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Lecture 1

1. Linear systems through multiple points in P2

In what follows the ground field is assumed to be C.

Consider a set of points p1, . . . , pr ∈ P2 and for each of these points fix a non negative integer mi.

The main problem we are interested in is the following:

Determine the dimension of the vector space of polynomials of degree d which have

multiplicity mi at each pi.

This is equivalent to evaluate

dimC〈f ∈ Im1
p1
∩ . . . ∩ Imr

pr
| deg(f) = d〉

where Imi
pi

is the mi power of the maximal homogeneous ideal defining pi.

We will denote with L2(d; m1, . . . ,mr) the projective space of such polynomials. The reason for this

notations is that we are mainly interested in plane curves and two polynomials f and af define the

same algebraic curve provided that a ∈ C∗.

Remark 1.1. In case two or more multiplicities will be equal we will denote by the symbol mai
i a

set of ai points of multiplicity mi. In this way a conic through 5 simple points will be denoted by

L2(2; 1
5).

Let p = [0 : 0 : 1] then, in the affine chart (x, y), one has Im
p = 〈xm, xm−1y, . . . , ym〉. For any

f ∈ C[x, y] write f =
∑

fi where fi is homogeneous of degree i, then f ∈ Im
p if and only if

f0 = . . . = fm−1 = 0. These equations are equivalent to a set of
(

m+1
2

)
= m(m + 1)/2 linear

equations in the coefficients of f .

In this way, for any linear system L2(d; m1, . . . ,mr) we can try to evaluate its dimension by means

of the following formula:

(1) v(L) =

(
d + 2

2

)
−

r∑
i=1

(
mi + 1

2

)
− 1.

This formula gives the actual dimension of L only if the linear equations on the coefficients of the

general f are independent. It turns out that in general this fact is not true (see the examples with

2 or 5 points in Geramita’s Lecture 5) . For this reason v(L) will be called the virtual dimension of

L.

From the preceding definition, it is evident that

v(L) ≤ dimL.

If the inequality is strict and L is not empty then it is called a special linear system.

Example 1.2. Let L2(2; 22) be the linear system of conics through two double points. By means

of a linear change of coordinate we may assume that the two points are [1 : 0 : 0] and [0 : 1 : 0].
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In the vector space of conics 〈x2
0, x0x1, x0x2, x

2
1, x1x2, x

2
2〉 those with a double point in [1 : 0 : 0] are

〈x2
1, x1x2, x

2
2〉, while those with a double point in [0 : 1 : 0] are 〈x2

0, x0x2, x
2
2〉. Therefore the space

of conics with the two double points is 〈x2
2〉, i.e. it is given by the “double line” through the two

points. By means of formula (1) we obtain v(L) = −1 even if L is not empty.

Exercise 1.3. Find a relationship between the preceding example and the following graph:

d dt
d d
d
@

@
@

@
@

@
@

@

Then generalize the preceding example to the case of L2(d; m1, m2, m3).

Remark 1.4. Observe that if d ≥
∑

mi − 1 then v(L) = dimL as can be proved by putting all the

points on a line.

In general dimL2(d; m1, . . . ,mr) depends on the position of the points. We define a set of r points

to be in general position with respect to L if dimL2(d; m1, . . . ,mr) is maximal with respect to all

the possible choices of r points in P2.

Example 1.5. Let p1, p2, p3 be three points laying on a line, then they are in general position with

respect to L2(2; 1
3) but they are not in general position with respect to L2(1; 1

3).

The preceding example suggests the following:

Definition 1.6. A set of points p1, . . . , pr is in general position if it in general position with respect

to any L.

The following facts are enunciated without a proof:

1. For any r there exist p1, . . . , pr ⊂ P2 points in general position.

2. If r ≤ 8 then a set of r points is in general position if no three of them lie on a line and no six

of them lie on a conic.

3. For any m there are infinitely many distinct configurations of 9 points such that

dimL2(3t; t
9) =

 0 if t < m
1 if t = m
≥ 1 if t > m

even if v(L2(3t; t
9)) = 0 for any t ∈ N.

It is not difficult to show that there are infinitely many special linear systems even if the points are

in general position.

Example 1.7. Consider the linear system L := L2(2t; 2t− 2, 22t), its virtual dimension is given by

(2t + 1)(2t + 2)/2− (2t− 2)(2t− 1)/2− 6t− 1 = −1. The linear system M := L2(t; t− 1, 12t) has
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virtual dimension v(M) = (t + 1)(t + 2)/2− (t− 1)t/2− 2t− 1 = 0 and so it is not empty. Observe

that if C ∈M then 2C ∈ L and this means that L is not empty and thus it is special.

2. Numerical invariants of linear systems

Let D, D′ be two plane algebraic curves and let p ∈ D ∩D′. It is possible to define an intersection

index ip(D ∩D′) in the following way:

If D and D′ intersect transversely at p, then ip(D ∩D′) = 1. Moreover if Dλ (λ ∈ C) is a family of

plane curves such that deg Dλ = deg D and D0 = D, then for |λ|, ε � 1

ip(D ∩D′) =
∑

q∈B(p,ε)

iq(Dλ ∩D′)

where B(p, ε) is the two dimensional complex ball of center p and radius ε. It is possible to prove

that, by means of the preceding definition, the intersection index of two algebraic curves at a point

is well defined and the following holds:

Theorem 2.1 (Bezout). Let D, D′ be two algebraic plane curves of degree d and d′ respectively

without common components, then ∑
p∈D∩D′

ip(D ∩D′) = dd′

Let L := L2(d; m1, . . . ,mr) respectively L′ := L2(d
′; m′

1, . . . ,m
′
r), then the preceding theorem is the

key for defining the following intersection product between linear systems:

LL′ = dd′ −
r∑

i=1

mim
′
i.

In fact it is easy to see that if D and D′ are two curves with multiplicity m respectively m′ at a point

p, then ip(D ∩ D′) ≥ mm′. This implies that if D ∈ L and D′ ∈ L′, then the preceding product

gives a measure of how many intersections D and D′ have outside the multiple points m1, . . . mr.

Proposition 2.2. If LL′ < 0 then the two systems have a common component.

Proof. Let D and D′ be defined as before, then

dd′ =
∑

p∈D∩D′

ip(D ∩D′) ≥
r∑

i=1

ipi
(D ∩D′) =

r∑
i=1

mim
′
i

unless the two curves have a common component. �

Corollary 2.3. If the general element D ∈ L is irreducible and LL′ < 0 then dimL = 0 and D is

a fixed component of L′.

Observe that 2v(L) − L2 = L2(3; 1r)L by formula 1 and this suggest to give a special name to

the linear system L2(3; 1r). This system is classically denoted by −K and it takes the name of

“anticanonical system”. By means of this definition, the formula for the virtual dimension is given

by:

(2) v(L) =
L2 − LK

2
.
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This formula together with the intersection form are the basic tools needed to describe the main

conjecture about the structure of special linear systems. But first of all one needs to introduce a

particular class of linear systems.

3. (−1)-curves

The preceding formula for the virtual dimension of a linear system L allows one to construct some

special linear systems.

Example 3.1. The system L = L2(2t; 2t − 2, 22t) of example 1.7 is not empty and special. We

already observed that L ⊇ 2M where M = L2(t; t − 1, 12t), here we want to prove that L = 2M.

First of all observe that since the general curve of L2(t; t − 1) is irreducible and reduced and the

points are in general position then M is irreducible and reduced.

The self intersection M2 = −1 and Corollary 2.3 imply that dimM = 0. Let E ∈ M. From the

irreducibility of E and the fact that EL = −2 we deduce that E is a fixed component of L, but

removing this component from L one obtains M as a residual system and this means that L = 2M.

The key point in the preceding example is that E ∈ M is irreducible and reduced with E2 = −1

and v(E) = 0. In this case, the linear system containing the curve 2E and denoted by |2E|, is

always special. The formula for the virtual dimension gives:

v(2E) = 2v(E) + E2

which means that v(2E) = −1 but |2E| is not empty.

Definition 3.2. An irreducible and reduced curve E which satisfies the equations E2 = −1 and

v(E) = 0 is called a (−1)-curve.

Remark 3.3. As observed in the preceding example (−1)-curves are related to the construction of

some special linear systems. One important fact to observe here is that the numerical conditions

E2 = −1 and v(E) = 0 are not enough to define a (−1)-curve. For example consider the system

L = L2(5; 3
2, 18) which is not empty since its virtual dimension is 0. Let C ∈ L be a curve of

the system, then v(C) = 0 and C2 = −1 but it is easy to see that C is reducible since CR = −1,

where R is a line through the two triple points. By corollary 2.3 we can conclude that R is a fixed

component of L. The difference L − R is the system L2(4; 2
2, 18) which represents a quartic curve

with two double points. We will prove later that this system is irreducible of dimension 0, so it

contains only one curve B. Observe that RB = 0 so that C is not only reducible but also not

connected.

Remark 3.4. The intersection form can be naturally extended to intersect the points pi. In fact to

any pi one can associate the “system” L2(0; 0, . . . ,−1, . . . , 0), with the −1 at the i-th position. This

implies that p2
i = −1 and piK = −1 so that the point pi has the same numerical properties of a

(−1)-curve. Moreover this extension of the intersection form immediately shows that its signature

is (1, r).
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Remark 3.5. A classical way to construct a (−1)-curve is to consider the closure of the graph of the

function f : C2 \ {(0, 0)} → P1 defined by f(x, y) = [x : y]. The closed graph of f is defined by

Γf := {(x, y)× [t0 : t1] ∈ C2 × P1 | xt1 = yt0} and the map

π : Γf → C2

given by π(x, y, [t0 : t1]) = (x, y) is called the blowing-up map of C2 along (0, 0). The curve

E := π−1(0, 0) is a smooth rational curve which takes the name of (−1)-curve.

4. Two conjectures

We are now ready to formulate one of the main conjecture about the structure of special linear

systems of P2.

Conjecture (Segre). A special linear system L through multiple points in general position has a

multiple fixed component.

This means that for any two curves C, C ′ ∈ L the intersection C∩C ′ ⊇ mE where E is an irreducible

and reduced curve and m ≥ 2. In other word, if PC(x0, x1, x2) is a defining polynomial for C, then

PC(x0, x1, x2) = PE(x0, x1, x2)
mPC−mE(x0, x1, x2),

where PE(x0, x1, x2)
m is a common factor of all the polynomials associated to the curves in L. The

equation PE(x0, x1, x2) = 0 defines a curve E which is reduced.

It is possible to characterize E by means of the intersection form already introduced. First of all

we rewrite the preceding equality with the following notation:

L = mE + (L −mE)

and observe that dim(L) = dim(L − mE) since the correspondence between the curves in L and

L −mE is a bijection.

Consider now the following formula obtained by 2

v(L − E) = v(L) + v(E)− EL.

Since E is a linear system without multiple components, then the Segre conjecture says that |E|
is non-special. But E is in the fixed locus of L, hence dim |E| = 0 and so v(E) = 0. What we

want to prove is that the preceding formula implies that EL < 0. Suppose the contrary, then

v(L − E) ≤ v(L) and in the same way one has that v(L −mE) ≤ v(L − (m− 1)E) ≤ . . . ≤ v(L).

But by hypothesis L is special, hence

v(L −mE) ≤ v(L) < dimL = dim(L −mE).

So that also v(L −mE) is a special system which does not contain multiple components and this

cannot happen if we assume that Segre conjecture is true.
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The curve E is reduced but not necessarily irreducible, hence we can write E =
∑

Ei where the Ei

are irreducible curves and consider the inequality

E(mE +M) < 0,

where M = L −mE. Since M does not contain fixed components then EiM≥ 0 by corollary 2.3

and this means that E2 < 0. By the same corollary we have that EiEj ≥ 0 so that

E2
i < 0

for at least one Ei. Since Ei is irreducible and reduced then, by assuming Segre conjecture to be

true, the system |Ei| is non-special of dimension 0 (by corollary 2.3). Then v(Ei) = 0 and Ei is a

(−1)-curve.

The preceding considerations show that Segre conjecture implies that a special linear system L
contains always a multiple of a (−1)-curve as a fixed component.

Exercise 4.1. Prove that Segre conjecture implies actually that if L is special then there exists a

(−1)-curve Ej such that EjL ≤ −2.

We are now ready to state the following:

Conjecture (Harbourne-Hirschowitz). A linear system L of P2 is special if and only if there exists

a (−1)-curve E such that EL ≤ −2.


