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1. Cremona transformations of P2

In this part we will consider rational transformations of P2. A rational map φ : P2 99K P2 is

defined by means of three homogeneous polynomials of degree d, Pi(x0, x1, x2) for i = 0, . . . , 2 in

the following way:

φ([x0 : x1 : x2]) := [P0(x0, x1, x2) : P1(x0, x1, x2) : P2(x0, x1, x2)].

Observe that φ is well defined outside the set {x ∈ P2 | P0(x) = P1(x) = P2(x) = 0}. This set is

called the indeterminacy locus of φ. Any rational map which can be inverted is called birational.

Remark 1.1. If the indeterminacy locus of φ has dimension 1, i.e. it contains a curve, then the

three polynomials Pi’s contain a common factor. In this case we will substitute each Pi(x) with

Pi(x)′ := Pi(x)/Q(x) where Q(x) = gcd (P1(x), P2(x), P3(x)). The map φ′ associated to the P ′
i ’s

will have an indeterminacy locus of dimension at most zero.

Consider the rational map

(1) σ([x0 : x1 : x2]) := [x1x2 : x0x2 : x0x1].

Since σ2 = 1P2 it follows that σ is birational.

Remark 1.2. The indeterminacy locus of σ is given by the three points

p0 = [1 : 0 : 0], p1 = [0 : 1 : 0], p2 = [0 : 0 : 1].

Moreover, the three lines given of equation xi = 0, for i = 0, . . . , 2, are contracted to three points.

Observe that the polynomials defining σ can be considered as a base of the polynomials of the

degree 2 piece of the homogeneous ideal Ip0 ∩ Ip1 ∩ Ip2 . This means that σ is the transformation

associated to the linear system L2(2; 13) through the pi’s.

A quadratic transformation is a rational transformation associated to a linear system L2(2; 13)

through three non-collinear points. Such a transformation is said to be centered at the pi’s which

are the indeterminacy locus of the transformation.

The following theorem will clarify why these maps are so important:

Theorem 1.3. (Noether) Any birational map φ of P2 can be written as

φ = g ◦ σn ◦ · · · ◦ σ1

where the σi’s are quadratic transformations centered at different points and g ∈ PGL(3, C).
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2. The action of σ on linear systems

Let L = L2(d; m1, . . . ,mr) be a linear system through fat points. We want to study the action of

a quadratic transformation on L.

Proposition 2.1. Let L = L2(d; m1, . . . ,mr) be a linear system through multiple points in general

position and let σ : P2 99K P2 be a quadratic transformation centered at the first three multiple

points of the system, then

σ∗L = L2(d + k; m1 + k, . . . , m3 + k,m4, . . . ,mr),

where k = d−m1 −m2 −m3.

Proof. By a linear change of coordinates, we can suppose that the first 3 multiple points are

[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1] so that σ is expressed by (1). In order to simplify the further

notation we redefine these three multiplicities as m0, m1, m2. For each polynomial f defining a

curve of the system L one has that

f(x0, x1, x2) =
∑

a0+a1+a2=d

xa0
0 xa1

1 xa2
2 .

Moreover, in order to have multiplicities m0, m1, m2 at the three fundamental points, each mono-

mial xa0
0 xa1

1 xa2
2 of f has to satisfy the following:

a0 + a1 ≥ m2, a0 + a2 ≥ m1, a1 + a2 ≥ m0,

or equivalently

a0 ≤ d−m0, a1 ≤ d−m1, a2 ≤ d−m2.

Observe that the set T ⊂ N3 of points (a0, a1, a2) satisfying these inequalities is contained in a

triangle.

The action of σ on each monomial is described by

σ∗(
2∏

i=0

xi
ai) =

2∏
i=0

xi
d−ai = (xm0

0 xm1
1 xm2

2 )
2∏

i=0

xi
d−ai−mi .

This may be summarized by saying that σ∗ induces the map

f(a0, a1, a2) = (d− a0 −m0, d− a1 −m1, d− a2 −m2)

from N3 to N3. This map is a bijection and its image can be described as the set of (a′0, a
′
1, a

′
2) ∈ N3

such that a′0 + a′1 + a′2 = d′ and

a′0 ≤ d′ −m′
0, a′1 ≤ d′ −m′

1, a′2 ≤ d′ −m′
2.

where d′ = d + k and m′
i = mi + k. �

Remark 2.2. Observe that if we apply a quadratic transformation to the first three points of

L2(d; m1, . . . ,mr) and some of the numbers d − mi − mj (1 ≤ i < j ≤ 3) are negative then we

obtain a negative multiplicity in the transformed system. In this case the line 〈pi, pj〉 is a fixed

line of the linear system and it is contained aij = mi+mj−d times in the base locus of L. Observe



3

that the image of the multiple line L2(a; a2) under a quadratic transformation based at the two

points is L2(0;−a).

The preceding remark suggests to change the notation adopted for defining linear systems by al-

lowing also negative multiplicities. Each of these negative multiplicity will represent the quadratic

transform of a fixed line contained into the system.

The following shows that quadratic transformations behave well with respect to the virtual and

effective dimension of linear systems.

Proposition 2.3. Given a linear system L = L2(d; m1, . . . ,mr) and a quadratic transformation

σ we have (σ∗L)2 = L2, moreover

dim σ∗L = dimL and v(σ∗L) = v(L).

Proof. For proving the first part, it is enough to consider a quadratic transformation σ centered

at the first three points of L. In this case one has

(σ∗L)2 − L2 = (d + k)2 −
3∑

i=1

(mi + k)2 − (d2 −
3∑

i=1

m2
i )

= 2dk + k2 − 2k
3∑

i=1

mi − 3k2

= 2k(d−
3∑

i=1

mi − k)

= 0.

Observe that dimL is preserved by any birational transformation φ, since the curves of L are in

one to one correspondence with those in φ∗(L).

For the virtual dimension, since v(L) = (L2 −KL)/2, it is enough to prove that σ∗(−K) = −K,

but this is an easy consequence of Proposition 2.1. �

The preceding proposition implies that σ∗ is an isometry of the quadratic form associated to the

intersection form.

Remark 2.4. Observe that −K and its multiples are the only linear systems for which σ∗(L) = L
for any σ based at any three points of the system.

Example 2.5. In the preceding lecture we found two special linear systems through double points:

L2(2; 2
2) and L2(4; 25). By applying a quadratic transformation to the last system based at any

three double points, one obtains the first system.

Example 2.6. The system L2(12; 56) has virtual dimension 0 and k = 12 − 15 = −3. Hence,

by applying a quadratic transformation to any three points one obtains the system L2(9; 5
3, 23).

Observe that this new system has negative intersection with the three lines through the three

points of multiplicity 5, so these lines are contained in the base locus of the system. Performing
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a quadratic transformation based on the three points of multiplicity 5 one obtains the system

L2(3; 2
3,−13). By applying another quadratic transformation to the double points the system

transforms into L2(0;−16). This means that the original system is made by six fixed components

which are transformations of a line through two points (so that they are (−1)-curves) and that

each component has intersection −1 with the system. Actually these components are the six

conics through 5 of the six multiple points.

Looking at the preceding example one can see that any two fixed conics of the system have

intersection 0 since they share only 4 points. It turns out that this is always the case for any two

(−1)-curves contained in the base locus of a linear system.

Proposition 2.7. Let C1, C2 be two distinct (−1)-curves contained in the base locus of a linear

system L, then C1C2 = 0.

Proof. Observe that the linear system |C1 + C2| has dimension 0 since it is contained in the fixed

part of L and this implies that v(C1 + C2) ≤ 0. By means of the formula

v(C1 + C2) = v(C1) + v(C2) + C1C2,

one obtains that C1C2 ≤ 0, since by definition of (−1)-curve one has that v(Ci) = 0 for i = 1, 2.

On the other hand, since C1 and C2 are irreducible and distinct then, by Bezout theorem, they

must intersect in finitely many points and this implies that C1C2 ≥ 0. �

Example 2.8. Consider the system L2(9; 5, 4, 35) which has virtual dimension −1. After applying

a quadratic transformation based on the first three points one obtains the system L2(6; 0, 1, 2, 3
4)

which can be written as L2(6; 34, 2, 1) after sorting the multiplicities of the points. This last system

can be still transformed into L2(3; 3, 2, 1). By applying one more quadratic transformation one

obtains L2(0;−1,−2). In this way we can see that our original system was composed of two

(−1)-curves, one contained 1-time in the system and the other contained 2-times.

In order to recognize these curves in the starting system one has to make all the quadratic

transformations in the reverse order:

L2(0; -1 , -2 , 0, 0, 0, 0, 0 )

L2(3; 2, 1, 0, 0 , 0 , 0 , 3)

L2(6; 2 , 1 , 0 , 3, 3, 3, 3)
L2(9; 5, 4, 3, 3, 3, 3, 3)

which gives:

L2(0; -1 , 0 , 0, 0, 0, 0, 0 ) + 2L2(0; 0 , -1 , 0, 0, 0, 0, 0 )

L2(1; 0, 1, 0, 0 , 0 , 0 , 1) + 2L2(1; 1, 0, 0, 0 , 0 , 0 , 1)

L2(2; 0 , 1 , 0 , 1, 1, 1, 1) + 2L2(2; 1 , 0 , 0 , 1, 1, 1, 1)
L2(3; 1, 2, 1, 1, 1, 1, 1) + 2L2(3; 2, 1, 1, 1, 1, 1, 1)
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3. (−1)-curves

The aim of this section is to prove that all the (−1)-curves are in the same orbit with respect to

the action of the group generated by quadratic transformations.

Proposition 3.1. For any (−1)-curve E either E ∈ L2(1; 1
2) or there exists a quadratic trans-

formation σ such that deg σ∗(E) < deg E.

Proof. Let E ∈ L2(δ; µ1, . . . , µr) and assume that the multiplicities have been sorted in decreasing

order, i.e. µ1 ≥ · · · ≥ µr. From the equations

δ2 −
r∑

i=1

µ2
i = −1(2)

3δ −
r∑

i=1

µi = 1,(3)

one can deduce that

δ2 − 3µ3δ −
3∑

i=1

(µ2
i − µ3µi) =

r∑
4

(µ2
i − µ3µi)− 1− µ3 < 0,

which means that

δ(δ − 3µ3)−
3∑

i=1

(µ2
i − µ3µi) < 0.

We want to prove that the preceding inequality implies that δ < µ1 + µ2 + µ3. Assume the

contrary, then δ ≥ µ1 + µ2 + µ3 and in particular δ ≥ 3µ3. Since E is effective then δ ≥ µ1 so, by

substituting this value for δ in the preceding equation, one obtains:

µ1(δ − 3µ3)−
3∑

i=1

(µ2
i − µ3µi) < 0

and by substituting µ1 + µ2 + µ3 to δ one has

µ1(µ1 + µ2 + µ3 − 3µ3)− µ2
1 − µ2

2 + µ3µ1 + µ3µ2

= µ1µ2 − µ1µ3 − µ2
2 + µ2µ3

= (µ1 − µ2)(µ2 − µ3) < 0

which is a contradiction. �

The preceding proposition implies that a quadratic transformation σ can be applied to E in order

to decrease its degree. Since σ∗E is still a (−1)-curve, reasoning as before, one can decrease its

degree another time. The procedure goes on until the third biggest multiplicity is positive and

it stops as soon as the last µ′
3 is 0. Hence we are left with a (−1)-curve through two multiple

points. In this case the equality 3δ′ − µ′
1 − µ′

2 = 1 implies that δ′ ≤ µ′
1 + µ′

2 − 1 and this means

that the line through the two multiple points is a component of the system. From the fact that

E is irreducible and reduced we deduce that this last system has to be L2(1; 1
2).
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Corollary 3.2. Given any (−1)-curve E there exists a sequence of quadratic transformations

σ1, . . . , σn such that the sequence of (−1)-curves defined by: E0 = E and Ei = σ∗
i (Ei−1) for

i = 1, . . . , n has the following properties: deg Ei < deg Ei−1 and En ∈ L2(1; 1
2).

Before going on we need the following definition:

Definition 3.3. A linear system L2(d; m1, . . . ,mr) is in standard form if m1 ≥ · · · ≥ mr ≥ 0 and

d ≥ m1 + m2 + m3.

The fact that the action of the group generated by quadratic transformations is transitive on the

set of (−1)-curves has an important consequence on the study of linear systems.

Proposition 3.4. Let L = L2(d; m1, . . . ,mr) be a linear system in standard form, then LE ≥ 0

for any (−1)-curve E.

Proof. It is enough to prove that if E is a (−1)-curve and σ is a quadratic transformation such

that deg σ∗(E) < deg E then Lσ∗(E) ≤ LE. In fact, by using the sequence constructed in

Corollary 3.2, one would obtain that

LEn ≤ · · · ≤ LE0 = LE,

where En ∈ L2(1; 12). Since the system is in standard form then LEn = d−m1 −m2 ≥ 0.

The required inequality can be proved by a direct calculation:

LE − Lσ∗(E) = dδ −
3∑

i=1

miµi − (d(δ + k)−
3∑

i=1

mi(µi + k))

= −k(d−
3∑

i=1

mi)

is ≥ 0 since k = δ − µ1 − µ2 − µ3 < 0 and L is in standard form. �

4. An effective conjecture

In this section we state a conjecture about special linear systems on the blowing-up of P2 at

general points. This conjecture allows one to easily decide if a linear system is special. We will

prove that this conjecture is equivalent to the Gimigliano-Harbourne-Hirschowitz one.

Conjecture 4.1. A linear system L2(d; m1, . . . ,mr) in standard form is non-special.

It is easy to see that if Conjecture 4.1 is true than there exists an algorithm for deciding if a linear

system is special or not. Moreover one has the following.

Theorem 4.2. Conjecture 4.1 is equivalent to the G.H.H. conjecture.

Proof. Suppose that L = L2(d; m1, . . . ,mr) is in standard form, then by 3.4 it can not have

negative intersection with any (−1)-curve, hence by G.H.H. it is non-special.

On the other hand if a linear system L is special then by Conjecture 4.1 it can not be in standard
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form. This implies that, after sorting the multiplicities in decreasing order, it is possible to

apply a quadratic transformation to the first three points of L which decrease its degree. After

a finite number of these steps one obtains a new linear system of the form L2(d
′; m′

1, . . . ,m
′
r)

which may contain negative multiplicities and to which is no longer possible to apply a quadratic

transformation in order to decrease its degree. If max(m′
1, . . . ,m

′
r) ≥ −1 then each (−1)-curve

has intersection at most −1 with L and after removing these curves from L, the residual linear

system has the same virtual dimension of L. Moreover this system is in standard form and it can

not be special, which gives a contradiction. So for at least one i, m′
i ≤ −2 and this means that

the corresponding (−1)-curve Ei gives LEi ≤ −2. �


