachate effects

Seeds of Kageneckia angustifolia watered with

distilled water germinated at a higher rate than

seeds watered with the leached extract of leaf

litter (Table 1; Fig. 3). Although germination

percentage of seeds of Guindilia trinervis and

Solanum ligustrinum were lower than those found

in K. angustifolia (Fig. 3), the same negative ef-

fects of theK. angustifolia leaf litter leachate were

observed on seeds of these species (Table 1;

Fig. 3).
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Discussion

Our results show that a considerable accumula-

tion of leaf litter occurred beneath Kageneckia

angustifolia in the montane matorral of central

Chile, and that the presence of this leaf litter

negatively affected viability and seed germination

of this species in the field. In addition, seed ger-

mination assays under laboratory conditions show

that K. angustifolia leaf litter leachates inhibited

seed germination of its own seeds as well as other

two co-occurring native shrub species. Therefore,

our findings suggest that leaf litter is likely to have

a role in the low regeneration observed beneath

adult trees.

Previous studies performed on Chilean mator-

ral species suggested that leaf litter does not play

a significant role in the dynamics of matorral be-

cause they failed to find evidence of leaf litter

inhibition in several dominant tree and shrub

species of lower elevation forest (Montenegro

et al. 1978; Fuentes et al. 1987). The only species

previously reported with this kind of effect in the

Chilean matorral was Flourensia thurifera (Fu-

entes et al. 1987), which is restricted to dry ma-

torral sites. These authors found that leaf litter

leachates of F. thurifera negatively affected seed

germination of dominant tree species of the

Chilean matorral such as Quillaja saponaria,

Acacia caven and Lithrea caustica. These results

contrast with the findings in the climatically sim-

ilar Californian chaparral, where more evidence

was found about inhibitory effects of leaf litter

leachates on seed germination (see McPherson

and Muller 1969; Chou and Muller 1972; Keeley

et al. 1985; Preston and Baldwin 1999). Thus,

according to our findings, K. angustifolia can ex-

ert an important role in structuring vegetation

through its leaf litter as it has been observed in

Table 1 One-way ANOVAs for the evaluation of Kageneckia angustifolia leaf litter leachate effect on seed germination
of K. angustifolia, Guindilia trinervis and Solanum ligustrinum

Species Source of variation SS d.f. MS F P

Kageneckia angustifolia Treatment 0.361 1 0.361 34.36 0.000378
Error 0.084 8 0.011

Guindilia trinervis Treatment 0.644 1 0.644 20.90 0.001821
Error 0.246 8 0.031

Solanum ligustrinum Treatment 0.013 1 0.013 28.04 0.000732
Error 0.004 8 0.001
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angustifolia, Guindilia trinervis and Solanum ligustrinum
watered with leachate of K. angustifolia leaf litter (black
circles) and with distilled water (control, white circles).
Means are shown with 2 SE
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other trees inhabiting Mediterranean-type cli-

mate areas (e.g., Quercus ilex in the Mediterra-

nean Basin; Li and Romane 1997).

Causes of leaf litter inhibition on seed germi-

nation, both at intra and interspecific levels, can

be physical, chemical, biological or produced by

the interaction of these factors (Facelli and

Pickett 1991a). In the physical aspect, leaf litter

deposition can alter the microclimatic environ-

ment in the seed bank by controlling the light

levels and the temperature of soil, usually key

factors in the germination of several species (Sy-

des and Grime 1981a,b; Holland and Coleman

1987). For instance, soil temperature below litter

is usually lower than sites without litter (Faccelli

and Picket 1991b) hence, the lower K. angustifolia

seed germination observed in treatments with its

own leaf litter may be related with litter-driven

decreases in soil temperature. However, Peñaloza

et al. (2001) found no significant differences in

soil temperature between areas beneath canopy

(where leaf litter tends to accumulate) and areas

outside the canopy (devoid of leaf litter), sug-

gesting that litter effects mediated by tempera-

ture are unlikely to be involved in the observed

results.

Leaf litter may also modify the quantity and

quality of light received by a seed in the soil,

inhibiting seed germination (Vasquez-Yañes

et al. 1990; Yirdaw and Leinonen 2002). Unpub-

lished results indicate that Kageneckia angustifo-

lia is able to germinate both under light and dark

conditions, suggesting that the modification of

light environment created by its own leaf litter

may not be important for seed germination in this

species. Therefore, the faster loss of viability and

the lower germination of seed covered with leaf

litter suggest that the effect of K. angustifolia leaf

litter is unlikely to be mainly related with physical

changes.

Chemical inhibition of seed germination or

seedling establishment has been attributed to di-

verse factors, such as the presence of associated

organisms (e.g., fungi, nematodes, insects) that

liberate allelochemicals from the leaf litter (de

Jong and Klinkhamer 1985) and/or the accumu-

lation of leached secondary metabolites in the soil

(Williamson 1990; Facelli and Pickett 1991a).

Considering the faster loss of viability of seed

covered with leaf litter, their lower germination in

the field, and the lower germination of Kagenec-

kia angustifolia seeds exposed to a leached extract

of leaf litter under laboratory conditions, it seems

likely that dead leaves possess one or more water-

soluble chemical compounds that depress seed

germination. The hypothesis of the existence of

secondary metabolites in the dead leaves of

K. angustifolia is reinforced by the strong nega-

tive effect observed in the seed germination of

other native species (Guindilia trinervis and

Solanum ligustrinum; this study) and introduced

grass species (e.g., Hordeum vulgare; Peñaloza

1996) when watered with the leached leaf litter

extract. However, although our evidence suggests

that important effects of leached secondary

metabolites in soil, we can not rule out the pos-

sibility that the activity of the soil microfauna

liberates allelochemical compounds from the

dead leaves.

Some authors have questioned the relevance of

the chemical effects of the leaf litter because the

negative effects observed on seed germination

could be related with the immobilization of

nutrients, lack of O2 in the soil and the toxic

accumulation of CO2 rather than leached, exuded

or volatilized phytotoxins (de Jong and Klinkh-

amer 1985; Facelli and Pickett 1991a; Myster

1994; Xiong and Nilsson 1997). Although our field

results do not permit us to rule out nutrient

immobilization, lack of O2 and/or CO2 accumu-

lation, laboratory results strongly suggest the

existence of water-soluble allelochemicals in the

leaf litter of K. angustifolia that affect seed ger-

mination. Together with the presence of cucur-

bitacins and triterpenoids in K. angustifolia leaves

(Muñoz et al. 2002), Peñaloza and Muñoz

(unpublished results) have recorded the presence

of cyanogenic compounds such as cyanohidrin,

which could act as inhibitors of seed germination

at the embryo level, as it has been shown in other

plant species (Bewley and Black 1994) or act in

herbivory defense (Feeny 1991) (see below). The

experiments with buried seeds germinated under

laboratory conditions and with seeds watered

with leaf litter leachates indicate that the lost of

the seed germination in K. angustifolia would be

related to embryonic death. The results of the

bioassay suggest that this same mechanism could

Plant Ecol (2007) 190:13–22 19
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affect the germination of the others plant species

studied.

It has been suggested that allelopathy can be

very important in the interference between plant

species (Ridenour and Callaway 2001). The inhi-

bition of germination by K. angustifolia leaf litter

leachates may be interpreted as a mechanism

mediated by allelopathic factors to reduce inter-

specific competition (Rice 1979) or as a strategy

to avoid future competition (Inderjit and del

Moral 1997). For example, Vandermast et al.

(2002) suggest that leachate from Castanea den-

tata leaf litter could suppress germination and

growth of competing shrub and trees species such

as Rhododendron maximum and Tsuga Canad-

ensis and that allelopathy was a mechanism

whereby C. dentata may have controlled vegeta-

tive composition and dominated eastern forests.

Likewise, several other studies have also found

some inhibitory effects of leaf litter leachates on

seed germination and growth of associated

ground cover species (e.g., González et al. 1995;

Noor et al. 1995; Barrit and Facelli 2001; Ibáñez

and Schupp 2002; Dzwonko and Gawronski

2002). Therefore, it can be argued that the leaf

litter of the dominant tree species K. angustifolia

acts as a factor regulating the structure of the

community such as it occurs in many plant com-

munities ranging from grasslands to forests (Fa-

celli and Facelli 1993; Inderjit and del Moral 1997;

Nilsen et al. 1999). In addition, the negative ef-

fects of K. angustifolia leachates may be greater if

we consider for example, phenolic acids leached

from living parts of the adult trees that can have a

significant additional allelopathic effect, which

would be added to that being leached from

litter. Experimental designs that include the

effects of throughfall and stemflow from adult

trees may shed light about the importance of

these processes.

As well as K. angustifolia, there are many

examples of autotoxic effects of leaf litter on

seed germination (Grace 1983; de Jong and

Klinkhamer 1985; Saxena et al. 1996; Li and

Romane 1997). Some of these authors have

suggested that these autotoxic effects may be a

consequence of other processes such as nutrients

and/or water immobilization (e.g., Grace 1983;

de Jong and Klinkhamer 1985). Thus, the

negative effect of K. angustifolia on its own

seeds (the intraspecific effect) may be inter-

preted for example, as a cost of reducing

interspecific competition or herbivory. With re-

spect to herbivory, Rice (1979) proposed that

many of the molecules that confer anti herbiv-

ory properties to plants are the same as those

that cause allelopathy. This could be the case of

K. angustifolia where chemical cyanogenic

compounds (a very well known deterrents

against herbivores; Feeny 1991) such as cya-

nohidrin, cucurbitacins and prunasin have been

isolated from its leaves (Muñoz et al. 2002).

Thus, based on the results of our experiments,

we can conclude that the absence of natural

regeneration beneath Kageneckia angustifolia

trees is related with the accumulation of leaf litter

of this species. Chemical effects are likely part of

this phenomenon in the montane sclerophyllous

woodland of the Mediterranean-type climate

zone of central Chile.
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(2002) Cucurbicatin F in leaves of Kageneckia an-
gustifolia (Rosaceae). Zeitschrift fur naturforschung
C-A J Biosci 57:208–209

Myster RW (1994) Contrasting litter effects on old field
tree germination and emergence. Vegetatio 144:169–
174

Nilsen ET, Walker JF, Miller OK, Semones SW, Lei TT,
Clinton BD (1999) Inhibition of seedlings survival
under Rhododendron maximum (Ericaceae): could
allelopathy be a cause? Am J Bot 86:1597–1605

Noor M, Salam U, Khan MA (1995) Allelopathic effects of
Prosopis juliflora Swartz. J Arid Environ 31:83–90
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montano de Chile Central. Master thesis, Universidad
de Chile, Santiago.

Plant Ecol (2007) 190:13–22 21

123
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