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Local long-term adaptation is a well-known feature of the
synaptic junctions in nerve tissue. Neuroscientists have demon-
strated that biology uses local adaptation both to tune the
performance of neural circuits and for long-term learning. Many
researchers believe it is key to the intelligent behavior and the
efficiency of biological organizms. Although engineers use adap-
tation in feedback circuits and in software neural networks, they
do not use local adaptation in integrated circuits to the same
extent that biology does in nerve tissue. A primary reason is that
locally adaptive circuits have proved difficult to implement in
silicon. We describe complementary metal–oxide–semiconductor
(CMOS) devices called synapse transistors that facilitate local
long-term adaptation in silicon. We show that synapse transistors
enable self-tuning analog circuits in digital CMOS, facilitating
mixed-signal systems-on-a-chip. We also show that synapse tran-
sistors enable silicon circuits that learn autonomously, promising
sophisticated learning algorithms in CMOS.

Keywords—Adaptive, local learning, neural, SOC, synapse
transistor.

I. INTRODUCTION

The synapses and neurons in animal brains encode and
process information using electrical and chemical signaling,
with extraordinary efficiency, under incredibly tight power
and supply-voltage constraints [1]. These same synapses
and neurons are poorly matched across nerve tissue, degrade
over life, and do not even have a common supply voltage
or a common ground. These observations have led many
researchers (us included) to study biology for inspiration
in engineering design. They have also provided impetus
for research in artificial neural networks and neuromorphic
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engineering [2]. We believe that the inspiration provided by
biological synapses holds even more promise today than it
has in the past, in part because huge opportunities still exist
to develop neural-network hardware and in part because
of challenges in integrating analog and digital circuitry in
modern systems-on-a-chip (SOCs).

Although contemporary implementations of neural net-
works and machine-learning algorithms are almost entirely
software based, there remains the prospect for huge perfor-
mance gains if engineers could build hardware (silicon) ver-
sions of these networks. Because all-digital learning hard-
ware requires costly circuits (in terms of die size and power)
such as multipliers, researchers continue exploring analog
hardware [3]. Unfortunately, large-scale analog learning has
to date eluded researchers. A primary reason is the lack of
a simple way to enable local parallel online adaptation in
silicon.

The scaling of silicon integrated-circuit processing
to deep-submicrometer feature sizes poses significant
challenges for SOC design. On the positive side, scaling
increases the density and speed of digital complementary
metal–oxide–semiconductor (CMOS). On the negative side,
scaling burdens analog CMOS with low transistor-break-
down voltages, poor transistor matching, and an absence of
high-valued resistors, high-Q inductors, or linear capacitors.
SOC applications typically require deep-submicrometer
CMOS for the digital circuitry, but have analog inputs
and/or outputs. To enable mixed-signal SOC applications,
engineers need a simple way to design precision analog
circuits side by side with digital logic in standard digital
CMOS processes.

So what do neurobiology and silicon learning and SOC
have in common? We believe that local adaptation is key. For
example, despite our ignorance of how nerve tissue actually
performs its computations, we know that it uses long-term
local adaptation to tune the performance of its synaptic junc-
tions [4]. As another example, researchers developing pre-
cision analog-to-digital or digital-to-analog converters may
resort to local on-line calibration to maintain performance
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[5]. We believe that if engineers had a simple means to in-
corporate local parallel adaptation in their silicon chips, like
neurobiology does in nerve tissue, they could greatly advance
learning-network and SOC performance and applications.

We and others [6] have spent years developing silicon de-
vices that mimic the adaptive synapses nervous systems use
for memory and learning. The result is a family of single-
transistor devices we callsynapse transistors[7]–[12] that
implement long-term nonvolatile analog memory, allow bidi-
rectional memory updates, and learn from an input signal
without interrupting the ongoing computation. Although we
do not believe that a single transistor can model the complex
behavior of a neural synapse completely, our synapse tran-
sistors do implement long-term local learning: their output
depends not only on the present input, but also on a history
of prior inputs.

Synapse transistors allow us to build silicon chips that
learn and adapt locally and autonomously in a fashion sim-
ilar to that used by biology (we believe) to tune its circuits.
Using them, we can build both precision analog circuits
and artificial learning networks in digital CMOS. We begin
this paper by first describing synapse transistors because
they are the key enabling technology. Fundamentally, they
are metal–oxide–semiconductor (MOS) transistors that
tune their performance during normal device operation.
We then demonstrate by several working examples how
synapse transistors can enable mixed-signal SOC and
silicon-learning networks. These examples, all fabricated in
digital CMOS, include a digital-to-analog converter (DAC)
with 6-bit intrinsic accuracy that trims electrically to 14
bits and an unsupervised competitive-learning circuit that
learns to unmix a mixture of Gaussians. We conclude with a
discussion of current and future process-related technology
issues.

II. PFET SYNAPSE TRANSISTOR

We define synapse transistors to be conventional transis-
tors with the following additional attributes: 1) nonvolatile
analog weight storage; 2) locally computed bidirectional
weight updates; and 3) simultaneous memory reading and
writing. We use floating-gate metal–oxide–semiconductor
field-effect transistors (MOSFETs) as the basis for all of our
synapse transistors. Our synapses use floating-gate charge to
represent the nonvolatile analog weight, electron tunneling
and hot-electron injection to modify the floating-gate charge
bidirectionally, and allow simultaneous memory reading
and writing by nature of the mechanisms we use to write the
memory. We have developed a family of such devices [10],
but primarily use just one, a p-channel MOSFET (pFET)
synapse because of its compatibility with standard digital
CMOS processing.

We show a conceptual model for a pFET synapse in Fig. 1
and the layout and band diagram [13] in Fig. 2. The synapse
comprises two MOSFETs: the first is a readout transistor;
the second, with shorted drain and source, forms a tunneling
junction. From the control gate’s perspective, removing
electrons from or adding electrons to the floating gate shifts

Fig. 1. Simplified circuit model for a pFET synapse. Electron
tunneling and injection modify the gate offset voltageV .

(a)

(b)

(c)

Fig. 2. pFET synapse, showing the electron tunneling and
injection locations. (a) Top view. (b) Side view. (c) Electron band
diagram. We aligned the three diagrams vertically, drewA and
C to scale, exaggerated the vertical scale inB, and assumed
subthreshold operation (I < 100 nA and a 0.35-�m process.
Although the gate oxide’s band diagram projects vertically, to
better illustrate the injection process, we rotated it by 90and
drew it in the channel direction. We decrease the synapse weight
by tunneling electrons to the tunneling junction and increase the
weight by injecting electrons from the drain region to the floating
gate. Our tunneling junction comprises a shorted pFET in an n-well,
for two reasons. First, a lightly doped n-well can accommodate
high positive voltages without pn-junction breakdown to substrate.
Second, a shorted pFET in an n-well is a valid structure (that
satisfies design rules) in any CMOS process.

the readout pFET’s threshold voltage bidirectionally. The
synapse uses Fowler–Nordheim (FN) tunneling [14] to
remove electrons from its floating gate and impact-ionized
hot-electron injection (IHEI) [15] to add electrons to the
floating gate.
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Key features of this synapse are: 1) the readout transistor
remains a fully functional pFET; 2) high voltages applied to
the tunneling junction tunnel electrons off the floating gate;
and 3) large drain-to-source voltages cause IHEI at the drain,
injecting electrons onto the floating gate.

A. Readout Transistor Remains a Fully Functional pFET

We apply signal inputs to the second-level polysilicon
(poly2) control gate, which, in turn, couples capacitively to
the first-level polysilicon (poly1) floating gate (see Fig. 2).
From the control gate’s perspective, the transistor remains
a conventional pFET, albeit with reduced coupling to the
channel because of the intervening poly1 capacitor.

If we operate the MOSFET in its subthreshold regime [16],
the synapse is well suited for neural network applications.
The reason is that a subthreshold floating-gate pFET per-
forms a multiply operation as follows:

(1)

(2)

where is the source current, is a preexponential
current, is the coupling coefficient from floating gate to
channel, is the source-to-floating-gate voltage,
is the floating-gate charge (source referenced), is the
total capacitance seen by the floating gate,is the thermal
voltage , is the input (poly1 to poly2) coupling
capacitance, is the control-gate voltage, ,

, and . The synapse
weight is a learned quantity: its value derives from the
floating-gate charge, which can change with synapse use.
The synapse output is the product of and the source
current of an idealized MOSFET that has a control-gate
input and a coupling coefficient from the control gate
to the channel.

For CMOS processes without poly2, we can use a MOS
capacitor as an input capacitor [17] or, for applications that
can tolerate the (small) charge leakage that occurs when we
add a contact to the floating gate, we can connect the floating
gate to a metal–insulator–metal capacitor. Alternatively, we
sometimes use no capacitor (i.e., no gate input) at all; in this
case, the synapse becomes a tunable current source.

B. Electron Tunneling Decreases the Weight

We decrease the synapse weightby tunneling electrons
from the floating gate to the tunneling junction (the shorted
pFET and its associated n-well). Positive high voltages on the
tunneling junction cause electron tunneling. We illustrate the
FN-tunneling process in the energy-band diagram of Fig. 2.
A potential difference between the tunneling junction and
the floating gate reduces the effective oxide thickness, facil-
itating electron tunneling from the floating gate, through the
SiO barrier, and into the oxide conduction band. The oxide
electric field then sweeps these electrons to the n-well.

In Fig. 3, we show tunneling current (oxide current) versus
the reciprocal of the voltage across the oxide for synapses

Fig. 3. Tunneling (gate) currentI versus�1=V , for a synapse
fabricated in a 2-�m CMOS process.V is the potential between
the tunneling junction and the floating gate. We normalized the gate
current to the tunneling-junction (gate oxide) area.

fabricated in 2- and 0.35-m processes. We fit these data
using a simplified FN fit [14], [18]

(3)

where is the gate current, is the oxide voltage (well
voltage minus floating-gate voltage), is a constant that
depends primarily on oxide thickness, and is a preexpo-
nential current. is negative because tunneling reduces the
weight .

C. Electron Injection Increases the Weight

We increase the synapse weightby injecting electrons
onto the floating gate. As shown in the energy-band dia-
gram of Fig. 2, channel holes, accelerated in the transistor’s
channel-to-drain depletion region, can collide with the semi-
conductor lattice and liberate additional electron-hole pairs.
The ionized electrons, promoted to their conduction band
by the collision, are expelled from the drain by the same
channel-to-drain electric field. Electrons expelled with more
than 3.1 eV of kinetic energy, if scattered upward into the
gate oxide, can overcome the 3.1-V difference in electron
affinity between the Si and SiOconduction bands, inject
into the SiO, and be collected by the floating gate.

In Fig. 4, we plot IHEI efficiency (defined as gate cur-
rent divided by source current ) for synapses fabricated
in 2- and 0.35-m processes. We plot the data as efficiency
because gate current increases linearly with source current
over the entire subthreshold range; predictably, because the
gate current derives from the hot-electron population and this
population, in turn, increases linearly with the source current.

For a 0.35- m synapse, when the readout transistor’s
source-to-drain voltage is less than 3 V, the IHEI gate
current is exceedingly small and the weight remains
nonvolatile. When exceeds 3.5 V, the gate current
causes measurable changes in the synapse weight. We
approximate the data of Fig. 4 with a simple exponential

(4)
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Fig. 4. IHEI efficiency (gate currentI divided by source current
I ) versus channel-to-drain potentialV , for synapses fabricated
in 2- and 0.35-�m processes. We reference the drain voltage to
the channel because the hot-electron population derives from the
channel-to-drain electric field. Source-to-drain voltageV is a few
hundred millivolts smaller thanV . In the subthreshold regime,I
increases linearly withI ; consequently, these data show the IHEI
efficiency for the entire subthreshold source-current range.

where is the gate current, is the source current, is the
channel-to-drain potential, andand are fit constants.
is positive because IHEI increases the weight.

III. GATE-CURRENT EQUATION

In a synapse transistor, we cansimultaneously: 1) read the
channel current; 2) raise the tunneling voltage, causing elec-
trons to tunnel off the floating gate; and 3) lower the drain
voltage, causing IHEI. We obtain a final gate-current equa-
tion by adding (3) and (4)

(5)

assuming subthreshold source currents. The restriction to
subthreshold source currents is solely for reasons of math-
ematical tractability. The synapse is fully functional with
above-threshold source currents, but the dynamics are more
complicated (and are beyond the scope of this paper).

IV. SYNAPTIC ARRAYS

In applications that use large numbers of synapse transis-
tors, such as analog memories or neural networks, we use
arrays of synapses rather than isolated devices. Although ar-
rays provide dense synapse packing and simple addressing,
they must not compromise the isolation between individual
synapses and must provide a means for writing and erasing
synapses easily. We fabricated the array shown in Fig. 5 to:
1) verify synapse isolation and 2) demonstrate a self-conver-
gent technique for writing individual synapses.

A. Synapse Isolation

Array synapses share tunneling and drain wires; con-
sequently, tunneling or injecting one synapse can cause
undesired tunneling or injection at another synapse. To mea-
sure synapse isolation, we tunneled and injected the {1,1}
synapse in Fig. 5 over a three-decade range, while measuring
the crosstalk to the other synapses. We define crosstalk to

Fig. 5. Synaptic array. Column synapses share a common
tunneling wire, meaning that they share a common tunneling well.

(a)

(b)

Fig. 6. Synapse isolation in the array of Fig. 5, fabricated in a
2 �m CMOS process. (a) Tunneling down, then injecting backup.
We first initialized all four synapses toI = 100 nA. We tunneled
synapse {1,1} down to 100 pA, then injected it back up to 100 nA,
while measuring the source currents of the other three synapses.
Crosstalk to the {1,2} synapse, defined as the fractional change in
the {1, 2} synapse’s source current divided by the fractional change
in the {1,1} synapse’s source current, was 0.004% during tunneling
and was 0.005% during injection. (b) Injecting up, then tunneling
back down. We first initialized all four synapses toI = 100 pA.
We injected the {1,1} synapse up to 100 nA, then injected it back
down to 100 pA. Crosstalk to the {1,2} synapse was 0.016% during
injecting and 0.007% during tunneling. In both experiments, the
crosstalk to the row 2 synapses was negligible.

be the fractional change in a deselected synapse’s source
current divided by the fractional change in the selected
synapse’s source current. The data in Fig. 6 show that the
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(a)

(b)

Fig. 7. Self-convergent memory writes. (a) Circuit. (b) SPICE
simulation showing the pFET’s drain voltageV and drain current
I during a write. We first tunnel electrons off the floating gate
soI < I (not shown in the simulation), turn off tunneling,
then begin writing. We close switchSW at t = 0, causingV to
drop, electrons to inject onto the floating gate, andI to rise. As
I approachesI , V rises, turning off the injection.I reaches
99% of its final value in 140�s. We read the memory by applying
V = 1:7 V and measuringI , with an accuracy that depends on
the circuit details but can be better than 1%. Simulation parameters
wereV = 6 V, C = 5 fF, I = 10 �A.

crosstalk between selected and deselected synapses is less
than 0.01% during tunneling and is less than 0.02% during
IHEI. The reason for the good isolation can be seen from
(5) and from the data in Figs. 3 and 4: both tunneling and
IHEI are steep exponentials. Consequently, we can store
precise analog values in a synaptic array without significant
degradation due to crosstalk.

B. Self-Convergent Memory Writes

Because synapse transistors allow simultaneous memory
reading and writing, we can use negative feedback to store
accurate memory values. As an example, Fig. 7 shows a self-
convergent memory write. We store the memory values as
drain current . The write process works as follows: assume
that, initially, is smaller in magnitude than the program-
ming current . To write, we apply using switch .
As long as exceeds , the synapse’s drain voltage will be
held low, causing electrons to inject onto the floating gate and
thereby increasing . As approaches , the synapse’s
drain voltage will rise, turning off the injection. IHEI closes a
negative feedback loop around the inverting amplifier formed
by the pFET and the current source. This intrinsic feed-
back mechanism adapts the floating-gate charge to equalize
the programming and pFET-drain currents, storingin the
synapse transistor.

Notice that the synapse in Fig. 7 (comprising the two
pFETs and the gate capacitor) is identical to an array
element in Fig. 5. Consequently, we can use self-convergent
mechanisms to write array synapses, by placing switches
and current sources in the row-drain wires and by using
the column-gate wires to select a column for writing. We
monitor the row-drain voltages using sense amplifiers and
open each switch to stop the write when its corresponding
drain rises to a predetermined voltage. To read a column, we
lower the appropriate column-gate wire and read the drain
currents of all the transistors in the column.

V. IMPLICATIONS FORSOC

Developing single-chip solutions to mixed-signal prob-
lems poses difficult engineering challenges. Contemporary
integrated circuits (ICs) such as a scanner-on-a-chip or a
Bluetooth transceiver-on-a-chip require integrating dig-
ital, analog, radio frequency (RF), and, often, nonvolatile
memory (NVM) on a single die. These systems need
large amounts of digital logic, necessitating fabrication in
deep-submicrometer digital CMOS. And therein lies the
problem. The low supply voltages, poor transistor matching,
and absence of linear capacitors and resistors make analog
and RF design in digital CMOS difficult. Furthermore,
digital CMOS with embedded NVM typically lags two
process generations behind digital CMOS without NVM.
Contemporary goals such as a cellular transceiver-on-a-chip
require huge amounts of digital logic, RF with 100-dB
dynamic range, 16-bit analog baseband with 5–50 MHz
bandwidth [19], and, ideally, NVM.

Synapse transistors afford significant benefit to SOC
design. We have used them to store direct currents and
voltages, match multiple current sources to a common
reference, set operating points for capacitive-feedback
operational amplifiers, balance mixers for improved image
rejection, and store nonvolatile memories. By using onchip
feedback to slowly and carefully adjust a synapse tran-
sistor’s floating-gate charge, we can trim analog circuits
to 16-bit accuracy [20]. The possibilities appear limitless.
Consequently, rather than trying to describe all the possi-
bilities here, we will instead illustrate with three examples
some of the benefits of this technology. These examples are:
1) a mixed-signal finite-impulse response (FIR) filter; 2) a
precision DAC; and 3) an autonulling amplifier.

A. Mixed-Signal FIR Filter

FIR filters are standard building blocks in signal-pro-
cessing systems. Although digital-in/digital-out filters are
the norm, analog-in/digital-out and digital-in/analog-out
filters are not uncommon. One example of the latter is a
pulse-shaping filter used to limit out-of-band spectral energy
in communications systems [21]. The typical approach uses
a digital signal processor (DSP)-based FIR filter followed
by a DAC.

DSP chips are reconfigurable and easy to use, but tend
to be large and power hungry. Applications that require
both high throughput and low power use full-custom digital
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(a)

(b)

Fig. 8. (a) FIR filter architecture. We use a 7-bit digital delay line
and store the tap weights on synapse-based analog memory cells.
Multipliers are differential MDACs. Chip output is a differential
current, comprising the sum of the currents from the 16 MDACs.
(b) Filter layout. Digital components account for 48% of the die
area, MDACs 35%, and analog memory cells 17%.

VLSI. However, even custom digital cannot overcome the
area and power cost associated with an FIR filter’s multi-
pliers and adders [22]. Furthermore, systems with analog
outputs still must integrate a precision DAC on the same
chip as the digital circuitry. All-analog solutions are rarely
viable because implementing analog delay lines and storing
analog tap weights is difficult.

Although we cannot yet implement analog delay lines
using synapse transistors, we can store analog tap values.
We have developed a digital-in/analog-out FIR filter that
comprises a 16-tap digital delay line, 16 synapse transistors
to store the 16 (analog) tap coefficients and 16 multiplying
DACs (MDACs) to multiply the digital data by the tap
coefficients. The chip consumes 3 mW from a 3.3-V supply
at a 225-MHz clock rate and occupies 0.13 mmof die
area in 0.35-m CMOS. Although the present chip employs
uncalibrated 7-bit MDACs, for precision applications we
can substitute the 14-bit synapse-calibrated DAC described
in Section V-B. Similarly, although the present chip uses 16
taps, we can easily scale the approach to 64 or more taps.

Fig. 8(a) shows the filter architecture and Fig. 8(b) shows
the chip layout. A 7-bit 16-tap digital delay line shifts the
input signal across the filter. We store each tap coefficient’s
magnitude in a synapse-based memory cell that we can indi-
vidually erase and write. We store each tap coefficient’s sign

(a)

(b)

(c)

Fig. 9. FIR filter in a DS-CDMA despreading application. We
applied as input a 100-Mb/s CDMA-like input, comprising two
bitstreams encoded using orthogonal bases. We set the tap weights
to decode the indicated basis. (a) Input bitstream and the basis we
used to encode it. (b) Filter output and the strobe pulse we used to
recover the data. (c) Reconstructed data for 64 (superimposed)
experiments, showing reconstruction noise.

bit in a digital latch. Each MDAC generates a differential cur-
rent; we sum the currents from the 16 MDACs to create a dif-
ferential current output for the entire chip. For more details,
see [23].

To verify performance, we tested the filter in a simple
direct-sequence code-division multiple-access (DS-CDMA)
despreading application [24]. We encoded two user bit-
streams with orthogonal signatures and added them to form
a combined signal at a 100-Mb/s chip rate. We programmed
the synapse tap coefficients with one of the users’ signa-
tures and used the filter to recover the original bitstream.
Fig. 9 shows the experimental results. From the measured
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Fig. 10. DAC block diagram. A digital register latches the
input. Ten LSBs are binary decoded; four MSBs are thermometer
decoded. Extra LSB input is for trimming. LLSB segment is an
untrimmable current-source array; the ULSB and MSB segments
are trimmable arrays. Output is a differential current. We generate
the injection and tunneling voltages offchip; future designs will
generate these voltages using onchip charge pumps.

signal-to-noise ratio at the output, we determined that the
filter supports an input dynamic range of 42.6 dB, which is
consistent with the 7-bit resolution of the input data stream.

B. Precision Digital-to-Analog Converter

Many applications, including those for emerging commu-
nications systems, require DACs with sample rates in the tens
to hundreds of megasamples per second, at resolutions of
10–18 bits [19]. SOC integration poses the additional con-
straint of compatibility with standard digital CMOS. Cur-
rent-steering DACs [25] are ideal for these applications be-
cause they are fast and can drive an output load without a
voltage buffer. Their linearity, however, is limited by mis-
match in the current-source transistors.

To reduce mismatch, DAC designers use large transistors,
randomized layout, laser trimming, continuous electrical
trimming, or other approaches [5], [26], [27]. These tech-
niques increase die area and power dissipation substantially.
What DAC designers need is a small nonvolatile electrically
trimmable current source. Synapse transistors fit the bill
perfectly.

Our 14-bit DAC, fabricated in a 0.25-m digital CMOS
process, uses synapse transistors to trim its current sources.
Fig. 10 shows a block diagram. The DAC die area is
0.17 mm ; the calibration circuitry occupies less than 10%
of this area. Because synapse transistors store nonvolatile
analog trim values, we do not need large current-source
transistors or continuous trimming. To ensure calibration,
we force the DAC to periodically self-trim during idle states
or during powerup.

The DAC architecture is segmented, comprising six
binary-decoded lower least significant bits (LLSBs), 4 bi-
nary-decoded upper least significant bits (ULSBs) and four
thermometer-decoded most significant bits (MSBs). The
six lower bits (LLSB segment) rely on intrinsic matching
and are untrimmable; the eight upper bits (ULSB and
MSB segments) employ synapse transistors for calibration.
The digital circuitry comprises a static register to latch
the 14-bit input word. The lower ten flip-flops drive the
binary-weighted current-source arrays (six LLSB and four

(a)

(b)

Fig. 11. (a) DAC INL before and (b) after trimming. We trimmed
the ULSBs and MSBs to 0.5 LSB INL; the distribution in the
posttrim data is due to noise in the circuit and measurement setup
and to mismatch in an untrimmable LLSB bit.

ULSB); the upper 4 bits are thermometer decoded to drive
15 identical current sources.

An offchip state machine controls IHEI and tunneling in
the present chip; future designs will incorporate this state ma-
chine onchip. As we show in Fig. 11, trimming improves
static DAC linearity by roughly two orders of magnitude.
Because we trim the current sources, we avoid large cur-
rent-source transistors and their large parasitic capacitances.
Consequently, our DAC runs at 100 MSPS with a10-dBm
differential output, dissipating only 11 mW from a 3.3-V
supply. For more details, see [28].

C. Autonulling Amplifier

Most digital CMOS processes lack high-value linear re-
sistors. For this and other reasons, CMOS designers tend to
build operational amplifiers using switched-capacitor tech-
niques.1 We present an alternative continuous-time approach
that uses a synapse transistor, rather than switches and capac-
itors, to set a direct current (dc) value on a floating node. We
show the concept in Fig. 12.

Capacitors and set the op-amp’s closed-loop gain.
We apply a fixed high voltage to , causing a small elec-
tron current (typically femtoamps) to tunnel off the floating
gate. The op-amp compensates by lowering , causing
transistor to inject electrons back onto the floating gate.

stabilizes when the tunneling and injection currents are

1Low-noise and wideband amplifiers that employ low-value resistors are
counterexamples to this general claim.
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(a)

(b)

Fig. 12. (a) Autonulling amplifier. Frequency response is high
pass, with the low-frequency corner set byV . (b) Output
amplitude versus frequency. Reasonable corner frequencies range
from about a microhertz to about a kilohertz. Data show a 1-Hz
corner.

equal and opposite and the floating-gate voltage is equal (in
a dc sense) to . sets both the quiescent value of the
op-amp’s output and its adaptation rate: if we raise , we
lower and increase the adaptation rate. We describe the
low-frequency response using the term “adaptation” rather
than “time constant” because tunneling and injection are non-
linear processes, so the adaptation does not follow typical
time-constant dynamics [29]. Other researchers have used
this autozeroing concept in circuits such as filters [30] and
silicon retinas [31].

VI. I MPLICATIONS FORSILICON LEARNING

Because synapse transistors adapt locally and in parallel,
we believe they can provide huge performance gains in artifi-
cial neural networks and machine learning. These gains arise
from building systems in hardware rather than in software
and from analog computation using innate features of the
silicon-oxide physics rather than digital computation using
transistors as switches. We donot claim that synapse tran-
sistors enable systems we could not build in software or in
digital VLSI. Nonetheless, we envision extraordinary appli-
cations of synapse transistors to silicon learning. We demon-
strate the approach using two example circuits, which imple-
ment key neural-network and machine-learning algorithms:
1) competitive learning and 2) correlational learning.

A. Competitive-Learning Circuit

Competitive learning comprises a class of algorithms that
are useful for training classification and clustering networks
[32]. In a typical competitive-learning neural network, a
neuron’s synaptic weight vector represents a set of related
data points. Upon receiving an input, the neuron adapts,
decreasing the difference between its weight vector and the
input based on the following rule:

(6)

where is the weight vector of theth neuron, is the
learning rate, is the activation of theth neuron, and

is the input vector (boldface variables represent vectors
or matrices). A given neuron’s activation depends on the
similarity between the input and that neuron’s synaptic
weights. A neuron’s activation can be inhibited by other
neurons; hence, neurons compete for inputs.

Different kinds of inhibition lead to different network
learning rules. One example of an activation function is a
hard winner-take-all (WTA) [33], where if
is the weight vector most similar to the input and is zero
otherwise. The hard WTA leads to the most basic form of
competitive learning in which the neuron most similar to the
input updates its weight vector according to the rule

(7)

and the other neurons do not adapt. A soft WTA [34], [35]
leads to an online version of maximum-likelihood competi-
tive learning [36]. Imposing topological constrains on the in-
hibition leads to learning rules that are appropriate for self-
organizing feature maps [37].

Synapses in competitive-learning networks adapt to in-
crease the similarity between their weight vectorand the
input . In Fig. 13 we show a circuit, termed anautomax-
imizing bump circuitfor reasons that will become clear
shortly, which exhibits this behavior and can implement a
variety of clustering and classification networks based on
competitive learning.

The automaximizing bump circuit is an adaptive version
of a classic circuit called the bump-antibump [see Fig. 13(a)]
[38]. The classic bump computes a similarity and dissimi-
larity between two input voltages and and generates
three output currents. The center current is a measure
of the similarity between the inputs; the outside currents
and are a measure of the dissimilarity. In the classic bump,

is large if and approximates a Gaussian cen-
tered at . The term “bump” comes from ’s
Gaussian-like response. or are large when or

, respectively.
We revise the classic bump by replacing and

with synapses and adding cross-coupled n-channel
MOSFET (nFET) current mirrors [see Fig. 13(b)]. In
the revised bump, is large if , where

and ( and
are the charge on floating gates 1 and 2, respectively).
computes a similarity between the differential input
and a stored weight , where . If
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(a)

(b)

(c)

Fig. 13. (a) Classic bump–antibump circuit. (b) Automaximizing
bump circuit. To enable adaptation, we setV � 10 V and
V � 0 V. To disable enable adaptation, we setV < 8 V
andV > 2 V (these values are typical for a 0.35�m process).
(c) MeasuredI versusV � V for three stored weights� ,
� , and� . Stored weight changes the location of the bump peak,
but not its shape. Circuit allows a wide range of adaptation rates,
depending onV andV .

the mean value of is a nonzero real number, the
circuit shifts ’s peak away from and toward

, centering ’s Gaussian-like response
around . We interpret this shift as a weight stored by
the circuit and interpret as a similarity between the
differential input and the stored weight. We say
that the circuit “learns” .

Tunneling and IHEI together adjust to decrease the
difference between and the mean value of the input .

A high causes symmetric tunneling from both floating
gates. A low causes selective IHEI at either or ,
depending on the relative values ofand . If , the
nFET current mirrors pull node low and let node rise,
causing IHEI at and thereby increasing . If ,
the nFET current mirrors pull node low and let node
rise, causing IHEI at and thereby increasing . The cir-
cuit adapts both and to equalize and , thereby
equalizing and (for any input ). The cir-
cuit is automaximizingbecause and tell the circuit
when to adapt, but the circuit itself decides the direction and
magnitude of the adaptation. For more details on this circuit
see [39].

Although does not tell us whether or
, when we are computing the distance between the input

and , we are typically concerned with magnitude, not with
direction. Direction is important for computing weight up-
dates and we can use the antibump outputs to provide a di-
rection metric.

Fig. 14 illustrates onchip learning using the automaxi-
mizing bump. Fig. 14(a) shows a general architecture for
competitive learning. Each neuron is a cluster center in an

-dimensional input space, with a bump circuit (a weight)
for each dimension of that space. Each bump computes the
similarity between the component of the input in that dimen-
sion and its stored weight. The inhibitory circuit decides the
extent to which each neuron adapts to the input. Fig. 14(b)
shows a one-dimensional (1-D) circuit implementation com-
prising two bump circuits with a common input. Each bump
representing a 1-D cluster and each computes a similarity to
the input. A WTA decides which bump is closest to the input
(i.e., which bump has the larger ) and onchip feedback
generates and signals to update the selected bump.

Fig. 14(c) shows measured test data from the circuit in
Fig. 14(b). We applied as input a mixture of two Gaussians;
the circuit autonomously unmixed them by adapting a bump
to the mean of each of the Gaussians. For comparison, we
show the output of a software learning network in which the
neuron whose weight vector was closest to the input updated
its weight using the learning rule of (7). We applied identical
inputs to the simulated network and to the chip. The data
show clearly that the chip learns to cluster its inputs.

B. Correlational-Learning Circuit

Learning correlations or conditional probabilities be-
tween pairs of variables underlies a wide variety of
machine-learning algorithms. Outer-product rules (with
weight decay) learn correlations between synaptic inputs
and feedback signals. Maximum-likelihood classifiers base
their classification on conditional probabilities between
inputs and class labels. In sequence-learning models, such
as that proposed by Levy [40], synapses store the log-con-
ditional probability that a presynaptic spike occurred given
that the postsynaptic neuron spiked at a later time. Other
algorithms, such as temporal-difference learning [41] and
temporally asymmetric Hebbian learning [42], are based on
time-separated correlations. Consequently, a silicon circuit

DIORIO et al.: ADAPTIVE CMOS: FROM BIOLOGICAL INSPIRATION TO SYSTEMS-ON-A-CHIP 353



(a)

(b)

(c)

Fig. 14. (a) Architecture for competitive learning inn dimensions.
Each neuron represents a cluster, with a bump circuit for each input
and a single feedback block for the entire neuron (all bumps in a
neuron have commonV andV ). (b) Competitive-learning
network comprising two bump circuits, a WTA and feedback that
derivesV andV from the WTA output. (c) Comparison
between a chip that implements the network from (b) and an
equivalent software network that implements the learning rule from
(7). We drew the input data from a mixture of two Gaussians,
with 80% of the data drawn from the higher-mean Gaussian. We
plot the means learned by the circuit and the software simulation,
compared to the true means of the Gaussians. We set the learning
rate� in (7) to 0.01.

that learns correlations and conditional probabilities can
implement a wide variety of learning algorithms.

We have developed a 0.35-m CMOS circuit that can learn
either a correlation or a conditional probability between bi-
nary-valued input and feedback signals. Our circuit builds
upon previous work [15], [43], [44] and extends it in several
ways. First, the circuit implements a general learning prin-
ciple rather than a particular learning rule. Second, it can im-
plement learning rules that correlate temporally separate pre-
and postsynaptic activity. Third, it employs self-calibration

(a)

(b)

Fig. 15. (a) Correlational-learning circuit. (b) Equilibrium current
I versus the conditional probabilityP (X jY ), including a
fit from (10) with � = 0:7664.

to remove mismatch between the learning rates of individual
synapses.

We show the circuit in Fig. 15(a). The circuit stores an
analog current , multiplies by a binary input ,
and adapts to form either a conditional probability

or a correlation . is analogous
to a presynaptic input, is a presynaptic adaptation
signal that typically has some relationship with , is
analogous to a postsynaptic signal or error feedback, and

is the circuit’s weight. We can implement different
learning rules by altering the relationship between ,

and .
Transistor sources the output current . Because
’s control gate is tied to , depends solely on ca-

pacitor ’s stored charge. We adjust ’s drain voltage to
prevent IHEI. A second floating-gate transistor , whose
gate is connected to , enables IHEI. Simultaneously high
input signals and pull ’s drain low, injecting elec-
trons onto the floating gate and increasing . A high
tunnels electrons off the floating gate, decreasing. We
switch on or off using transistor ; this switching cor-
responds to multiplying the output (the circuit’s weight)
by a binary input signal .

We describe qualitatively how our circuit learns correla-
tions or conditional probabilities using an approach similar
to that in [43]. We begin by defining the circuit’s equilib-
rium output as that value of for which the ex-
pected values of the tunneling and IHEI currents are equal
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and opposite. We show that comprises a correlation
or a conditional probability over the statistics of and ,
the circuit learns , and, consequently, the circuit learns
a correlation or conditional probability that depends on
and .

We first describe IHEI and tunneling in terms of ,
, and . Consider IHEI. A joint binary event ( )

closes nFET switches and , pulling ’s drain
to ground and injecting electrons onto the floating gate.
The IHEI probability is the probability of the joint event
( ). Looking now at tunneling, if we hold high
during adaptation, the tunneling current will be approxi-
mately constant. If we instead useto gate a high-voltage
signal onto the tunneling implant, then tunneling will depend
on the probability of the event .

Consider the latter case in which tunneling depends
on . The injection and tunneling gate currents have
power-law relationships to and are given by [45]

(8)

(9)

where , , , and are constants that derive from the IHEI
and tunneling processes. We solve for by finding a
value for that equalizes and

(10)

where and is a preexponential current.
When tunneling depends on , the equilibrium output
approximates .

If we hold high rather than gating it with , the
in (10) changes to . The reason is

that tunneling becomes a quasiconstant leak off the floating
gate, but IHEI still depends on , so de-
pends only on . In this case, the circuit learns a
correlation.

forces a constant current through injecting transistor
, so adaptation naturally moves toward . If

, the tunneling gate current will exceed ’s
IHEI gate current, decreasing . If , the
IHEI current will exceed the tunneling current, increasing

. Because adaptation naturally moves toward
, the circuit learns the approximation to

given by (10). Fig. 15 shows measured versus the
conditional , including a fit from (10). Although
(10) only approximates a conditional probability, simula-
tions show that the mild nonlinearity does not degrade the
performance of typical learning networks appreciably.

1) Calibrated Correlational-Learning Circuit: Fabrica-
tion-induced mismatch among nominally identical synapse
transistors can prevent learning circuits from learning mean-
ingful values. Matching data, from synapses fabricated in a
0.35- m process, show that the oxide currents due to IHEI
vary by roughly 2:1 across a chip and those due to tunneling
by 1.5:1. We can model the effect as mismatch in the coef-
ficients and of (3) and (4). To illustrate the problem,
Fig. 16(b) shows equilibrium outputs from an array of six

(a)

(b)

(c)

Fig. 16. (a) Schematic of calibrated correlational-learning circuit,
with inputs that we use for calibration. (b) Equilibrium outputs for
an array of circuits identical to that in Fig. 15. (c) Postcalibration
equilibrium outputs for an array of circuits from (a).

correlational-learning circuits, all exposed to identical in-
puts. The mismatch-induced variation in the outputs is of the
same order of magnitude as that due to the input data, ren-
dering the array all but useless. Other researchers have noted
this same problem in other floating-gate systems [31], [44].

In our correlational-learning circuit, mismatch inand
leads to mismatched in (10). We solve this problem

using synapse transistors to match across multiple
circuits. Notice from (4) that IHEI varies linearly with
a synapse’s source current. By altering ’s source
current, we can alter , thereby matching across
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multiple circuits. We illustrate the approach using an array
of correlational-learning circuits and calibrate the circuits
using a variant of the self-convergent write mechanism from
Section IV-B.

We show the modified correlational-learning circuit in
Fig. 16(a) and postcalibration matching data in Fig. 16(c).
The primary change from the circuit in Fig. 15 is that we
converted into a synapse transistor, allowing us to
adjust ’s source current. We use self-convergence to
force to match a global calibration current , with

. If is larger in magnitude than
(i.e., if exceeds ’s drain current), then switch
will be turned on and active-low calibration pulses will
cause IHEI at transistor . When exceeds ,
will turn off, disabling IHEI.

In practice, we first erase the floating gates of all transis-
tors using tunneling to . We then turn off ,
enable and , apply a pulse train , and wait until
the gates of all transistors rise. comprises narrow ac-
tive-low pulses, giving time to adapt to the statistics of
its inputs when is high and adapting quickly when

is low. Fig. 16(c) demonstrates that we can reduce mis-
match to a small fraction of the circuit’s output.

VII. T ECHNOLOGY ISSUES

Synapse transistors have technological and reliability is-
sues similar to other NVM technologies, of which the most
critical are tunneling- and injection-induced damage to the
gate oxide, and charge leakage off the floating gate. Oxide
damage limits the number of read/write cycles in digital flash
memory and electrically erasable programmable read-only
memory (EEPROM) [46]. Although synapse transistors are
subject to the same damage mechanisms, their analog-valued
weight updates are typically much slower and smaller than
digital memory writes, so their oxide currents are three to six
orders of magnitude smaller than in flash memories or EEP-
ROMs. Consequently, in our experience, oxide damage has
not been an issue, even for synapse-based circuits that use
continuous tunneling and injection. Oxide trapping does de-
crease a synapse’s weight-update rates, forcing us to regulate
the tunneling and injection voltages. Synapse-based regula-
tion circuits allow us to control these voltages precisely.

The scaling of gate oxides to less than about 70thick-
ness causes floating gates to leak. This problem is not unique
to synapse transistors—it affects all NVM devices that use
floating gates. If anything, synapse transistors are far more
tolerant of oxide leakage because, in most situations, we use
them in circuits that adapt the stored charge on an ongoing
basis. If, however, we must store a memory for years without
updating, we use the 70oxide available in most dual gate-
oxide CMOS processes.

VIII. C ONCLUSION

We and other researchers are developing neurally inspired
chips that compute and adapt using innate features of the sil-
icon-MOS and silicon-oxide physics. Our rationale for this

research is that we believe local adaptation can be instru-
mental in modern IC design. We have demonstrated, by a
few simple circuits, how our synapse-based approach can ad-
vance SOC design and silicon learning. However, our discus-
sion only hints at the broad promise of this technology. As
digital circuits shrink to ever smaller feature sizes, the value
in the analog portion, which does not scale well, continues to
rise. Analog circuits that are simple to design because they
self-tune, are small because the transistors themselves com-
pensate for mismatch and degradations, and learn from their
inputs can bypass many of the bottlenecks in contemporary
IC design.

The circuits that we have built to date are small and simple,
primarily because they represent our baby steps in exploring
a new technology. As we and others learn how to use local
adaptation effectively, the circuits we build will mature. Our
confidence in this technology is rooted not in what we have
built to date, but rather in the existence proof provided by
neurobiology. Nature demonstrates good solutions to hard
engineering problems, using a neural substrate that continu-
ously adapts and learns and changes. We are merely copying
Nature.
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