Curves Seminar - Fall 2005 Antonio Laface Lecture 3

1. Two equivalent conjectures

We start this section by recalling the classical Gimigliano-Harbourne-Hirschowitz conjecture:

Conjecture. A non-empty linear system \mathcal{L} is special if and only if there exists a (-1)-curve E such that $\mathcal{L}E \leq -2$.

We recall that a linear system $\mathcal{L}_2(d; m_1, \ldots, m_r)$ is in standard form if $m_1 \ge \ldots \ge m_r \ge 0$ and $d \ge m_1 + m_2 + m_3$.

Conjecture 1.1. A linear system \mathcal{L} in standard form is non-special.

It is easy to see that if Conjecture 1.1 is true than there exists an algorithm for deciding if a linear system is special or not. Moreover one has the following.

Theorem 1.2. Conjecture 1.1 is equivalent to the G.H.H. conjecture.

Proof. Suppose that \mathcal{L} is in standard form then, by Proposition 3.4 of Lecture 2, one has that $\mathcal{L}E \geq 0$ for any (-1)-curve E, hence by G.H.H. it is non-special.

Suppose now that \mathcal{L} is a linear system such that $\mathcal{L}E \geq -1$ for each (-1)-curve E. Observe that if $\mathcal{L}E = -1$ then

$$v(\mathcal{L}) = v(\mathcal{L} - E) + v(E) + (\mathcal{L} - E)E$$

= $v(\mathcal{L} - E),$

so that $\mathcal{L} - E$ is a new system with the same virtual and effective dimension of \mathcal{L} . After removing from \mathcal{L} all the (-1)-curves E such that $\mathcal{L}E = -1$ we obtain a new system \mathcal{L}' which has nonnegative intersection with any (-1)-curve and has the same virtual and effective dimension of \mathcal{L} . If \mathcal{L}' is not in standard form, then by applying a quadratic transformation σ based on the three points of biggest multiplicities we can decrease its degree. Observe that $\sigma^*(\mathcal{L}')$ can not have negative multiplicities, since this would imply that \mathcal{L}' intersects negatively a line through two points (which is a (-1)-curve). Proceeding in this way, after a finite number of steps, \mathcal{L}' transforms into a linear system \mathcal{L}'' which is in standard form. Since $v(\mathcal{L}) = v(\mathcal{L}'')$ then \mathcal{L} is non-special.

2. Some results on the structure of special linear systems

In this section we recall some evidences for the G.H.H. conjecture.

The first idea is due to Harbourne.

Theorem 2.1. The G.H.H. conjecture is true for linear systems of the form $\mathcal{L}_2(d; m_1, \ldots, m_r)$ with $r \leq 9$.

Instead of giving an idea of the proof of this theorem, which would go beyond the possibilities of these lectures, we will show another interesting fact about the case r = 8.

Proposition 2.2. The set of (-1)-curves of type $\mathcal{L}_2(\delta; \mu_1, \ldots, \mu_8)$ is in correspondence with a finite root system of type E_8 .

The anticanonical class $-K = \mathcal{L}_2(3; 1^8)$ has self-intersection $K^2 = 1$. To each (-1)-curve E associate the class $v_E := K + E$, then $v_E K = 0$ and $v_E^2 = -2$. Since the intersection form has signature (1,8), then the form is negative-definite on the orthogonal of a vector of positive length. This implies that

$$\#\{v \in K^{\perp} \cap \mathbb{Z}^9 \mid v^2 = -2\} < \infty.$$

The preceding is a structure of root system and moreover by considering the following elements

$$E_0 - E_1 - E_2 - E_3$$
, and $E_i - E_{i+1}$ for $1 \le i \le 7$

one can see that it corresponds to E_8 . The important fact is that the set Ω is in one-to-one correspondence with that of (-1)-curves. In fact given $v \in \Omega$ the class E := v - K satisfies $E^2 = EK = -1$. Such a class corresponds to an effective curve, since

$$v(E) = \frac{E^2 - EK}{2} = 0.$$

Moreover if $E = E_1 + E_2$ is sum of two curves, then $1 = (E_1 + E_2)(-K)$ which means that at least one of the two curves must satisfy $E_i(-K) = 0$ which is not possible.

This second result is due to F. Cioffi, C. Ciliberto, R. Miranda and F. Orecchia.

Theorem 2.3. The G.H.H. conjecture is true for linear systems of the form $\mathcal{L}_2(d; m^r)$ with $m \leq 20$.

This result is due to S. Yang

Theorem 2.4. Suppose that the G.H.H. conjecture is true for linear systems of the form $\mathcal{L}_2(d; m_1, \ldots, m_r)$ with $m_i \leq M$ and $d \leq f(M)$, then it is true for $m_i \leq M$ and all d.

She gives an explicit expression for f(M) and by means of this she is able to prove the following

Theorem 2.5. The G.H.H. conjecture is true for linear systems of the form $\mathcal{L}_2(d; m_1, \ldots, m_r)$ with $m_i \leq 7$.