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INTRODUCTION

The aim of these notes is to introduce the subject of tropical geometry and subsequently
describe the correspondence between algebraic varieties and tropical varieties.

In section 1 we recall the correspondence between algebraic varieties defined over a non-
archimedean field and tropical varieties. The aim of section 2 is to describe the local and
global behavior of a tropical plane curve. Finally section 3 is devoted to the study of
tropical conics and cubics.

1. FROM CLASSICAL TO TROPICAL GEOMETRY

The content of the past lecture was devoted to establish a connection between classical
and tropical geometry. Let us review in which way this can be done.

First of all we need to work over an algebraically closed field K of characteristic 0 which
is endowed with a valuation v(z) = − log |z|, where | | is a non-archimedean norm. Let us
consider the map val : (K∗)n → Rn defined as:

val(z1, . . . , zn) = (− log |z1|, . . . ,− log |zn|),
and let X ⊂ (K∗)n be an algebraic variety, we define the tropical variety associated to X to
be:

T (X) := val(X).

The val map allows us to construct a dictionary between the two classes of varieties:{
Algebraic varieties

X ⊂ (K∗)n

}
val−→

{
Piecewise linear varieties

T (X) ⊂ Rn

}

1.1. Remark. — The reason for this definition relies on the fact that if X is the zero locus
of a Laurent polynomial

∑
aiz

i, then T (X) is the tropical hypersurface (the only type of
tropical variety that we have defined up to now) associated to

⊕
i v(ai)� xi:

{z ∈ (K∗)n |
∑

aiz
i = 0} val−→

{
x ∈ Rn | mini{v(ai) + x · i}

is attained at least twice

}
This correspondence can be explored in many directions. Here we will concentrate our
attention on the case of algebraic curves in (K∗)2. The embedding (K∗)2 ⊂ P2

K provides
a natural compactification for algebraic curves C ∈ (K∗)2. In this way we are allowed
to speak the genus and the degree of C as being those which come from the compactified
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C̄ ⊂ P2
K . It is possible to give a notion of T-degree and T-genus for T-curves. It will be the

case that the correspondence between curves and T-curves will preserve these invariants.

1.2. Remark. — The connected component of the group Aut((K∗)n) acts naturally on
algebraic subvarieties of (K∗)n. This action, through the val map, corresponds to the
group of translations of Rn, so that it is naturally to consider two T-varieties to be linearly
isomorphic if and only if one can be obtained from the other by means of a translation.

1.3. Exercises.
(1) Describe the action of the image of Aut((K∗)2) through the val map on tropical plane

curves.

2. TROPICAL PLANE CURVES

In what follows, we will work over the max tropical semiring, which is the one where

x⊕ y = max{x, y}.
The reason for this change will be evident as soon as we will start to describe the local
behavior of a tropical algebraic curve. In order to obtain the min version of the tropical
curve it will be enough to apply a central symmetry with respect to the origin.

In this section we will describe the main properties of tropical algebraic curves. First of
all how we can deduce the graph ZB of a T-curve B ⊂ R2 starting from its T-polynomial.
Let ⊕

(i,j)∈∆∩Z2

bij � xi � yj

be the equation of B, where ∆ is the triangle of vertices (0, 0), (d, 0), (0, d). In order to
draw the graph, we need to determine the set of points (x, y) ∈ R2 such that

max
(i,j)∈∆∩Z2

{bij + ix + jy}

is attained twice. We will divide the description of this graph into two parts:

Local behaviour. Observe that the graph of B is a union of segments and half-lines where
two of the linear forms attain the same value which is smaller than the one assumed by the
remaining forms. This means that we can imagine ZB as a graph with some of the edges
prolonged indefinitely. Let v ∈ ZB be a vertex then, after a translation, we can always
assume that v = (0, 0). Consider the set of linear forms which attain the maximum value
at v:

i1x + j1y, . . . , irx + jry

and let pk := (ik, jk) for k = 1, . . . , r.

2.1. Lemma. — Let ∆v be the convex hull of p1, . . . , pr, then there exists a neighborhood U
of v such that the intersection U ∩ ZB is a graph which is dual to ∂∆v.
Proof. Consider the set

Hsk
≥0 := {(x, y) ∈ R2 | isx + jsy ≥ ikx + jky}
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For k 6= s this set is a half plane delimited by the orthogonal line (through v) to pk − ps

and not containing the point pk. Now assume that ps belongs to the interior of ∆v, then
the set of directions pk − ps, where k moves over all the vertices of δv, describes an angle
of 2π. This immediately implies that the intersection:⋂

k 6=s

Hsk
≥0 = (0, 0),

so that for any (x, y) ∈ R2 there exists k ∈ {1, . . . r}, k 6= s such that isx + jsy ≤ ikx + jky.
In a similar way it is possible to prove that only the edges of ∆v correspond to edges of
U ∩ ZB. �

Lemma 2.1 shows that the edges of U ∩ ZB are all the orthogonal directions to the edges
of ∆v going out from v.
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This local description of ZB allows us to prove that the dual graph of ZB is a subdivision
of ∆ which takes the name of regular subdivision. Now let [w1], . . . , [wr] be the edges of
U ∩ZB incident to v. Since these edges have rational slopes we can consider the primitive
vector wi defining [wi].

2.2. Proposition. — Let µi be the integral length (the number of integer points minus one)
of the dual edge of wi, then: ∑

v∈[wi]

µiwi = 0.

Proof. Let p1, . . . , pl be a renumbering of the vertices of ∆v in clockwise order, so that
pi+1 − pi is orthogonal to wi for i = 1, . . . , l − 1 and p1 − pl is orthogonal to wl. Consider
the matrix

M =

(
0 1

−1 0

)
,

and observe that M(pi+1−pi) = µiwi since the right hand side must be a vector orthogonal
to pi+1 − pi which is a µi multiple of the primitive vector wi. From the equality∑

v∈[wi]

µiwi =
l−1∑
i=1

M(pi+1 − pi) + M(p1 − pl)

and the linearity of M the first equality follows. �
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Global behaviour. An algorithm for determining the regular subdivision of ∆ is the fol-
lowing. Given the tropical curve B, consider the polyhedral set so defined:

∆̃ := Convex hull {(i, j, bij) | (i, j) ∈ ∆ ∩ Z2}.
Define ∆̃+ to be the the set of faces in ∆̃ such that the outward normal direction has the
third coordinate non-negative and let π : R3 → R2 be the projection on the first two
coordinates.

2.3. Lemma. — Let q1, . . . , qr ∈ R3 be a set of distinct points and let ∆̃ be their convex hull,
then the following are equivalent:

(i) qs belongs to the interior of ∆̃,

(ii) There exists no plane through qs such that the r points lie in the same open half space
delimited by it.

Proof. For simplicity we can assume that s = 1, so that q1 belongs to the convex hull of
q2, . . . , qr if and only if there exists εi ≥ 0 with ε2 + · · ·+ εr = 1 such that

q1 = ε2q2 + · · ·+ εrqr.

Let L be a linear form which vanishes on a plane H 3 q1, then

0 = ε2L(q2) + · · ·+ εrL(qr),

so that either L(qi) = 0 for all i = 2, . . . , r or L attains both a positive and a negative value
at some of the points. �

2.4. Proposition. — The image of the faces of ∆̃+ through π is the regular subdivision of ∆
associated to B.
Proof. For any monomial of B, define the corresponding point: qs = (is, js, bisjs) and
observe that, for a given (x, y) ∈ R3 we have that:

isx + jsy + bisjs ≥ ikx + jky + bikjk
⇐⇒ 〈qk − qs, (x, y, 1)〉 ≤ 0.

In other words, the linear form associated to qs realizes the maximum value (between all
the linear forms associated to the qk’s) at (x, y) if and only if all the vectors of the form
qk − qs have a negative projection on (x, y, 1). Let H be the plane through qs which is
orthogonal to (x, y, 1) and let H− be the open half space which does not contain the vector
(x, y, 1). Then the preceding inequality is satisfied if and only if

qk ∈ H−.

By lemma 2.3 this happens if and only if qs is a vertex of ∆̃. Observe that there must exists
at least one maximal face F ⊂ ∆̃ which contains qs and whose outward normal vector has
a non-negative third coordinate, so that the proposition is proved. �

2.5. Exercises.
(1) Complete the details of the last part of the proof of Lemma 2.1.

(2) Write a computer program for drawing tropical plane curves which makes use of the
algorithm explained in Proposition 2.4.
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3. TROPICAL CONICS AND CUBICS

The results of the previous section can be applied to easily classify all the possible combi-
natorial types of tropical conics. The triangle ∆ associated to

b20 � x2 ⊕ b11 � x� y ⊕ b02 � y2 ⊕ b10 � x⊕ b01 � y ⊕ b00

has vertices: (0, 0), (2, 0), (0, 2). By Proposition 2.2 the regular subdivision of ∆ associated
to B is dual to the graph of ZB.

For example consider the subdivisions

Then the corresponding tropical conics have the following graphs:

Observe that there exist a continuous deformation of the first graph into the third which
pass through the second. This deformation corresponds to a one dimensional family of
conics which contains the three members. The second conic represents a graph which can
be also obtained by drawing two distinct tropical lines. In fact it is possible to prove that
this conic is reducible.

The combinatorial types of the intersection of two tropical conics are very numerous, as
an example consider the following:

5



Even if the number of intersection points are different, it is possible to associate to any
such p ∈ C1 ∩ C2 an intersection multiplicity mp so that∑

p∈C1∩C2

mp = 4.

Before defining the intersection multiplicity, observe that we are interested in a stable num-
ber, this means a number which does not change for small deformations of the two curves
(for example by acting on one of the two curves by means of a translation). This imme-
diately implies that we need a definition just for the case of double points, as any other
intersection deforms into a union of these.

Now, let U be a sufficiently small neighborhood of the intersection point p ∈ C1 ∩ C2, so
that the two branches can be represented by two lines crossing at p:

P

w1
w2

These lines have rational slope (since they are obtained as the zero set of two rational
linear forms), so that there are two primitive vectors w1, w2 ∈ Z2 which represent them.
Then we have

mp := µ1µ2|Det(w1, w2)|.

It is evident that the preceding definition of the intersection multiplicity of two tropical
curves at a given point does not depends on the fact that C1 and C2 are conics but it is
well defined for any pair of tropical curves. Moreover, it is easy to associate a degree to
any tropical curve, just looking at its defining polynomial and defining it as usual. In this
way we have the following theorem which is weel known in the classical case:

3.1. Theorem. — (Bezout) Let B1, B2 be two tropical curves of degrees d1, d2 respectively.
Assume that the intersection of these curves if finite, then the following equality holds:∑

p∈B1∩B2

mp = d1d2.

The reason for considering conics and cubics as examples of tropical plane algebraic
curves is that they provide many of the fundamental properties of the general ones. As
an example of tropical cubics consider the following regular subdivisions:
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The corresponding dual curves are given below:

These curves have a new property with respect to conics: they contain a loop. The main
difference between them is that the second curve is a trivalent graph while the first one
has a point of valence 4. We have already seen that a conic with a point of valence 4 is
reducible (it is the union of two tropical lines). This is no longer true for tropical cubics.
In fact both the cubics of the picture are irreducible, and the first is singular along the
point of valence 4. This means that it is possible to prove that this curve is the image of
a singular curve (and only of a singular one) of (K∗)2. To any tropical plane curve it is
possible to associate an abstract trivalent graph Γ by separating the edges incident along
points of valence ≥ 4. Doing this for the first cubic, one obtain a graph which is a tree.
This corresponds to the fact that this graph represents a genus 0 curve. In this way it is
possible to define the genus of a tropical plane curve as the dimension of H1(Γ, Z).

3.2. Exercises.
(1) Prove the Bezout theorem for the intersection of two tropical conics.

(2) Find the maximal multiplicity µ for an edge of a tropical conic and a tropical cubic.

(3) Determine the maximal intersection multiplicity of two tropical plane cubics at a
given point.

(4) Prove that a tropical cubic with two points of valence 4 is reducible.

(5) Find a necessary and sufficient condition for a tropical cubic in order to be reducible.
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