
An introductory course in MATLAB

Santiago Pellegrini and Alejandro Rodriguez

Master in Business Administration and Quantitative Methods

September 2008



Contents

1 First steps in MATLAB 3

1.1 The MATLAB environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Basic syntax: vectors and matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Algebraical and logical operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Condition constructs: the if and elseif statements . . . . . . . . . . . . . . . . . 10

1.5 Loop constructs: the for and while statements . . . . . . . . . . . . . . . . . . . 11

1.6 Loading and saving data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Introduction to Graphics: The Plot command . . . . . . . . . . . . . . . . . . . . 13

2 Using the Statistics and Optimization Toolboxes 15

2.1 The Statistics toolbox. (Applications) . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Probability density function (PDF ), Cumulative distribution function

(CDF ), Inverse CDF (ICDF ) and random number generators. . . . . . . 16

2.1.2 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.3 Statistical plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.4 Linear regression analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 The Optimization toolbox. (Applications) . . . . . . . . . . . . . . . . . . . . . . 28

2.2.1 Minimizing unconstrained nonlinear functions . . . . . . . . . . . . . . . . 29

2.2.2 Minimizing constrained nonlinear functions. . . . . . . . . . . . . . . . . . 32

3 Programming in MATLAB 38

3.1 M-files (Scripts) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Exercises and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40



Introductory course in MATLAB Page 3

1 First steps in MATLAB

MATLAB is a program that was originally developed in FORTRAN1 as a MATrix LABoratory

for solving numerical linear algebra problems. It has since grown into something much bigger,

nowadays it combines numeric computation, advanced graphics and visualization, and a high-

level programming language. It has essentially the following features:

1. Matrices as fundamental data type.

2. Built-in support for complex numbers.

3. Powerful built-in math functions and extensive function libraries.

4. Extensibility in the form of user-defined functions.

1.1 The MATLAB environment

When MATLAB is started appears, by default, a window divided in three parts or sub-windows

similar to the following figure:

• The most important part of this window is what is called “Command Window”, which

is at the right side of the figure. This window is where MATLAB commands are executed

1Fortran is a general-purpose, procedural, imperative programming language that is especially suited to
numeric computation and scientific computing.



Introductory course in MATLAB Page 4

and the results are showed. For example, in the figure we can see the way of creating a

matrix of random numbers using the command randn.

• At the left side of the figure, we can see two sub-windows. The upper left window shows

the “Current Directory” and “Workspace” changing each other by clicking on the

corresponding tab. The Current Directory window displays the current folder and its

contents. The Workspace window provides an inventory of all variables in the workspace

that are currently defined, either by assignment or calculation in the Command Window

or by importation.

• Finally, the lower window called “Command History” contains a list of commands that

have been executed within the Command Window.

MATLAB file operations use the current directory and the MATLAB search path as ref-

erence points. Any file we want to run must be either in the Current Directory or on the

Search Path. A quick way to view or change the current directory is by using the current

directory field in the desktop toolbar. See the following figure:

MATLAB uses a Search Path to find m-files and other MATLAB related files, which

are organized in directories on our file system. By default, the files supplied with MATLAB

products are included in the search path. These are all of the directories and files under

matlabroot/toolbox, where matlabroot is the directory in which MATLAB was installed. We

can modify, add or remove directories through “File”, “Set Path”, and click on “Add Folder”

or “Add with subfolder”, as showed in the next figure:



Introductory course in MATLAB Page 5

The “m-files” (named after its .m file extension) have a special importance. They are text

(ASCII) files ending in “.m”, these files contain a set of command or functions. In general,

after typing the name of one of these “m-files” in the Command Window and pressing Intro,

all commands and functions defined into the file are sequentially executed. These files can be

created in any text editor. MATLAB has its own m-file editor, which allows to create and

modify these files. The following figure shows how this editor look likes.

1.2 Basic syntax: vectors and matrices

Let’s stress, before starting with the definition of matrices and vectors, that at any moment

we can access to the help of any command of MATLAB by writing in the Command Window

help followed by the command-name or doc followed by the command-name. The former shows

the help in the Command Window and the latter open a new windows, the “Help” windows,

where shows the help of the command.



Introductory course in MATLAB Page 6

MATLAB is fundamentally a matrix programming language. A matrix is a two-dimensional

array of real or complex numbers. Linear algebra defines many matrix operations that are

directly supported by MATLAB. Linear algebra includes matrix arithmetic, linear equations,

eigenvalues, singular values, and matrix factorizations. MATLAB provides many functions for

performing mathematical operations and analyzing data. Creation and modification of matrices

and vectors are straightforward tasks. For example, if we want to create a row vector called

“a” with elements {1, 2, 3, 4}, we enter

>> a = [1 2 3 4]

and the result will be

a =

1 2 3 4

or use the notation [start:stepsize:end].

>> a = [1:2:7]

and the result will be

a =

1 3 5 7

If we want a column vector, we have to write

>> a = [1;2;3;4]

or

>> a = [1 2 3 4]'

and the result will be

a =
1

2

3

4
Next, taking it in mind, we can define a matrix as follows

>> A = [1 2 3;4 5 6;7 8 9]

A =
1 2 3

4 5 6

7 8 9

Suppose that we are interested in one element of a vector or matrix. In this case we can

get this element by putting the correspondent index between parenthesis after the name of the

vector or matrix. For example, given the vector b = {23, 45, 82, 19, 42, 4, 7}, we are interested

in the second element, then we enter

>> b(2)

the result will be

ans =



Introductory course in MATLAB Page 7

45

In the case that we can get an element from a matrix, for example the element in the second

row, third column of matrix A, we have to enter

>> A(2,3)

the result will be

ans =

6

Finally, in the case that we are interested in more elements of a vector or matrix we use the

notation [start:end]. For example, the first three elements of the second column of the matrix

B

B =



4 3 6 0

5 7 0 4

9 8 2 5

5 1 8 7

4 1 9 2


can be obtained typing

>> B(1:3,2)

ans =
3

7

8

There exist commands that create special matrices. For example, the command zeros(N,M)

creates a matrix of zeros with dimension N-by-M, the command eye(N) creates an identity

matrix of dimension N, the command ones(N,M) creates a matrix of ones with dimension N-

by-M. For instance, if “b” is a vector, then the command diag(b) creates a diagonal matrix

with the elements of “b”.

1.3 Algebraical and logical operations

In this part of the tutorial we introduce simple algebraical and logical operations.

Algebraical operations

Algebraical operations in MATLAB are straightforward, just enter in the Command Window

exactly the same expression as if one writes it in a paper. For example, multiply two numbers

>> 3*5

divide two numbers

>> 15/3

elevate a number to some power



Introductory course in MATLAB Page 8

>> 2∧(-4)

When the algebraical operations are with vectors or matrices, the procedure is the same, except

that we have to take into account that inner matrix dimension must agree. For example,

multiply matrix A by B

A =

(
4 3 6

5 7 0

)
, B =

(
5 8 3

1 0 6

)

entering in the Command Window A ∗B is a mistake, the right way is enter

>> A*B'

or

>> A'*B

using the transpose operator (’). On the other hand, it is possible to do the product A times

B, element-by-element, by typing

>> A.*B

the result will be

ans =
20 24 18

5 0 0
The inverse matrix can be calculated with the command inv. For example, the inverse of matrix

A

A =


1 2 0

1 1 5

1 1 3


it is obtained through

>> inv(A)

ans =
-1 -3 5

1 1.5 -2.5

0 0.5 -0.5

The next table summarizes a list of very useful commands.



Introductory course in MATLAB Page 9

Command Description

abs(a) absolute value of the elements of “a”

clc clear the screen

clear clear all variables and functions from the memory

cumprod(a) creates a vector containing the cumulative product of the elements of “a”

cumsum(a) creates a vector containing the cumulative sum of the elements of “a”

det(A) the determinant of matrix A

eig(A) eigen values and eigen vectors of matrix A

inv(A) the inverse matrix of A

length(a) the number of elements of “a”

prod(a) multiplies the elements of “a”

rank(A) the rank of matrix A

size(A) the dimensions of A

sum(a) returns the sum of the elements of “a”

trace(A) the trace of matrix A

who shows all variables in the Workspace

whos shows all variables in the Workspace with more detail

Relational and Logical operations

The symbols “&”, “|”, and “∼” are the logical array operators AND, OR, and NOT. They work

element by element on arrays, with logical 0 representing false, and logical 1 or any nonzero

element representing true. The logical operators return a logical array with elements set to

1 (true) or 0 (false), as appropriate. For example, we would like to know if there exist ele-

ments of a vector a = {1, 4, 7, 2, 8, 5, 2, 7, 9} that are greater than or equal to those of a vector

b = {2, 5, 1, 4, 8, 0, 3, 4, 3}, compared pairwise. In the Command Window we enter

>> a >= b

and the result will be

ans =
0

0

1

0

1

1

0

1

1
Now, suppose we are interested in to know how many elements of vector “a” are greater than

or equal to those of vector “b”. Alternatively, we can enter



Introductory course in MATLAB Page 10

enter

>> sum(a >= b)

and we will find the result that we are looking for

ans =

5

This is just an example of a very simple logical operation, but one can construct construct

more complex logical sentences. The following table shows some useful logical operator.

Command Description

== equal
∼= not equal

< less than

> greater than

<= less than or equal

>= greater than of equal

& and

| or

xor exclusive or

∼ logical complement

any True if any element of a vector is a nonzero number

all True if all elements of a vector are nonzero

For example, we would like to see if the number of the elements greater than 2, but lower than

7 of the vector “a” is equal to the number of the elements greater than 5, but lower than 10 of

the vector “b”. Then, we enter

>> sum(a > 2 & a < 7) == sum(b > 5 & b < 10)

the result will be

ans =

0

1.4 Condition constructs: the if and elseif statements

There exist situations in which we want to apply different statements depending on some con-

ditioning. This is easily done with the if statement. The basic structure for an if statement is

the following

if Condition 1

Statement 1



Introductory course in MATLAB Page 11

elseif condition 2

Statement 2

elseif condition 3

Statement 3

...

else

Statement n

end

Each set of commands is executed if its corresponding condition is satisfied. The else and

elseif parts are optional. Notice that the if command checks conditions sequentially, first

condition 1, then condition 2, and so on. But when the one condition is verified the statement

associated with it is executed and the if does not continues verifying the rest of conditions.

For example

>> n = 0; if -1 > 0, n = 1; elseif 2 > 0, n = 2; elseif 3 > 0, n = 3; else, n =

4; end

The value of “n” will be 2 even though the third condition is also true.

1.5 Loop constructs: the for and while statements

When we want to repeat statements, we can use loops. They are constructed using either the

command for or the command while.

The command for

This command repeats statements a specific number of times. Its structure is the following

for variable = expression

Statement 1

Statement 2

Statement 3

...

Statement n

end

For example

>> I = [1:5]; J = [1:5]; A = [];

>> for i = I

for j = J

A(i,j) = 1/(j+i-1)

end

end



Introductory course in MATLAB Page 12

The result will be

ans =
1.00 0.50 0.33 0.25 0.20

0.50 0.33 0.25 0.20 0.17

0.33 0.25 0.20 0.17 0.14

0.25 0.20 0.17 0.14 0.13

0.20 0.17 0.14 0.13 0.11

The command while

This command repeats statements an indefinite number of times depending on a condition. Its

structure is the following

while Condition

Statement 1

Statement 2

Statement 3

...

Statement n

end

While the condition is verified this command continues repeating the statements. For example

>> eps = 1; counter = 0;

>> while (eps + 1) > 1

counter = counter + 1;

eps = eps/2;

end

The result will be

eps =

1.1102e-016

counter =

53

1.6 Loading and saving data

While working, MATLAB saves all variables created or loaded in the Workspace. However,

when we close MATLAB, the Workspace cleans itself, and all these variables are eliminated. If

we are interested in keeping that information, the command save can help us. This command

saves all Workspace variables to a “file”. For example



Introductory course in MATLAB Page 13

>> save filename

creates a file called “filename.mat”, in the current directory, which contains all variables in the

Workspace. Now, using the command load can recover all variables saved in that file. For

example

>> load filename

Some times we want to save only certain variables. For example

>> save filename a b D

This expression creates a file called “filename.mat”, which contains only the variables “a”, “b”

and “D”.

There are situations in which we are interesting in saving a variable in a text file. This can

be done with the command save, and using some of its options, for example

>> save filename.txt a -ascii

This syntax creates a text file called “filename.txt”, in the current directory, which contains the

variable “a”. This type of file are loaded using command load as follows

>> load filename.txt

For more details enter help save or doc save in the Command Window.

1.7 Introduction to Graphics: The Plot command

Now, we introduce a first notion to graphs, the command plot. It creates a graph in which the

elements of the vector/s o matrix/ces used as input are plotted. This command can plot the

elements of one vector “a” versus other vector “b” or the elements of a vector “c” versus their

index. For example

>> x = -3:0.1:7

>> y = 2*x.∧2 - 5*x -2

>> plot(x,y)



Introductory course in MATLAB Page 14

Alternatively, we can plot a vector “y” against its own index. In our example we enter

>> plot(y)

It is possible to modify some aspect of the graph like color, width, and shape, change the

ticks of the axes, add other line, using the commands set, hold on and hold off. Moreover,

we can add a tittle, label in the axis, legends, etc. Here is an example

>> x = -pi:0.1:pi; y = sin(x); y1 = cos(x);

>> set(gcf,'Color','w')

>> plot1 = plot(x,y);

>> hold on

>> plot2 = plot(x,y1)

>> hold off

>> set(plot1,'LineStyle','--','LineWidth',2.5, 'Color','r');



Introductory course in MATLAB Page 15

>> set(plot2,'LineStyle','-','LineWidth',2, 'Color','g');

>> set(gca,'XTick',-pi:pi/2:pi,'XTickLabel',{'-pi','-pi/2',...
'0','pi/2','pi'},'YTick',-1:0.5:1);
>> title('Trigonometric functions','FontWeight','bold','FontSize',13)

>> legend('sin(\theta)','cos(\theta)')
>> xlabel('-\pi < \theta < \pi','FontWeight','bold','FontSize',11)
>> ylabel(['sin(\theta),',sprintf('\n'),'cos(\theta)'], 'Rotation',0.0,...

'FontWeight','bold','FontSize',11)

>> text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi/4)','HorizontalAlignment','left')
>> text(-pi/4,cos(-pi/4),'\leftarrow cos(-\pi/4)','HorizontalAlignment','left')

2 Using the Statistics and Optimization Toolboxes

MATLAB has several auxiliary libraries called Toolbox , which are collections of m-files that

have been developed for particular applications. These include the Statistics toolbox, the Op-

timization toolbox, and the Financial toolbox among others. In our particular case, we will do

a brief description of the Statistics a Optimization toolboxes and we will use same commands

of the Financial toolbox.

2.1 The Statistics toolbox. (Applications)

The Statistics toolbox, created in the version 5.3 and continuously updated in newer versions,

is a collection of statistical tools built on the MATLAB numeric computing environment. The

toolbox supports a wide range of common statistical tasks, from random number generation,



Introductory course in MATLAB Page 16

curve fitting, to design of experiments and statistical process control. By typing help stats

on the command window, an enormous list of functions appears. They are classified according

to the topic they are made for. We will revise just a few of them, taking into account their

interest for the first-year courses.

2.1.1 Probability density function (PDF), Cumulative distribution function (CDF),

Inverse CDF (ICDF) and random number generators.

Parametric inferential statistical methods are mathematical procedures for statistical hypothe-

sis testing which assume that the distributions of the variables being assessed belong to known

parametrized families of probability distributions. In that case we speak of parametric models.

When working within this branch of statistics, it is of vital importance to know the properties

of these parametric distributions. The Statistics toolbox has information of a great number of

known parametric distributions, regarding their PDFs, CDFs, ICDFs, and other useful com-

mands to work with. Moreover, the function names were created in a very intuitive way, keeping

the distribution code name unchanged and adding at the end a specific particle for each func-

tion. Thus, for instance, norm is the root for the normal distribution, and consequently normpdf

and normcdf are the commands for finding the density and cumulative distribution functions,

respectively. Below we list some of the well-known parametric distributions and the specific

commands that are already available for each of them.



Introductory course in MATLAB Page 17

Distributions Root name pdf cdf inv fit rnd stat like

Beta beta X X X X X X X

Binomial bino X X X X X X

Chi square chi2 X X X X X

Empirical e X

Extreme value ev X X X X X X X

Exponential exp X X X X X X X

F f X X X X X

Gamma gam X X X X X X X

Geometric geo X X X X X

Generalized extreme value gev X X X X X X

Generalized Pareto gp X X X X X X X

Hypergeometric hyge X X X X X

Lognormal logn X X X X X X

Multivariate normal mvn X X X

Multivariate t mvt X X X

Negative binomial nbin X X X X X X X

Noncentral F ncf X X X X X

Noncentral t nct X X X X X

Noncentral Chi-square ncx2 X X X X X

Normal (Gaussian) norm X X X X X X X

Poisson poiss X X X X X X

Rayleigh rayl X X X X X X

T t X X X X X

Discrete uniform unid X X X X X

Uniform unif X X X X X X

Weibull wbl X X X X X X X

Particles Description Inputs

pdf Probability density function Argument, parameters

cdf Cumulative distribution function Argument, parameters

inv Inverse CDF Prob, parameters

fit Parameter estimation Data vector

rnd Random Number generation Parameters, matrix size

stat Mean and variance Parameters

like Likelihood Parameters, data vector



Introductory course in MATLAB Page 18

Let’s do some examples in MATLAB. First, create a vector X with 1000 i.i.d. normal

random variables with zero mean and unit variance and then estimate its parameters.

>> X = normrnd(0,1,1000,1);

>> plot(X)

>> [mu,sigma] = normfit(X);

>> mu,sigma

mu =

-0.0431

sigma =

0.9435

Now, let’s find out how the PDF and CDF of certain distributions look like. First generate

the domain of the function with the command S = first:stepsize:end. For example, set the

interval (−5; 5) with a step of size 0.01 and find the PDF and CDF of a Student-t distribution

with 5, and 100 degrees of freedom:

>> Z = -5:0.01:5;Z=Z';

>> t5 pdf = tpdf(Z,5);t10 pdf = tpdf(Z,10);t100 pdf = tpdf(Z,100);

>> t5 cdf = tcdf(Z,5);t10 cdf = tcdf(Z,10);t100 cdf = tcdf(Z,100);

>> figure(1),plot(Z,[t5 pdf t100 pdf]),

>> figure(2),plot(Z,[t5 cdf t100 cdf]),

>> figure(3),plot(Z,[t5 pdf t5 cdf]),

>> figure(4),plot(Z,[t5 pdf cumsum(t5 pdf)*0.01]),



Introductory course in MATLAB Page 19

Note that Figures 3 and 4 above are pretty similar, as though they were plotting the same

functions. This happens because the CDF of a given value x is not more than the area below

the pdf up to this point, and this area can be easily approximated by the command cumsum.

This command simply replaces the ith element of a vector (in our case, the vector t5 pdf) by the

partial sum of all observations up to this element. Thus if D = [1 2 3 4], then cumsum(D) =

[1 3 6 10].

The Inverse CDF is pretty much used in hypothesis testing to find critical values of a given

known distribution. For example, consider testing the mean equal to zero in the vector X

created above. First, we construct the appropriate statistics, and then find the critical values

for α = 0.05 significance level. Since this is a two-tailed test, we should obtain the value that

leaves α/2 = 0.025 of probability in each tail.



Introductory course in MATLAB Page 20

>> zstat = mean(X)./std(X)

>> zstat =

-0.0457

>> zcritic = norminv(0.025)

>> zcritic =

-1.96

Note that the command std, by default, calculates the sample-corrected standard deviation.

If you add an optional input you can change it, see the Help. Of course, we cannot reject the

null of zero mean provided that we have generated X as a Normal random variable with zero

mean!!

Finally, let’s play a little more with the random number generators. We want to generate

time series of size T = 1000 with the following dynamic properties:

yt = yt−1 + at, (1)

xt = 3 + 0.5 at−1 + at, (2)

wt = −0.8 wt−1 + at + 0.5 at−1, (3)

where at is an i.i.d. Gaussian process with zero mean and unit variance, commonly known as a

white noise process. Since all series depend on their own past values, we need to construct the

following loop to generate them:

>> close all % Closing all figures without saving them

>> T =1000; % Sample size

>> a = normrnd(0,1,T,1); % Generating the white noise process

>> yt = zeros(T,1); xt = 3*ones(T,1); wt = zeros(T,1); % Generating the empty vectors

>> for t = 2:T, % Starting the loop at t=2

>> yt(t) = yt(t-1) + a(t); % Generating yt

>> xt(t) = 3 + 0.5 * a(t-1) + a(t); % Generating xt

>> wt(t) = -0.8 * wt(t-1) + 0.5 * a(t-1) + a(t); % Generating wt

>> end % Finishing the loop

>> figure(1),plot([yt xt wt a],'LineWidth',1.5); % Plotting the series against time

>> legend yt xt wt a % Adding the legend to the current figure



Introductory course in MATLAB Page 21

From the plot we can see that the only series without a constant mean is yt, known as a

random walk process. Check that its first difference given by ∆yt = yt − yt−1, is simply the

white noise process, at. The command to do this in MATLAB is diff(yt).

2.1.2 Descriptive Statistics

The Statistics toolbox provides functions for describing the features of a data sample. These

descriptive statistics include measures of location and spread, percentile estimates and functions

for dealing with data having missing values. The following table shows the most important ones

with a brief description of their use.

Function Name Description

corr Linear or Rank Correlation Coefficient

corrcoef Linear Correlation Coefficient with Confidence intervals

cov Covariance Matrix

geomean Geometric Mean

grpstats Summary Statistics by Group

kurtosis Kurtosis

mad Median Absolute Deviation

median 50th Percentile of a Sample

moment Moments of a Sample

nanstat Descriptive Stastiscs ignoring NaNs (missing data)*

prctile Percentiles

quantile Quantiles

range Range

skewness Skewness



Introductory course in MATLAB Page 22

* Replace the particle stat by one of the following names: max, min, std,

mean, median, sum or var.

As an example, let’s find some sample statistics of the time series xt, wt and at generated

above. Before doing it, we must know that in a data matrix, MATLAB automatically interprets

columns as samples and rows as observations. Therefore, the output of all these functions

applied to the data matrix is a row vector with its ith element being the value of the statistics

for the ith column. Let’s now calculate the median, skewness, kurtosis, and the 25th and 75th

Percentile of the selected series by typing the following in the command window:

>> med = median([xt wt a]); % Calculating the median for each series

>> skew = skewness([xt wt a]); % Calculating the Skewness

>> kurt = kurtosis([xt wt a]); % Calculating the Kurtosis

>> prct25 = prctile([xt wt a],25); % Calculating the 25th Percentile

>> prct75 = prctile([xt wt a],75); % Calculating the 75th Percentile

>> med,skew,kurt,prct25,prct75,

>> med =

3.0026 -0.0438 -0.0001

>> skew =

-0.0854 0.0750 0.0311

>> kurt =

2.7254 2.8461 2.7629

>> prct25 =

2.2257 -0.7365 -0.6947

>> prct75 =

3.7530 0.7206 0.6734

Another way of obtaining the sample kurtosis or skewness is by using the command moment(x,n),

which finds the nth central sample moment of x. For example, knowing that the kurtosis is

defined as the ratio between the fourth central moment and the second central moment to the

squares, we could have done

>> m4 = moment([xt wt a],4); % Calculating the 4th Central Moment

>> m2 = moment([xt wt a],2); % Calculating the 2nd Central Moment

>> kurtbis = m4./(m2).∧2 % Calculating the Kurtosis

>> kurtbis =

2.7254 2.8461 2.7629

In the construction of kurtbis, we must remember adding the dot (.) before the math-

ematical operations, in order to ensure that we are dealing with element-by-element (scalar)

operations.



Introductory course in MATLAB Page 23

2.1.3 Statistical plots

The graphical methods of data analysis are as important as the descriptive statistics to collect

information from the data. In this section we will see some of these specialized plots available

in the Statistics toolbox and also others from MATLAB main toolbox. The Statistics tool-

box adds box plots, normal probability plots, Weibull probability plots, control charts, and

quantile-quantile plots to the arsenal of graphs in MATLAB. There is also extended support

for polynomial curve fitting and prediction. There are also functions to create scatter plots or

matrices of scatter plots for grouped data, and to identify points interactively on such plots. It

is true that the best way of plotting some data strongly depends on their own nature. Thus,

for instance, qualitative data information might be summarized in pie charts or bars, while

quantitative data in scatter plots. The table below shows some of the most known specialized

graphs.

Statistical Plotting Description

bar Data plotting in vertical bars (in MATLAB toolbox)

barh Data plotting in hertical bars (in MATLAB toolbox)

boxplot Boxplots of a data matrix (one per column)

cdfplot Plot of empirical cumulative distribution function

ecdfhist Histogram calculated from empirical cdf

gline Point, drag and click line drawing on figures

gplotmatrix Matrix of scatter plots grouped by a common variable

gscatter Scatter plot of two variables grouped by a third

hist Histogram (in MATLAB toolbox)

hist3 Three-dimensional histogram of bivariate data

ksdensity Kernel smoothing density estimation

lsline Add least-square fit line to scatter plot

normplot Normal probability plot

parallelcoords Parallel coordinates plot for multivariate data

pie Pie chart of data (in MATLAB toolbox)

scatter Scatter plot of two variables (in MATLAB toolbox)

stem Plot of discrete data as lines (stems) with a marker

probplot Probability plot

qqplot Quantile-Quantile plot

Obviously, the histogram is the most popular in describing a sample. Let’s find out how to

use it. Consider the vector X of i.i.d. standard normal random variables, and the white noise

series, at. We will obtain the histogram for each variable and a 3-D version of the histogram

for both at the same time.



Introductory course in MATLAB Page 24

>> close all % Close all current figures

>> figure(1),hist(X) % Histogram of X

>> figure(2),hist(a) % Histogram of a

>> figure(3),hist3([X a]) % Histogram of the bivariate sample [X,a]

>> figure(4),hist([X;10;-10]) % Histogram of X contaminated with two outliers

The histograms serve mainly for giving a first view of the shape of the distribution, and

thus infer whether the data come from a given known distribution. Moreover, they also serve

to detect outliers, as shown in the bottom-right figure above. This also shows the histogram

of X, but after adding two “large” (in absolute value) observations. It is clear that these two

outliers significantly change the shape of the histogram.

When dealing with discrete data, the stem function may be the appropriate graphic for

plotting them. For example, let’s generate data from a binomial distribution with parameters

p = 0.3 and n = 10. First, we need to obtain the frequency table that counts the number

observations for each value between 0 and 9. The right command is tabulate. Finally, the



Introductory course in MATLAB Page 25

commands stem and stairs produce the plots of the simple and cumulative frequencies given

by tabulate.

>> close all % Close all current figures

>> B = binornd(10,0.3,1000,1); % Generating Binomial(10,0.3) data

>> Freq = tabulate(B) % Tabulate the frequencies of B

Freq =

0.0000 25.0000 2.5000

1.0000 139.0000 13.9000

2.0000 215.0000 21.5000

3.0000 259.0000 25.9000

4.0000 185.0000 18.5000

5.0000 125.0000 12.5000

6.0000 44.0000 4.4000

7.0000 7.0000 0.7000

9.0000 1.0000 0.1000

>> figure(1),stem(Freq(:,1),Freq(:,2)) % Stem plot of Freq

>> figure(2),stairs(Freq(:,1),cumsum(Freq(:,2))) % Stair plot of Freq

Finally, we will learn how to create the pie charts. Consider the following information about

the number of students of the Statistics Department that have started and finished the first-year

courses in the last four years:

Course 2003-04 2004-05 2005-06 2006-07 2007-08

Started 4 4 3 4 3

Finished 4 2 3 4 3



Introductory course in MATLAB Page 26

In order to introduce this table in MATLAB and then plot its figure, we must follow these

steps:

>> Course = {'2003-04','2004-05','2005-06','2006-07','2007-08'}
>> Started = [4, 4, 3, 4, 3];

>> Finished = [4, 2, 3, 4, 3];

>> close all

>> figure(1), pie(Started,[1 0 0 0 0],Course),

>> figure(2), pie3(Finished,[0 0 1 1 0],Course),

Note that the vector of zeros and ones following the data input specifies whether to offset a

slice from the center of the pie chart; see the Help for further information.

2.1.4 Linear regression analysis

Regression analysis is other big branch of Statistics covered by the Statistical toolbox. For

example, finding the Ordinary Least Squares (OLS) estimators of a given linear regression is

certainly easy in MATLAB. In fact, if we knew the algebra behind this procedure we could

use simple matrix algebra with the commands you have seen in previous sections. However,

the Statistics toolbox goes beyond that and provides much more information for inference and

testing with just a simple command named regress. In its simplest form, by typing B =

regress(Y,X) we find the OLS estimators of the linear regression of the dependent variable Y

on the regressors contained in matrix X. In other words, it estimates the vector β of the model

Y = X β + U, (4)

= β1X1 + β X2 + ...+ βpXp + U,



Introductory course in MATLAB Page 27

where U is a vector of zero-mean random errors. If we further assume that U is Normal and X

is fixed (i.e. not random), then the OLS estimator, β̂OLS , is the best linear unbiased estimator

(BLUE) of the parameter β. Let’s see how the command regress works. First, we need to

enter some data to apply model (4). We will work with production costs of several factories that

produce steel. The data is located in a text-file called regress data.txt, which contains seven

variables with 129 observations. The variables are: price per unit, hourly salaries, energy costs,

raw material costs, machinery depreciation costs, other fixed costs and a discrete variable for

factory type (1=star, 0=neutral and 2=basic)2. All variables except the binary one are in logs.

We wish to relate the unit price of steel with the different production costs by means of (4).

First, remember that to load the data we should type Data = load('regress data.txt'); on

the command window. Once the data have been loaded, it could be interesting to observe the

cloud of points in a scatter plot. Since there is a categorical discrete variable referring to the

geographical situation, we will use it to group the data into the three situations. Recall that

the command to do this is gplotmatrix (the simple scatter plot matrix is plotmatrix). The

command also allows to introduce the variable names and a histogram in the main diagonal, as

shown in the figure below. For more information about the usage of this function; see the Help.

>> Data = load('regress data.txt');

>> varNames = {'Price','Salary','Energy','Raw Material','Machinery',...

'Other','Situation'};
>> gplotmatrix(Data(:,1:6),[],Data(:,7),'bgrcm',[],[],'on','hist',varNames(1:6));

2This exercise is a modification of a practice of Statistics II. You will find all information here

http://www.est.uc3m.es/esp/nueva_docencia/leganes/ing_industrial/estadistica_II/practicas.html


Introductory course in MATLAB Page 28

The first row of the scatter plot provides a good insight that the linear model can be a good

alternative for relating these variables. Then, we finally estimate the parameter β of (4) and

the residual variance with the function regress. We first leave aside the categorical data. Note

also that we must add a vector of ones to the regressors matrix in order to include an intercept.

>> [Bols Bolsint R RINT STATS] = regress(Data(:,1),[ones(127,1) Data(:,2:6)]);

>> close all,figure(1),plot(R,'ok'),hold on,line([1 127],[0 0]),axis tight

>> figure(2),plot([Data(:,1) [ones(127,1) Data(:,2:6)]*Bols])

>> legend Actual Fitted

Regressor β̂OLS 95% Conf. interv. of β̂OLS R2 F-stat p-value σ2
u

Constant 0.4826 (0.0234 0.9417) 0.8485 135.5559 0 0.0413

Salary 0.3550 (0.2422 0.4678)

Energy 0.1647 (0.1147 0.2147)

Raw Material 0.1206 (0.0903 0.1509)

Machinery 0.1183 (0.0556 0.1811)

Other Costs 0.1273 (0.0491 0.20544)

Note that in the residual plot, the zero-line is also drawn. To include it, we need fist to hold

on the current figure and then add the command line([x1 x2],[y1 y2]).

2.2 The Optimization toolbox. (Applications)

Optimization is the process of finding the minimum or maximum of a function, usually called the

objective function sometimes subject to constraints. The Optimization Toolbox consists of a set

of functions that perform minimization on general linear and nonlinear functions. The toolbox



Introductory course in MATLAB Page 29

also provides functions for solving nonlinear equation and least-squares (data-fitting) problems.

The Optimization toolbox includes routines for many types of optimization procedures like

• Unconstrained nonlinear minimization

• Constrained nonlinear minimization, including goal attainment problems, minimax prob-

lems, and semi-infinite minimization problems

• Quadratic and linear programming

• Nonlinear least squares and curve-fitting

• Nonlinear system of equation solving

• Constrained linear least squares

• Sparse and structured large-scale problems

• Linear programming

2.2.1 Minimizing unconstrained nonlinear functions

Given a mathematical function coded in an m-file, one can find a local minimizer of the function

in a given interval using an iterative algorithm called fminunc. It attempts to find a minimum

of a scalar function of several variables, starting at an initial estimate. Its syntax is as follows

>> [X,FVAL,EXITFLAG,OUTPUT,GRAD,HESSIAN] = fminunc('ObjFunction',X0,...

options,varargin)

Inputs:

• 'ObjFunction': is a function that accepts input X and returns a scalar function value

evaluated at X.

• X0: is a initial guess value for the iterative algorithm. It must be of the same size as X.

• options: is a structure containing all options about the way in which the algorithm is

searching the minimum point, e.g. the maximum number of iterations, gradient, hessian,

tolerance, among others. The following table summarizes the most common options.



Introductory course in MATLAB Page 30

Option Possible Values Description

Display 'off' | 'iter' | 'final' | 'notify' Level of display. 'off' displays no output; 'iter'

displays output at each iteration; 'final' displays

just the final output; 'notify'displays output only

if the function does not converge.

FunValCheck 'off' | 'on' Check whether objective function values are valid.

'on'displays an error when the objective function

returns a value that is complex or NaN. 'off'

displays no error.

GradObj 'on' | 'off' Use the gradient provided by the user.

MaxFunEvals Positive integer Maximun number of objective function

evaluation allowed.

MaxIter Positive integer Maximun number of iterations allowed.

TolFun Positive scalar The minimum tolerance for the objective function.

TolX Positive scalar The minimum tolerance for the norm of parameters.

Hessian 'on' | 'off' Use the hessian provided by the user.

• varargin: are the additional input that could have the objective function (’ObjFunction’).

The number of Output may vary according to our need, and they can be:

• X: is the value of parameters that minimize the objective function.

• FVAL: is the value of the objective function at the optimal point, (X).

• EXITFLAG: is the value that describes the exit condition of the command fminunc reaching

the solution X. It can be: 1 magnitude of gradient smaller than the specified tolerance; 2

change in X smaller than the specified tolerance; 3 change in the objective function value

smaller than the specified tolerance (only occurs in the large-scale method); 0 maximum

number of function evaluations or iterations reached; -1 algorithm terminated by the

output function; -2 line search cannot find an acceptable point along the current search

direction (only occurs in the medium-scale method).

• OUTPUT: is a structure with: the number of iterations taken, the number of function

evaluations, the number of CG iterations (if used) in OUTPUT.cgiterations, the first-

order optimality (if used), and the exit message.

• GRAD: is the value of the gradient of the objective function at the solution X.

• HESSIAN: is the value of the Hessian of the objective function at the solution X.

Application: Consider, again, model (4). But now, we are going to minimize the sum

squares of the residuals numerically. We mean that first create a function in MATLAB that



Introductory course in MATLAB Page 31

returns the value of the sum squares of the residuals given a particular value of parameters and

the data, then, we use the command fminunc for finding a minimum. As we have seen, the

parameters can be estimated using the command regress.

Let OLS b be the function that returns the value of the sum squares of the residuals given

a particular value of the parameters and the data. Now, we enter

>> [par,fval,exitflag,output] = fminunc('OLS b',Ini Guess,[],X,y)

with [], we left the default options and we add the input X and y which are the additional

input of the OLS b function. The results will be

Iteration f(x) Norm of step First-order optimality CG-iterations

0 5372.74 1.14e+004

1 5372.74 10 1.14E+004 3

2 203.197 2.5 1.52E+003 0

3 111.26 1.04324 193 1

4 43.8013 2.1383 200 3

5 22.2694 1.53945 63.6 3

6 6.15335 0.587813 5.45 3

7 5.53869 0.335366 4.41 3

8 5.27467 0.198886 1.81 3

9 5.27467 2.5 1.81 3

10 5.18068 0.625 4.55 0

11 4.99806 0.0778814 0.9 3

12 4.99307 0.0149232 0.141 3

13 4.99278 0.00528417 0.095 3

14 4.99261 0.00522933 0.0904 3

15 4.99259 0.0123942 0.231 3

16 4.9923 0.00291178 0.0181 3

17 4.99228 0.001871 0.0324 3

18 4.99227 0.00107856 0.0166 3

19 4.99227 0.00104532 0.0338 3

20 4.99226 0.00060263 0.0071 3

21 4.99226 0.00058137 0.0133 3

22 4.99226 0.0010612 0.0141 3

23 4.99226 0.00022532 0.00192 3

24 4.99226 0.00056045 0.00353 3

25 4.99226 0.00048948 0.00627 3

26 4.99226 6.92E-05 0.000684 3

27 4.99226 4.91E-05 0.00077 3

28 4.99226 2.20E-05 0.000202 3

29 4.99226 2.74E-05 0.000414 3

30 4.99226 3.51E-05 0.000414 3

31 4.99226 8.77E-06 0.000117 0

32 4.99226 8.77E-06 0.000299 3

33 4.99226 2.19E-06 8.67E-05 3

34 4.99226 5.48E-07 8.67E-05 3

Optimization terminated: norm of the current step is less than OPTIONS.TolX.

par =

0.4826 0.3550 0.1647 0.1206 0.1183 0.1273



Introductory course in MATLAB Page 32

fval =

4.9923

exitflag =

3

output =

iterations: 40

funcCount: 41

stepsize: 1

firstorderopt: 1.8323e-005

algorithm: 'large-scale: trust-region Newton'

message: [1x86 char]

2.2.2 Minimizing constrained nonlinear functions.

Now, we concern about finding an optimal point of a nonlinear function with several variables

but, in this case, we add linear and nonlinear, constraints. The problem is the following

min
X
f(X)

s.t.

AX = b

C(X) = 0

AinX ≤ bin

Cin(X) ≤ 0

lb ≤ X ≤ ub

A command for solving this type of problems is fmincon. It works in a similar way that

the command fminunc, but the command fmincon has more inputs, that refer to the constraints.

>> [X,FVAL,EXITFLAG,OUTPUT,LAMBDA,GRAD,HESSIAN] = fmincon('ObjFunction',X0,...

Ain,bin,A,b,lb,ub,'NonConFunc',Options,Varargin)

Inputs:

• 'ObjFunction': is a function that accepts input X and returns a scalar function value F

evaluated at X.

• X0: is an initial guess value for the iterative algorithm, it can be a scalar, vector or matrix.

• Ain,bin: are the matrix and vector, respectively, that form, together with “X”, the linear



Introductory course in MATLAB Page 33

inequality constraints. (Set Ain=[] and bin=[] if no inequalities exist.)

• A,b: are the matrix and vector, respectively, that form, together with “X”, the linear

equality constraints. (Set A=[] and b=[] if no equalities exist.)

• lb,ub: are the vector of lower bounds and the upper bounds, respectively, of the variables

“X”. (Set lb=[] and/or ub=[] if no bounds exist.)

• 'NonConFunc': is a function that accepts “X” as input and returns the vectors Cin(X)

and C(X), representing the nonlinear inequalities and equalities constraints, respectively.

• options: is a structure in which are all options about the way in which the algorithm is

looking for the minimum point, e.g. the maximum number of iterations, the gradient, the

hessian, the tolerances among others.

• varargin: are the additional input that could have the objective function.

The number of Output’s can vary according our need and they can be:

• X: is the value of parameters that minimize the function 'ObjFunction'.

• FVAL: is the value of the objective function at the optimal points, (X).

• EXITFLAG: is value that describes the exit condition of the command fminunc reaching

the solution X’s values. It can be: Both medium- and large-scale: 1 First order optimality

conditions satisfied to the specified tolerance. 0 Maximum number of function evaluations

or iterations reached. -1 Optimization terminated by the output function. Large-scale

only: 2 Change in X less than the specified tolerance. 3 Change in the objective function

value less than the specified tolerance. Medium-scale only: 4 Magnitude of search direction

smaller than the specified tolerance and constraint violation less than options.TolCon.

5 Magnitude of directional derivative less than the specified tolerance and constraint

violation less than options.TolCon. -2 No feasible point found.

• OUTPUT: is a structure with five blocks of information. Namely, the number of itera-

tions taken, the number of function evaluations, the number of CG iterations (if used) in

OUTPUT.cgiterations, the first-order optimality (if used), and the exit message.

• LAMBDA: is the Lagrange multipliers at the solution X. LAMBDA.lower for lb, LAMBDA.upper

for ub, LAMBDA.ineqlin is for the linear inequalities, LAMBDA.eqlin is for the linear

equalities, LAMBDA.ineqnonlin is for the nonlinear inequalities, and LAMBDA.eqnonlin is

for the nonlinear equalities.

• GRAD: is the value of the gradient of the objective function at the solution X.



Introductory course in MATLAB Page 34

• HESSIAN: is the value of the Hessian of the objective function at the solution X.

Application: Analyzing Portfolios

Portfolio managers concentrate their efforts on achieving the best possible trade-off between

risk and return. For portfolios constructed from a fixed set of assets, the risk/return profile

varies with the portfolio composition. Portfolios that maximize the return, given the risk, or,

conversely, minimize the risk for the given return, are called optimal.

Suppose that we have money to invest on two different assets. Asset1 has a mean return

r1 = 0.07 and a standard deviation σ1 = 3; while Asset2 has a mean return r1 = 0.3 and a

standard deviation σ2 = 5. The correlation between both assets is ρ = 0.1. In this virtual

economy we must invest the totality of our money. Given this information our problem reduces

to minimize the risk (σP ) of our portfolio given a particularly value of the return.

The portfolio is composed as follows, the return

rP = w1r1 + w2r2,

where, w1 and w2 are the weights invested in Asset1 and Asset2, respectively. Its risk

σP =
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ1ρ.

Hence, the problem is

min
w1,w2

f(w1, w2) =
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ1ρ

s.t.

w1r1 + w2r2 = r0

r1 + r2 = 1

lb ≤ w1 ≤ ub

lb ≤ w2 ≤ ub

We present two situations, with and without short-selling.

Without short-sale operations



Introductory course in MATLAB Page 35

An interesting optimal point is such that minimizes the risk. That is

min
w1,w2

f(w1, w2) =
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ1ρ

s.t.

w1 + w2 = 1

0 ≤ w1 ≤ 1

0 ≤ w2 ≤ 1

We are looking for the weights that make minimum the risk without the possibility of take loan.

Now, we find the optimal weights entering in the Command Window the following,

first the options

opt = optimset('Display','iter','GradObj','off',...

'Hessian','off','LargeScale','off');

After that

>> [optwieghts,fval,exitflag,output,lambda] = fmincon('risk',[0.1 0.1],...

[],[],[1 1],1,[0 0],[1 1],[],opt,sig1,sig2,ro)

The results will be

max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 3 2.81759 0.01206 Infeasible start point

1 6 4.33549 0 1 3.26 7.16

2 9 2.69701 1.11E-16 1 -0.343 5.47

3 12 2.68879 0 1 0.0396 5.61

4 15 2.68058 0 1 2.95E-05 5.35

5 18 2.68058 0 1 1.61E-10 5.36

Optimization terminated: magnitude of directional derivative in search direction

less than 2*options.TolFun and maximum constraint violation is less than options.TolCon.

optwieghts =

0.7581 0.2419

fval =

2.6806

exitflag =

5

output =



Introductory course in MATLAB Page 36

iterations: 5

funcCount: 18

lssteplength: 1

stepsize: 4.7398e-004

algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'

firstorderopt: 1.3411e-006

message: [1x172 char]
lambda =

lower: [2x1 double]

upper: [2x1 double]

eqlin: -2.6806

eqnonlin: [0x1 double]

ineqlin: [0x1 double]

ineqnonlin: [0x1 double]

The following figure shows the situation

With short-sale operations

In this case, it is possible to borrow money, let assume that the interest rate at which we take

the loan is the same as Asset1. For example, we can borrow money by means of selling Asset1
(“leverage”) and using it for buying Asset2, this situation can be summarized as a negative

weight for Asset1 and a positive and greater than one weight for Asset2 (their sum must be

equal to one).

Now, our problem consists in minimizing the risk subject to the level of return being fixed,



Introductory course in MATLAB Page 37

e.g. r0 = 0.6.

min
w1,w2

f(w1, w2) =
√
w2

1σ
2
1 + w2

2σ
2
2 + 2w1w2σ1σ1ρ

s.t.

w1r1 + w2r2 = 0.6

w1 + w2 = 1

Now, we find the optimal weights entering in the Command Window, first the options

opt = optimset('Display','iter','GradObj','off',...

'Hessian','off','LargeScale','off');

After that, we enter

>> [optwieghts,fval,exitflag,output,lambda] = fmincon('risk',[0.1 0.1],...

[],[],[r1 r2;1 1],[R0;1],[],[],[],opt,sig1,sig2,ro)

The results will be

max Line search Directional First-order

Iter F-count f(x) constraint steplength derivative optimality Procedure

0 3 0.6205 0.8 Infeasible start point

1 6 11.599 1.11E-16 1 11.2 11.3

2 9 11.599 0 1 -2.55E-15 9.43

Optimization terminated: first-order optimality measure less than options.TolFun

and maximum constraint violation is less than options.TolCon.

optwieghts =

-1.3043 2.3043

fval =

11.5990

exitflag =

1

output =

iterations: 2

funcCount: 9

lssteplength: 1

stepsize: 6.8265e-016

algorithm: 'medium-scale: SQP, Quasi-Newton, line-search'

firstorderopt: 1.9984e-015

message: [1x143 char]
lambda =



Introductory course in MATLAB Page 38

lower: [2x1 double]

upper: [2x1 double]

eqlin: [2x1 double]

eqnonlin: [0x1 double]

ineqlin: [0x1 double]

ineqnonlin: [0x1 double]

The following figure shows the situation

3 Programming in MATLAB

MATLAB is a high-level language that includes matrix-based data structures, its own internal

data types, an extensive catalog of functions, an environment in which to develop our own

functions and scripts. MATLAB provides a full programming language that enables us to write

a series of MATLAB statements into a file and then execute them with a single command. we

write our program in an ordinary text file, giving the file a name of filename.m. The term we

use for filename becomes the new command that MATLAB associates with the program. The

file extension of .m makes this a MATLAB m-file. For example, when we write a program in

MATLAB, we save it to an m-file. There are two types of m-files: the scripts that simply

execute a sequence of MATLAB statements, and the functions that also accept input arguments

and produce outputs.



Introductory course in MATLAB Page 39

3.1 M-files (Scripts)

The simplest m-files are the Scripts. They are useful for automating blocks of MATLAB

commands, such as computations we have to perform repeatedly from the command line. Scripts

can operate on existing data in the workspace, or they can create new data on which to operate.

Although scripts do not return output arguments, they record all the created variables in the

workspace, so that we can use them in further computations. In addition, scripts can produce

graphical output using commands like plot.

Like any other m-files, scripts accept comments. Any text followed by a percent sign (%)

on a given line is a comment. Comments may appear on separate lines by themselves, or simply

at the end of an executable line.

For example, let’s create an m-file to construct the plot made in section 1. First, in “File”,

“New”, click on “M-File”. This action opens a new window in which we can edit the m-file.

Next, inside this window we enter all the necessary commands.

clear % Clear all variables from memory

clc %Clear the screen

x = -pi:0.1:pi; % Define a variable ‘‘x"

y = sin(x); % Define a function of the variable ‘‘x"

y1 = cos(x); % Define other function of the variable ‘‘x"

gr = plot(x,y); % Create a first plot

hold on

gr1 = plot(x,y1,'g'); % Create a second plot using the command hold on

hold off

set(gcf,'Color','w' ); % Set the color of the background the current figure

set(gr,'LineStyle','--','LineWidth',2.5, 'Color', 'r'); % Set the styles, color and width for the first plot

set(gr1,'LineStyle','-','LineWidth',2, 'Color','g'); % Set the styles, color and width for the second plot

set(gca,'XTick',-pi:pi/2:pi,'XTickLabel',{'-pi','-pi/2','0', 'pi/2','pi'}, 'YTick',-1:0.5:1);

% Set the marks for the axes

text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi/4)','HorizontalAlignment','left'); % Insert a text inside the graph

text(-pi/4,cos(-pi/4),'\leftarrow cos(-\pi/4)', 'HorizontalAlignment','left');

title('Trigonometric functions','FontWeight','bold','FontSize',13); % Insert a title

legend('sin(\theta)','cos(\theta)'); % Add legends

xlabel('-\pi < \theta < \pi','FontWeight','bold','FontSize',11); % Label for the x axe

ylabel(['sin(\theta),',sprintf('\n'),'cos(\theta)'],'Rotation',0.0,'FontWeight','bold','FontSize',11);



Introductory course in MATLAB Page 40

3.2 Functions

Function [out1, out2, ...] = funname(in1, in2, ...) defines the function funname that

accepts inputs in1, in2, etc. and returns outputs out1, out2, etc. The name of a function,

defined in the first line of the m-file, should be the same as the name of the file without the

“.m” extension. For example, we create a function with the weights, the standard deviations

associated to each assets and the correlation between each other as input and returns the risk,

measured as the standard deviation of the portfolio.

function [R Var] = risk(weights,sig1,sig2,ro)

% [R Var] = risk(weights,sig1,sig2,ro)

% weights(1): the weight associated to the first asset

% weights(2): the weight associated to the second asset

% sig1: the Standard Deviation associated to the first asset

% sig2: the Standard Deviation associated to the second asset

% ro: the correlation between the assets.

w1 = weights(1);

w2 = weights(2);

sig12 = sig1∧2;

sig22 = sig2∧2;

Var = (w1∧2)*sig12 +(w2∧2)*sig22 + ...

2*w1*w2*sqrt(sig12)*sqrt(sig22)*ro;% The Variance of the portfolio

R = sqrt(Var); % The Risk of the portfolio

3.3 Exercises and applications

Now we leave you constructing your own m-files to solve some exercises we have prepared

specially for you!

1. A Chinese factory specialized in producing plastic dolls wishes to analyze some data on

exports to Spain. The database is given in a text file called chinese data.txt. At the end

of this tutorial you will find the whole database with all the information you need. It

contains information about the 2005 and 2006 sales of three different types of dolls, A, B

and C. In particular, the share-holders wish to know which is the type of doll with best

position at the Spanish market, and how these sales are spanned among the provinces.

As their head of the sales department, you need to summarize the information by

(a) Obtaining the main descriptive statistics, for each year and type of doll.



Introductory course in MATLAB Page 41

(b) Making different plots to have an intuition about the type of data we have and to

account for possible outliers.

(c) Testing whether the mean sales of each type are equal for a given year.

(d) Checking, for three provinces chosen at random, whether the sales of each type

have increased from 2005 to 2006. Then indicate in how many provinces the sales of

type B have been increased.

We encourage you to put all the statements in a script m-file and then run them all at

once to check the results. Don’t worry, we will help you on this!!

2. This Chinese factory is in fact part of a big holding of multinational firms. The CEOs of

this holding, after your excellent performance as the head of the sales department, offer

you a position at their financial department. But, of course, to get this job they ask

you to find the optimal portfolio composition of four different indexes, according to their

expected returns. In the file holding shares.txt you will find information about the daily

returns of these four different indexes in the last two months. In particular, you need to:

(a) Find the mean and the variance-covariance matrix of these returns.

(b) Use this information as inputs to minimize the risk of the portfolio (measured as its

standard deviation), subject to a fixed value of the portfolio return.

(c) Construct a loop to repeat the last minimization but with different portfolio returns.

(d) Plot the efficient frontier and compare it to the free risk return, rf = 0.01%

Let’s find out which of you deserves most this position!!



Introductory course in MATLAB Page 42

Type A Sales Type B Sales Type C Sales

Province Code 2005 2006 2005 2006 2005 2006

Almerı́a 1 303.8167 138.5333521 302.721389 240.784593 262.525503 73.8732537

Cádiz 2 464.5854 233.831308 465.984023 545.597393 517.66098 159.547614

Córdoba 3 303.4283 154.0214673 311.9839 811.220536 636.252724 142.47686

Granada 4 344.3596 161.7446758 344.899332 375.578128 364.81213 96.2035294

Huelva 5 209.0394 111.0995321 208.511201 178.610695 189.105729 45.6400125

Jaén 6 232.9159 123.7788657 227.792121 56.5949524 43.3245178 10.5630605

Málaga 7 631.4482 315.0965665 636.361654 917.378961 818.793071 204.232977

Sevilla 8 745.975 379.4407969 719.62946 722.723866 215.593884 59.6190273

Huesca 9 97.4746 49.1871286 99.3148782 205.725804 168.415217 46.3196872

Teruel 10 64.6877 32.02463933 67.4636531 231.764634 174.221687 45.2794701

Zaragoza 11 451.3192 234.3174915 443.066886 16.7036216 144.805528 40.740219

Asturias 12 428.7349 207.700932 438.457614 1002.75256 804.931532 223.697194

Balears (Illes) 13 525.1434 292.874503 542.548913 1563.08342 1205.49974 254.45755

Palmas (Las) 14 481.7652 239.1457546 461.471868 641.699706 253.682516 63.0471577

S.C.Tenerife 15 442.7193 222.6924456 425.857505 494.633492 170.941365 48.2352585

Cantabria 16 256.2794 135.3658683 260.147852 483.00351 404.849838 101.653321

Ávila 17 69.7995 35.00915026 69.06174 27.6350553 42.1817102 11.8033682

Burgos 18 167.2275 83.19120112 170.277277 346.51426 284.718821 81.3336798

León 19 198.7539 95.00468052 203.03844 451.435668 364.352052 93.6024425

Palencia 20 68.6278 34.84790983 69.9191098 144.582231 118.403214 26.616826

Salamanca 21 132.0427 61.35800838 136.545501 400.802011 308.213706 76.0058053

Segovia 22 67.5408 35.04554102 68.7343591 137.668048 113.496593 26.4047709

Soria 23 42.6622 23.16186945 44.0049447 122.606577 95.0632881 26.700042

Valladolid 24 248.0758 119.5018657 240.191178 193.05366 40.7540921 10.6846656

Zamora 25 71.4929 37.36774323 71.4554855 69.3332576 70.0780814 18.005544

Albacete 26 168.9492 90.07430365 168.24946 128.702425 142.58451 40.2182316

Ciudad Real 27 204.7915 93.76934453 196.108801 275.758391 109.786628 31.2752332

Cuenca 28 79.2367 36.60047166 79.775562 110.56494 99.7629521 22.4853302

Guadalajara 29 99.7914 51.40201792 97.0048042 56.7235592 2.69417559 0.67274635

Toledo 30 282.2868 138.1597124 292.84498 914.452377 696.691731 186.051911

Barcelona 31 2580.3633 1337.240501 2525.45449 524.410624 547.119892 125.128865

Girona 32 360.8789 188.2189212 365.921821 656.116121 554.341767 135.192101

Lleida 33 201.6594 104.62415 202.828276 269.548637 246.139641 67.9742358

Tarragona 34 365.8116 195.3803784 356.89801 136.638403 36.7873246 7.89431022

Alicante 35 787.27 407.5473804 742.101582 1674.21827 823.609905 199.600431

Castellón 36 269.8087 143.3962749 269.386528 245.465005 253.861018 53.5421812

Valencia 37 1156.5687 541.5249945 1125.67556 580.73602 18.9609822 4.169931

Badajoz 38 256.3402 128.0359492 260.503618 500.622827 416.419673 111.63435

Cáceres 39 156.3133 77.50924463 158.41086 279.048651 236.738494 67.2683041

Coru~na (A) 40 499.6348 228.6340088 521.984262 1847.09351 1383.04096 348.425098

Lugo 41 136.9351 69.39879925 139.0752 262.427948 219.170266 56.7076858

Ourense 42 133.5857 63.06257509 131.313286 4.54343971 49.0724689 13.3622898

Pontevedra 43 426.075 228.9736919 430.35776 675.855344 589.740056 139.675636

Madrid 44 3036.5721 1453.669347 2955.58252 1518.13496 54.0937837 11.3952698

Murcia 45 639.0084 328.4337021 638.679054 619.997692 626.554158 165.688781

Navarra 46 289.9437 146.6524474 289.574321 268.638098 275.986218 75.173583

Álava 47 153.1765 72.85585736 153.1765 153.1765 153.1765 39.2912921

Guipúzcoa 48 330.434 146.2588523 327.657571 171.414058 226.271658 52.6028063

Vizcaya 49 510.8332 254.6172956 525.617631 1388.94459 1086.38451 296.123695

Rioja (La) 50 146.4271 69.3023311 139.174355 252.044757 114.385641 32.2283142

Ceuta 51 22.8769 11.81001126 23.1358138 37.995947 32.7836555 8.29980726

Melilla 52 21.8273 11.20654945 22.3439845 52.3608934 41.8385726 10.5318538



Introductory course in MATLAB Page 43

Daily returns in percentages

Date Nasdaq 100 S&P 500 FTSE IBEX 35

02/07/2007 0.565405709 0.213522245 1.078999626 0.435793586

03/07/2007 0.803803368 0.148171917 -0.678011393 0.362421369

05/07/2007 0.36529767 0.469090714 0.97672173 1.007847277

06/07/2007 0.044751617 -0.008502726 0.387202016 -0.508126907

09/07/2007 -0.874007417 -1.519625119 -0.696372933 -0.911838568

10/07/2007 0.616285694 0.484825138 -0.457148446 -0.389935406

11/07/2007 1.845195182 1.648329932 1.906960943 1.2065808

12/07/2007 0.549198433 0.298224576 0.448532736 0.545079571

13/07/2007 -0.203931916 -0.413371554 0.110794242 0.577134035

16/07/2007 0.676202881 -0.018239882 -0.798818379 0.290023526

17/07/2007 -0.186285522 -0.20948219 -1.606535568 -0.630635537

18/07/2007 0.733814589 0.564299426 1.310508937 0.982774135

19/07/2007 -0.836910925 -1.391209152 -1.335718492 -1.839836455

20/07/2007 0.022101021 0.206847858 0.791063894 0.844517682

23/07/2007 -1.772702531 -2.108553109 -1.632920941 -0.957182339

24/07/2007 0.527958272 0.104138953 -2.325760998 0.163259144

25/07/2007 -1.227709067 -2.510894093 -2.4700203 -2.695332237

26/07/2007 -1.542593089 -1.651890391 -1.030050108 0.323382829

27/07/2007 0.902777548 1.146225849 0.340799863 -0.547510203

30/07/2007 -2.143968818 -1.209118429 1.787980196 2.009923603

31/07/2007 0.671631612 0.487708309 -1.537605621 -1.19946408

01/08/2007 1.100305603 0.518203421 0.74738431 0.566221085

02/08/2007 -2.473125871 -2.963263435 -0.604594075 -0.987272522

03/08/2007 1.849298622 2.121994394 0.242721268 -0.705861295

06/08/2007 0.37129672 0.479997438 0.592078544 1.51832957

07/08/2007 1.301620309 1.205104422 1.598946191 2.369223789

08/08/2007 -2.578058736 -2.857509344 -2.775443431 -1.111726144

09/08/2007 -0.601778144 0.264065253 -1.780864345 -2.625300125

10/08/2007 0.480367806 0.163009645 1.296471579 1.904950734

13/08/2007 -1.725398863 -2.148451584 -0.903266913 -1.220869677

14/08/2007 -1.933022506 -1.701793017 -0.541341024 -0.223901335

15/08/2007 -1.014826778 0.24482203 -3.070894112 -3.795604863

16/08/2007 2.286122904 2.31014938 2.205048173 1.827362545

17/08/2007 0.225816698 0.159609032 0.174688593 0.221741799

20/08/2007 0.94321474 0.314911866 0.405661474 -0.205414008

21/08/2007 1.340020467 1.325069093 1.342698486 0.834890778

22/08/2007 -0.252801499 -0.309945789 0.63213753 -0.466240162

23/08/2007 1.515468507 1.140389566 0.436335036 0.293243756

24/08/2007 -0.710694316 -1.108675717 -0.24142722 -0.201842096

27/08/2007 -2.508755781 -2.471118025 -0.818018854 -1.271272862

28/08/2007 2.8859658 2.272446475 0.146566426 0.415957912

29/08/2007 0.454244644 -0.44701085 1.04675445 0.910642658

30/08/2007 1.264033346 1.180409769 1.542185377 1.156168019


	First steps in MATLAB
	The MATLAB environment
	Basic syntax: vectors and matrices
	Algebraical and logical operations
	Condition constructs: the if and elseif statements
	Loop constructs: the for and while statements
	Loading and saving data
	Introduction to Graphics: The Plot command

	Using the Statistics and Optimization Toolboxes
	The Statistics toolbox. (Applications)
	Probability density function (PDF), Cumulative distribution function (CDF), Inverse CDF (ICDF) and random number generators.
	Descriptive Statistics
	Statistical plots
	Linear regression analysis

	The Optimization toolbox. (Applications)
	Minimizing unconstrained nonlinear functions
	Minimizing constrained nonlinear functions.


	Programming in MATLAB
	M-files (Scripts)
	Functions
	Exercises and applications


