
INTRODUCTION TO TROPICAL GEOMETRY

ANTONIO LAFACE

INTRODUCTION

The aim of these notes is to introduce the subject of tropical geometry and subsequently
describe the correspondence between algebraic varieties and tropical varieties.

In section 1 we introduce amoebas as images of algebraic varieties through the Log map.
After discussing their main properties we will focus our attention on amoebas defined
over non-archimedean fields and their properties.

1. AMOEBAS

Let us consider the map Log : (C∗)n → Rn defined as

Log(z1, . . . , zn) := (log |z1|, . . . , log |zn|).

Given an algebraic variety X ⊂ (C∗)n we define its amoeba to be the set:

A(X) := Log(X).

Amoebas of algebraic varieties were first introduced for studying topological properties
of real algebraic curves. In other words, given a real algebraic curve C ⊂ P2

R one can ask
about the possible topological types of the pairs (C, P2

R). This problem can be approached
by using amoebas.

1.1. Example. — Consider the line L ⊂ (C∗)2 of equation x + y + 1 = 0, then −A(X) is
given by the white drawing inside the blue region:
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The fact that the amoeba of L has three branches which go to infinity depends on the fact
one of the coordinates (z1, z2) ∈ L can be close to 0 or both can be close to ∞. It is an easy
exercise to determine the directions of the asymptotic lines of the amoeba.

The following theorem allows to understand better the shape of an amoeba X . Assume
that X is a zero set of a polynomial f(z) =

∑
aiz

i and let ∆f be the its Newton polytope:

∆f := Convex hull {i ∈ Zn | ai 6= 0}.

1.2. Theorem. — (See [1]) There exists a locally constant function

ind : Rn \ A(X) → ∆f ∩ Zn

which maps distinct components of the complement of A(x) to distinct points of ∆f .

In order to give an idea of the proof of the preceding theorem consider the map log |f | :
Cn → R ∪ {−∞} which is a plurisubharmonic function. Recall that a function F in a
domain Ω ⊂ Cn is called plurisubharmonic if its restriction to any complex line L is
subharmonic. Let Nf : Rn → R be the average of log |f | along the fibers of the Log map:

Nf (x) =
1

(2π)n

∫
T

log |f(ex+iθ)|dµ,

where T = Log−1(x) is the torus with measure dµ = dθ1 ∧ . . .∧ dθn. This function is called
the Ronkin function. It is possible to prove that it takes real (finite) values even overA(X)
where the integral is singular.

1.3. Proposition. — (See [1]) The function Nf has the following properties:
(i) it is convex,

(ii) it is strictly convex over A(X)
(iii) it is linear over each component of Rn \ A(X)

Idea of the Proof. The main step of the proof depends the fact that log |f | : (C∗)n → R
is plurisubharmonic. This in turn implies that ∆Nf (x) ≥ 0 for any x ∈ Rn and this is
equivalent to say that Nf is a convex function.

Moreover, if x ∈ Rn \ A(X) one has that Nf is pluriharmonic in x and this simply means
that it is a linear function, since the second derivative of Nf along any the direction of a
line R ⊂ Rn vanishes. �

The preceding proposition implies that the gradient∇Nf is constant over each component
E ⊆ Rn \ A(X). Moreover, by Jensen’s formula we have that:

∇Nf (E) ∈ Zn ∩∆f .

As a consequence of the last discussion, it is possible to define

ind(x) := ∇Nf (x)

for each x ∈ Rn \ A(X). The function ind constructed in this way has the required prop-
erties.
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1.4. Example. — Going back to the line of equation x + y + 1 = 0, its Newton polytope
∆f is the convex hull of the three points (0, 0), (1, 0), (0, 1). In this case the three points
represent the connected components of R2 \ A(X).

1.5. Example. — Consider the polynomial

f(x, y) = xy − x + y + 1,

then ∆f is the square of vertices (0, 0), (1, 0), (0, 1), (1, 1). It is not difficult to see thatA(X)
has four branches which go to infinity corresponding to the points (1, 0), (0,−1) and the
two asymptotes of equation x = −1 and y = 1.

The spine of an amoeba. Looking at the graph of −A(L), where L is the line of equation
x + y + 1 = 0, it is possible to see that inside it there is a tropical line which represent the
three asymptotic directions of the branches of the amoeba. This tropical variety is called
the spine of the amoeba.

A precise definition of the spine of an amoeba of an hypersurface X ⊂ (C∗)n of equation
f = 0, is given in terms of its Ronkin function. Consider the function:

N∞
f = max

E
NE,

where E runs over all components of Rn \A(X) and NE is the linear function obtained by
extending Nf |E to Rn by linearity.

The spine SX of the amoebaA(X) is the set of points in Rn where N∞
f is not locally linear.

The definition immediately implies that SX ⊂ A(X) and moreover that SX is a piecewise-
linear polyhedral complex.

It is possible to prove that the spine SX is a strong deformational retract of the amoeba
A(X), so that each component of Rn \ SX contains a unique component of Rn \ A(X).

1.6. Exercises.

(1) Let a, b, c be three non-zero complex numbers and let L ⊂ (C∗)2 be the line of equation
ax + by + c = 0.

(i) Determine the amoeba A(L).

(ii) Find the spine SX of A(L) and determine the tropical equation of −SX .

(2) Determine the amoebas of the following conics:
(i) x2 + y2 − 1 = 0

(ii) x2 + y2 + 1 = 0

(iii) xy + x− y + 1 = 0

(Hint: find a rational parametrization of these conics).
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2. NON ARCHIMEDEAN AMOEBAS

Let K be a field. We start this section by recalling that there is a one to one correspon-
dence between non-archimedean norms and valuations defined over K. The axioms for a
non-archimedean norm on K are compared to the valuation ones:

1. |x| = 0 ⇔ x = 0, 1’. v(x) = +∞⇔ a = 0

2. |xy| = |x||y|, 2’. v(xy) = v(x) + v(y)

3. |x + y| ≤ max{|x|, |y|} 3’. v(x + y) ≥ min{v(x), v(y)}

and the correspondence between the two is realized by the map:

v(x) := − log |x|.
for any x ∈ K. In what follows we will assume that K is an algebraically closed field
which is a complete metric space with respect to the metric induced by the norm. Let us
consider the map val : (K∗)n → Rn defined as

val(x1, . . . , xn) := (v(x1), . . . , v(xn)).

Given an algebraic variety X ⊂ (K∗)n we define its tropical variety T (X) ⊂ Rn to be the
set:

T (X) := val(X).

Observe that the tropical variety associated to X is defined as the negative of the amoeba
of Section 1. The other main difference here is represented by the non-archimedean prop-
erty. In this way the −Log map is realized by means of a valuation. This will allow us to
give an easier description of T (X) with respect to the complex case.

2.1. Example. — Let C((t)) be the field of formal Laurent series, i.e. series of the form∑∞
i=r fit

i, with fi ∈ C and r ∈ Z. The algebraic closure of this field is given by:

C((t)) =
⋃
n≥1

C((t1/n)).

The field C((t)) is equipped with a Q-valued valuation: ord(
∑

fαtα) := min{α | fα 6= 0}.
Let K be an algebraically closed field of characteristic 0 which is endowed with a non-
archimedean norm and consider the hypersurface X ⊂ (K∗)n of equation f(z) = 0, where

f(z) =
∑
i∈Zn

aiz
i,

with coefficients ai ∈ K. For any u ∈ Rn denote by

fT(x) =
⊕
i∈Zn

v(ai)� xi,

and let Z(fT ) be the tropical variety associated to fT , which means the set of points where
the minimum is attained at least twice.

Before going on, recall that the extended Newton polytope of f(z) is defined as:

∆̃f := Convex hull {(i, u) ∈ Zn × R | u ≥ v(ai)} ⊂ Rn+1
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2.2. Lemma. — Let t1, . . . , tr ∈ K∗ be such that t1 + · · · + tr = 0, then max{|t1|, . . . , |tr|} is
attained at least twice.

Proof. First of all observe that | − t| = |t| for all the elements t ∈ K. Now, assume for
simplicity that the maximum is attained in t1, then the equation t1 = −(t2 + · · ·+ tr) gives
|t1| = |t2 + · · ·+ tr| ≤ max{|t2|, . . . , |tr|} and this implies the thesis. �

2.3. Lemma. — (See [2]) Let g(t) =
∑s

i=r ait
i be a Laurent polynomial and let ∆̃g be its

generalized Newton polytope, then the valuations of the s− r roots of g are the negatives
of the edge slopes of ∆̃g.

2.4. Theorem. — (See [2]) Given X ⊂ (K∗)n defined by {f = 0} the following holds:

T (X) = Z(fT ).

Proof. In what follows we will denote by T, Z the two sets T (X), Z(fT ). Our first step will
be to prove that:

(i) T ⊆ Z.

Since Z is closed, it is enough to show that val(X) ⊂ Z. Let x ∈ val(X), then there
exists z ∈ Kn such that v(z) = x. Since f(z) =

∑
aiz

i = 0, it follows by lemma 2.2
that there are at least two terms in the sum where the norm attains its maximum. This
implies that min{v(aiz

i)} or equivalently min{v(ai) + x · i} is attained twice, so that
x ∈ Z.

(ii) Z ⊆ T.

Let x ∈ Z, then without loss of generality we can assume that there exists c ∈ (K∗)n

such that val(c) = x (the image of val is dense in Rn and Z is a polyhedral rational on
val(K∗)). The effect of a change of variables of type zi 7→ zi · ci is to translate both T
and Z by the vector −val(c) = −x. After this translation we have that

0 ∈ Z,

so that it is enough to prove that 0 ∈ T . We will find a root z0 of f of the form

z0
i = (t0)

bi , t0 ∈ K∗, v(t0) = 0

for an appropriate choice of b = (b1, . . . , bn) ∈ Zn. Indeed, let

fb(t) = f(tb1 , . . . , tbn) =
∑

ait
b·i ∈ K[t, t−1].

The fact that 0 ∈ Z means that ∆̃f has a face F of positive dimension which is hor-
izontal (we assume F to be maximal with this property). Assume that b ∈ Zn is
generic in the following sense: for each edge [(m, u), (i, u)] of F we have b·(m−i) 6= 0.
Then ∆̃fb has a horizontal edge and by lemma 2.3 we have that fb has a root t0 with
v(t0) = 0.

�
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2.5. Exercises.
(1) Assume that K = C((t)) and determine the amoeba of x + y + 1 = 0.

(2) Assume that a11x
2 + 2a12xy + a22y

y + 2a13x + 2a23y + a33 = 0 is the equation of a
smooth conic defined over a non-archimedean field K. Determine all the possible
combinatorial types of its amoeba.

3. APPENDIX

In this section we recall some important definitions used in the preceding pages.

3.1. Plurisubharmonic functions. A function

f : Ω → R ∪ {−∞},
where Ω ⊆ Cn is a domain, is called plurisubharmonic, if it is upper semi-continuous, and
for every complex line L ⊂ Cn, the restriction fL is a subharmonic function, i.e.

fL(z) ≤ 1

2π

∫ 2π

0

fL(z + reiθ)dθ

for any complex number z and positive real r. It is possible to prove that if g(z) is a
holomorphic function, then log |g(z)| is plurisubharmonic.

3.2. Jensen’s formula. Let f : C → C be an holomorphic function such that f(0) 6= 0.
Assume that f(z) has no zeroes on the circumference |z| = ex, then the following formula
holds:

1

2π

∫ 2π

0

log |f(ex+iθ)|dθ = nx + log |f(0)| −
n∑

k=1

log |ak|,

where a1, . . . , an are the zeroes of f in |z| < ex.
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