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Local long-term adaptation is a well-known feature of the engineering [2]. We believe that the inspiration provided by
synaptic junctions in nerve tissue. Neuroscientists have demon-bio|ogica| synapses holds even more promise today than it

strated that biology uses local adaptation both to tune the ¢ in the past, in part because huge opportunities still exist
performance of neural circuits and for long-term learning. Many

researchers believe it is key to the intelligent behavior and the {0 develop negrgl-nethrk hardware and_ i_n part b_ecaflse
efficiency of biological organizms. Although engineers use adap- of challenges in integrating analog and digital circuitry in
tation in feedback circuits and in software neural networks, they modern systems-on-a-chip (SOCSs).

do not use local adaptation in integrated circuits to the same Although contemporary implementations of neural net-

extent that biology does in nerve tissue. A primary reason is that K d hine-| . 1gorith | t entirel
locally adaptive circuits have proved difficult to implement in WOrks and machine-learning aigorithms are aimost entirely

silicon. We describe complementary metal-oxide—semiconductorSoftware bas‘:'_!d, th(_'l‘l’e remains the_ prospect for h_l-_lge perfor-
(CMOS) devices called synapse transistors that facilitate local mance gains if engineers could build hardware (silicon) ver-
long-term adaptation in silicon. We show that synapse transistors sjons of these networks. Because all-digital learning hard-

enable self-tuning analog circuits in digital CMOS, facilitating \yare requires costly circuits (in terms of die size and power)
mixed-signal systems-on-a-chip. We also show that synapse tran-

sistors enable silicon circuits that learn autonomously, promising such as multipliers, researchers continue explorlng_analog
sophisticated learning algorithms in CMOS. hardware [3]. Unfortunately, large-scale analog learning has

to date eluded researchers. A primary reason is the lack of

Keywords—Adaptive, local learning, neural, SOC, synapse a simple way to enable local parallel online adaptation in

transistor. »
silicon.
The scaling of silicon integrated-circuit processing
. INTRODUCTION to deep-submicrometer feature sizes poses significant

The synapses and neurons in animal brains encode anghallenges for SOC design. On the positive side, scaling
process information using electrical and chemical signaling, Increases the density and speed of digital complementary
with extraordinary efficiency, under incredibly tight power Metél—oxide-semiconductor (CMOS). On the negative side,

and supply-voltage constraints [1]. These same synapse§ca|ing burdens analog CMOS with low transistor-break-

and neurons are poorly matched across nerve tissue, degrad%_ovr\:n \;?Ifg:’ -pﬁoorgtrsnilsm-rng]aéf:rlng(’)ﬁ'nnde:?;bi?; er of
over life, and do not even have a common supply voltage Igh-valu sistors, high-Q inductors, or | pacitors.

. SOC applications typically require deep-submicrometer
or a common ground. These observations have led many - o7 .
) . .~ .~ 7CMOS for the digital circuitry, but have analog inputs
researchers (us included) to study biology for inspiration . . o
. ) . . . . and/or outputs. To enable mixed-signal SOC applications,
in engineering design. They have also provided impetus

f h in artificial | network d hi engineers need a simple way to design precision analog
or research In artificial neural NEworks and NEUromorpiic ;. jits side by side with digital logic in standard digital
CMOS processes.
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[5]. We believe that if engineers had a simple means to in- source

corporate local parallel adaptation in their silicon chips, like readout control
neurobiology does in nerve tissue, they could greatly advance PFET gate
learning-network and SOC performance and applications. drain \A

We and others [6] have spent years developing silicon de-
vices that mimic the adaptive synapses nervous systems us€ig. 1. Simplified circuit model for a pFET synapse. Electron
for memory and learning. The result is a family of single- tunneling and injection modify the gate offset voltage
transistor devices we cadlynapse transistorf/]-[12] that

implement long-term nonvolatile analog memory, allow bidi- source  contact c%(ﬁtyrgl ﬂ%(:tyixig n* well

rectional memory updates, and learn from an input signal ™4 &€ gife contact

without interrupting the ongoing computation. Although we L -

do not believe that a single transistor can model the complex =it

behavior of a neural synapse completely, our synapse tran- 3

sistors do implement long-term local learning: their output f :

depends not only on the present input, but also on a history vz N

of prior inputs. | | o -
Synapse transistors allow us to build silicon chips that ﬁ:fg;f: c{’i;fﬂ;?;g (Sﬁorfégf;;‘g‘})

learn and adapt locally and autonomously in a fashion sim- @

ilar to that used by biology (we believe) to tune its circuits.
Using them, we can build both precision analog circuits Interpoly dielectric LOCOS or STI
and artificial learning networks in digital CMOS. We begin

this paper by first describing synapse transistors because
they are the key enabling technology. Fundamentally, they
are metal-oxide—semiconductor (MOS) transistors that
tune their performance during normal device operation.

gate eleétron gate electron
We then demonstrate by several working examples how oxide injection oxide  tunneling
synapse transistors can enable mixed-signal SOC and p_subsirate
silicon-learning networks. These examples, all fabricated in (b)
digital CMOS, include a digital-to-analog converter (DAC)
with 6-bit intrinsic accuracy that trims electrically to 14  +Vy * electron __ /e' impact fonization
mjection

bits and an unsupervised competitive-learning circuit that
learns to unmix a mixture of Gaussians. We conclude with a

o

. . n
discussion of current and future process-related technology , o
. floating gate »
issues. 39 E— L) PT__ foatin o

501 E,
hole .
tunneling

source channel implant

Il. PFET SYNAPSE TRANSISTOR

electron band potential (V)

We define synapse transistors to be conventional transis- 1004
tors with the following additional attributes: 1) nonvolatile position (um)>
analog weight storage; 2) locally computed bidirectional ©
weight updates; and 3) simultaneous memory reading and_. , _

L Wi floating-aate metal—oxide—semiconductor Fig. 2. pFET synapse, showing the electron tunneling and
ertlng. € use_ oatng-g — — injection locations. (a) Top view. (b) Side view. (c) Electron band
field-effect transistors (MOSFETS) as the basis for all of our diagram. We aligned the three diagrams vertically, dreand
synapse transistors. Our synapses use floating-gate charge tp t© scale, exaggerated the vertical scaldsinand assumed

h latil | iah | li subthreshold operatiod( < 100 nA and a 0.35:m process.
represent the no_n\{o at“ € ana Og. weight, e ?Ctron tunneling Although the gate oxide’s band diagram projects vertically, to
and hot-electron injection to modify the floating-gate charge better illustrate the injection process, we rotated it by 8ad
bidirectionally, and allow simultaneous memory reading drew it in_the channel direction. We_deqreasg the synapse weight

d writina b fth hani ite th by tunneling electrons to the tunneling junction and increase the
and writing by nature of the mec an_'sms we use to_ write the weight by injecting electrons from the drain region to the floating
memory. We have developed a family of such devices [10], gate. Our tunneling junction comprises a shorted pFET in an n-well,
but primarily use just one. a p-channel MOSFET (pFET) for two reasons. First, a lightly doped n-well can accommodate

b fi ' ibili ith dard digital high positive voltages without pn-junction breakdown to substrate.
synapse ecau_se of its compatibility with standar igita Second, a shorted pFET in an n-well is a valid structure (that
CMOS processing. satisfies design rules) in any CMOS process.

We show a conceptual model for a pFET synapse in Fig. 1
and the layout and band diagram [13] in Fig. 2. The synapsethe readout pFET’s threshold voltage bidirectionally. The
comprises two MOSFETS: the first is a readout transistor; synapse uses Fowler—Nordheim (FN) tunneling [14] to
the second, with shorted drain and source, forms a tunnelingremove electrons from its floating gate and impact-ionized
junction. From the control gate’s perspective, removing hot-electron injection (IHEI) [15] to add electrons to the
electrons from or adding electrons to the floating gate shifts floating gate.
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Key features of this synapse are: 1) the readout transistor 19} . T T EEENEE SR 9
remains a fully functional pFET,; 2) high voltages applied to ' ;
the tunneling junction tunnel electrons off the floating gate;
and 3) large drain-to-source voltages cause IHEI at the drain,
injecting electrons onto the floating gate.

A. Readout Transistor Remains a Fully Functional pFET

-1,=8.18x107%e "™
: where V, =984V

We apply signal inputs to the second-level polysilicon
(poly2) control gate, which, in turn, couples capacitively to
the first-level polysilicon (polyl) floating gate (see Fig. 2).
From the control gate’s perspective, the transistor remains Vot 0 Do 002 ooz
a conventional pFET, albeit with reduced coupling to the —1/ oxide voltage (1/V)
channel because of the intervening polyl capacitor. ' _ )

If we operate the MOSFET in its subthreshold regime [16], Fig- 3. Tunneling (gate) currenft, versus—1/V.,, for a synapse
the synapse is well suited for neural network applications. '22ricated in a 3:m CMOS processic, is the potential between

ynap ) ) Pp * the tunneling junction and the floating gate. We normalized the gate
The reason is that a subthreshold floating-gate pFET per-current to the tunneling-junction (gate oxide) area.
forms a multiply operation as follows:

gate current / oxide area (A/pm?)
=

I ] Ve U _ [ r(QuigtCinVin)[(CrlL) fabricated in 2- and 0.3@m processes. We fit these data
s e o using a simplified FN fit [14], [18]
:Iersrg/QTe(N Vin)/ Ut 1)

=W Loelr Vil (2) Iy = —Iipe™ "1/ Vox 3)

where I, is the source current/, is a preexponential
current,« is the coupling coefficient from floating gate to
channel, V¢, is the source-to-floating-gate voltag€ss,
is the floating-gate charge (source referencé&dy, is the
total capacitance seen by the floating géfejs the thermal
voltage kT'/q, Ciy, is the input (polyl to poly2) coupling
capacitanceVi, is the control-gate voltag€)r = CtU; /k, o )
K = kCin/Cr, andW = exp(Q.g;/Qr). The synapse C. Electron Injection Increases the Weight
We|ghtW is a learned quantity: its value derives from the We increase the Synapse We|g’t7it by injecting electrons
floating-gate charge, which can change with synapse use.gnto the floating gate. As shown in the energy-band dia-
The synapse output is the product Bf and the source  gram of Fig. 2, channel holes, accelerated in the transistor's
current of an idealized MOSFET that has a control-gate channel-to-drain depletion region, can collide with the semi-
input Vi, and a coupling coefficient’ from the control gate  conductor lattice and liberate additional electron-hole pairs.
to the channel. The ionized electrons, promoted to their conduction band
For CMOS processes without poly2, we can use a MOS py the collision, are expelled from the drain by the same
capacitor as an input capacitor [17] or, for applications that channel-to-drain electric field. Electrons expelled with more
can tolerate the (small) charge leakage that occurs when Wethan 3.1 eV of kinetic energy, if scattered upward into the
add a contact to the floating gate, we can connect thefloatinggate oxide, can overcome the 3.1-V difference in electron
gate to a metal-insulator—-metal capacitor. Alternatively, we affinity between the Si and SiOconduction bands, inject
sometimes use no capacitor (i.e., no gate input) at all; in this jnto the SiQ, and be collected by the floating gate.
case, the synapse becomes a tunable current source. In Fig. 4, we plot IHEI efficiency (defined as gate cur-
rent, divided by source currert) for synapses fabricated
B. Electron Tunneling Decreases the Weight in 2- and 0.35xm processes. We plot the data as efficiency
We decrease the synapse weiffiby tunneling electrons ~ because gate current increases linearly with source current
from the floating gate to the tunneling junction (the shorted over the entire subthreshold range; predictably, because the
pFET and its associated n-well). Positive high voltages on the gate current derives from the hot-electron population and this
tunneling junction cause electron tunneling. We illustrate the population, in turn, increases linearly with the source current.
FN-tunneling process in the energy-band diagram of Fig. 2. For a 0.35zm synapse, when the readout transistor's
A potential difference between the tunneling junction and source-to-drain voltagé&, is less than 3V, the IHEI gate
the floating gate reduces the effective oxide thickness, facil- current is exceedingly small and the weight remains
itating electron tunneling from the floating gate, through the nonvolatile. WhenV.y exceeds 3.5 V, the gate current
SiO, barrier, and into the oxide conduction band. The oxide causes measurable changes in the synapse weighte

wherel, is the gate currenty, is the oxide voltage (well
voltage minus floating-gate voltage); is a constant that
depends primarily on oxide thickness, ahg is a preexpo-
nential currentl, is negative because tunneling reduces the
weight W.

electric field then sweeps these electrons to the n-well. approximate the data of Fig. 4 with a simple exponential
In Fig. 3, we show tunneling current (oxide current) versus
the reciprocal of the voltage across the oxide for synapses I, = BLe¥ea/Vini (4)
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Fig. 5. Synaptic array. Column synapses share a common
tunneling wire, meaning that they share a common tunneling well.

Fig. 4. IHEI efficiency (gate curreni, divided by source current
1,,) versus channel-to-drain potentidl,, for synapses fabricated

in 2- and 0.35:m processes. We reference the drain voltage to
the channel because the hot-electron population derives from the r T T T T
channel-to-drain electric field. Source-to-drain voltage is a few 7 {2,1} and {2,2} synapses

hundred millivolts smaller thal.q. In the subthreshold regimé, :

increases linearly witlf, ; consequently, these data show the IHEI
efficiency for the entire subthreshold source-current range.

{1,2} synapse

wherel, is the gate current, is the source currentq is the tunneling THEI

channel-to-drain potential, athndV;,; are fit constantsl,
is positive because IHEI increases the weight

-9 {1,1} synapse

source current (A)

Ill. GATE-CURRENT EQUATION -10]

In a synapse transistor, we csimultaneouslyl) read the 0 360 1000 1500
channel current; 2) raise the tunneling voltage, causing elec- time (s)

trons to tunnel off the floating gate; and 3) lower the drain (@)

voltage, causing IHEI. We obtain a final gate-current equa-

tion by adding (3) and (4) 107k

" {1,1} synapse '

I, = /ﬂsevcd/w“j e Vil Ve o

assuming subthreshold source curreitsThe restriction to
subthreshold source currents is solely for reasons of math-
ematical tractability. The synapse is fully functional with
above-threshold source currents, but the dynamics are more
complicated (and are beyond the scope of this paper).

source current (A)

: {1,2} synapse :

{2,1} and {2,2} synapses

IV. SYNAPTIC ARRAYS

1000 1500 2000

In applications that use large numbers of synapse transis- time (s)
tors, such as analog memories or neural networks, we use ()

arrays of synapses rather than isolated devices. Although ar-Fig_ 6. Synapse isolation in the array of Fig. 5, fabricated in a

rays provide dense synapse pa_cking_ and simple "?‘dd_re_ssmglpm CMOS process. (a) Tunneling down, then injecting backup.
they must not compromise the isolation between individual We first initialized all four synapses th = 100 nA. We tunneled

synapses and must provide a means for writing and erasing®ynapse {1,1} down to 100 pA, then injected it back up to 100 nA,
hile measuring the source currents of the other three synapses.

synapses easily. \_Ne fa_bricated the array shown in Fig. 5 t0: crosstalk to the {1,2} synapse, defined as the fractional change in
1) verify synapse isolation and 2) demonstrate a self-conver-the {1, 2} synapse’s source current divided by the fractional change

ent technique for writing individual synapses. In the {1,1} synapse’s source current, was 0.004% during unneling
9 q 9 ynap and was 0.005% during injection. (b) Injecting up, then tunneling

back down. We first initialized all four synapsesfo= 100 pA.
We injected the {1,1} synapse up to 100 nA, then injected it back

A h i d drai . . down to 100 pA. Crosstalk to the {1,2} synapse was 0.016% during
rray synapses share tunneling an rain wires; con- injecting and 0.007% during tunneling. In both experiments, the

sequently, tunneling or injecting one synapse can causecrosstalk to the row 2 synapses was negligible.

undesired tunneling or injection at another synapse. To mea-

sure synapse isolation, we tunneled and injected the {1,1} be the fractional change in a deselected synapse’s source
synapse in Fig. 5 over a three-decade range, while measuringurrent divided by the fractional change in the selected
the crosstalk to the other synapses. We define crosstalk tosynapse’s source current. The data in Fig. 6 show that the

0 500

A. Synapse Isolation

348 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 3, MARCH 2002



V Notice that the synapse in Fig. 7 (comprising the two

tun
Vag ﬂ Vag pFETs and the gate capacitor) is identical to an array
}_T element in Fig. 5. Consequently, we can use self-convergent
I"_Y_| mechanisms to write array synapses, by placing switches
Idl Wy C and current sources in the row-drain wires and by using
SW, the column-gate wires to select a column for writing. We

I monitor the row-drain voltages using sense amplifiers and
ref open each switch to stop the write when its corresponding
drain rises to a predetermined voltage. To read a column, we
lower the appropriate column-gate wire and read the drain
currents of all the transistors in the column.

V. IMPLICATIONS FORSOC

3 S
= g,, Developing single-chip solutions to mixed-signal prob-
§ = lems poses difficult engineering challenges. Contemporary
> . . . .
S £ integrated circuits (ICs) such as a scanner-on-a-chip or a
£ £ Bluetooth transceiver-on-a-chip require integrating dig-
ital, analog, radio frequency (RF), and, often, nonvolatile
: » : memory (NVM) on a single die. These systems need
% 0.25 05 075 To° large amounts of digital logic, necessitating fabrication in
time (ms) deep-submicrometer digital CMOS. And therein lies the
®) problem. The low supply voltages, poor transistor matching,
Fo 7 Self . tes. (s) Circuit. (5) SPICE and absence of linear capacitors and resistors make analog
9. 7. elr-convergent memaory writes. (a, Ircuit. : . s 23
simulation showing the pFET’s drain voltagg and drain current and RF deS|gn _m d|g|tal CMOS dIﬁICUI_t' Furthermore,
I; during a write. We first tunnel electrons off the floating gate digital CMOS with embedded NVM typically lags two
srt])Idb< Tier (not Sfbt\)lwnlinthe S.in&lilllstion),tum off tunn%"ng, process generations behind digital CMOS without NVM.
then begin writing. We close switcfilV, att = 0, causingVy to var-mn-a.rhi
drop, electrons to inject onto the floating gate, dndo rise. As Cont.emporary goals such as.a.cellula.r transce'yer on-a-chip
I, approached,., Vy rises, turning off the injectionl, reaches require huge amounts of digital logic, RF with 100-dB
%9% ofits finaldvalue in l4gtS-Wﬁ read the memhorydby apzlying dynamic range, 16-bit analog baseband with 5-50 MHz
/4 = 1.7 V and measurindy, with an accuracy that depends on - :
the circuit details but can be better than 1%. Simulation parameters bandwidth [19]’ and, Idea”y’ NVM' . .
wereVyy = 6V, C =5 fF, Ior = 10 pA. Synapse transistors afford significant benefit to SOC

design. We have used them to store direct currents and

crosstalk between selected and deselected synapses is le¥9ltages, match multiple current sources to a common
than 0.01% during tunneling and is less than 0.02% during "éférence, set operating points for capacitive-feedback
IHEI. The reason for the good isolation can be seen from OPerational amplifiers, balance mixers for improved image
(5) and from the data in Figs. 3 and 4: both tunneling and "ejection, and store nonvolatile memories. By using onchip
IHEI are steep exponentials. Consequently, we can storef@@dback to slowly and carefully adjust a synapse tran-
precise analog values in a synaptic array without significant Sistor's floating-gate charge, we can trim analog circuits

degradation due to crosstalk. to 16-bit accuracy [20]. The possibilities appear limitless.
Consequently, rather than trying to describe all the possi-
B. Self-Convergent Memory Writes bilities here, we will instead illustrate with three examples

Because synapse transistors allow simultaneous memorysome of the benefits of this technology. These examples are:
1) a mixed-signal finite-impulse response (FIR) filter; 2) a

reading and writing, we can use negative feedback to store . i . >
accurate memory values. As an example, Fig. 7 shows a selfPrecision DAC; and 3) an autonulling amplifier.
convergent memory write. We store the memory values as , ) ,
drain currently. The write process works as follows: assume A Mixed-Signal FIR Filter

that, initially, 7, is smaller in magnitude than the program- FIR filters are standard building blocks in signal-pro-
ming currentl,.;. To write, we apply/,. using switchSW. cessing systems. Although digital-in/digital-out filters are
As long adl,; exceedd, the synapse’s drain voltage willbe  the norm, analog-in/digital-out and digital-in/fanalog-out
held low, causing electrons to inject onto the floating gate and filters are not uncommon. One example of the latter is a
thereby increasindy. As 14 approached,.¢, the synapse’s  pulse-shaping filter used to limit out-of-band spectral energy
drain voltage will rise, turning off the injection. IHEI closesa in communications systems [21]. The typical approach uses
negative feedback loop around the inverting amplifier formed a digital signal processor (DSP)-based FIR filter followed
by the pFET and thé,.; current source. This intrinsic feed- by a DAC.

back mechanism adapts the floating-gate charge to equalize DSP chips are reconfigurable and easy to use, but tend
the programming and pFET-drain currents, stotifagin the to be large and power hungry. Applications that require
synapse transistor. both high throughput and low power use full-custom digital
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Fig. 8. (a) FIR filter architecture. We use a 7-bit digital delay line (b)

and store the tap weights on synapse-based analog memory cells.
Multipliers are differential MDACs. Chip output is a differential
current, comprising the sum of the currents from the 16 MDACs.
(b) Filter layout. Digital components account for 48% of the die
area, MDACs 35%, and analog memory cells 17%.

VLSI. However, even custom digital cannot overcome the
area and power cost associated with an FIR filter's multi-
pliers and adders [22]. Furthermore, systems with analog

voltage output (mV)

outputs still must integrate a precision DAC on the same "0 200 400 60 80 1000
chip as the digital circuitry. All-analog solutions are rarely time (ns)

viable because implementing analog delay lines and storing (©

anaIOg tap WelghtS is difficult. Fig. 9. FIR filter in a DS-CDMA despreading application. We

Although we cannot yet implement analog delay lines applied as input a 100-Mb/s CDMA-like input, comprising two
using synapse transistors, we can store analog tap valuespitstreams encoded using orthogonal bases. We set the tap weights
We have developed a digitalin/analog-out FIR fiter that |%05c0% I taied bos, @) ot istear nd e bess e
comprises a 16-tap digital delay line, 16 synapse transistorsrecover the data. (c) Reconstructed data for 64 (superimposed)
to store the 16 (analog) tap coefficients and 16 multiplying experiments, showing reconstruction noise.
DACs (MDACs) to multiply the digital data by the tap
coefficients. The chip consumes 3 mW from a 3.3-V supply bitin a digital latch. Each MDAC generates a differential cur-
at a 225-MHz clock rate and occupies 0.13 fof die rent; we sum the currents from the 16 MDACs to create a dif-
area in 0.352m CMOS. Although the present chip employs ferential current output for the entire chip. For more details,
uncalibrated 7-bit MDACs, for precision applications we see [23].
can substitute the 14-bit synapse-calibrated DAC described To verify performance, we tested the filter in a simple
in Section V-B. Similarly, although the present chip uses 16 direct-sequence code-division multiple-access (DS-CDMA)
taps, we can easily scale the approach to 64 or more taps. despreading application [24]. We encoded two user bit-
Fig. 8(a) shows the filter architecture and Fig. 8(b) shows streams with orthogonal signatures and added them to form
the chip layout. A 7-bit 16-tap digital delay line shifts the a combined signal at a 100-Mb/s chip rate. We programmed
input signal across the filter. We store each tap coefficient’s the synapse tap coefficients with one of the users’ signa-
magnitude in a synapse-based memory cell that we can indi-tures and used the filter to recover the original bitstream.
vidually erase and write. We store each tap coefficient’s sign Fig. 9 shows the experimental results. From the measured
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Fig. 10. DAC block diagram. A digital register latches the codeword

input. Ten LSBs are binary decoded; four MSBs are thermometer (@)
decoded. Extra LSB input is for trimming. LLSB segment is an
untrimmable current-source array; the ULSB and MSB segments
are trimmable arrays. Output is a differential current. We generate
the injection and tunneling voltages offchip; future designs will
generate these voltages using onchip charge pumps.

signal-to-noise ratio at the output, we determined that the
filter supports an input dynamic range of 42.6 dB, which is
consistent with the 7-bit resolution of the input data stream.

integral nonlinearity (LSBs)

8000

B. Precision Digital-to-Analog Converter
codeword

Many applications, including those for emerging commu- (b)
nications systems, require DACs with sample rates inthe tensrig, 11. (a) DAC INL before and (b) after trimming. We trimmed
to hundreds of megasamples per second, at resolutions ofhe ULSBs and MSBs to 0.5 LSB INL; the distribution in the
10-18 bits [19]. SOC integration poses the additional con- Posttrim data is due to noise in the circuit and measurement setup
. . . .. and to mismatch in an untrimmable LLSB bit.
straint of compatibility with standard digital CMOS. Cur-
rent-steering DACs [25] are ideal for these applications be-
cause they are fast and can drive an output load without aULSB); the upper 4 bits are thermometer decoded to drive
voltage buffer. Their linearity, however, is limited by mis- 15 identical current sources.
match in the current-source transistors. An offchip state machine controls IHEI and tunneling in
To reduce mismatch, DAC designers use large transistors,the present chip; future designs will incorporate this state ma-
randomized layout, laser trimming, continuous electrical chine onchip. As we show in Fig. 11, trimming improves
trimming, or other approaches [5], [26], [27]. These tech- static DAC linearity by roughly two orders of magnitude.
niques increase die area and power dissipation substantiallyBecause we trim the current sources, we avoid large cur-
What DAC designers need is a small nonvolatile electrically rent-source transistors and their large parasitic capacitances.
trimmable current source. Synapse transistors fit the bill Consequently, our DAC runs at 100 MSPS witk 40-dBm
perfectly. differential output, dissipating only 11 mW from a 3.3-V
Our 14-bit DAC, fabricated in a 0.2pm digital CMOS ~ supply. For more details, see [28].
process, uses synapse transistors to trim its current sources.
Fig. 10 shows a block diagram. The DAC die area is C. Autonulling Amplifier
0.17 mnt; the calibration circuitry occupies less than 10%  \ost digital CMOS processes lack high-value linear re-
of this area. Because synapse transistors store nonvolatilgistors. For this and other reasons, CMOS designers tend to
analog trim values, we do not need large current-source pild operational amplifiers using switched-capacitor tech-
transistors or continuous trimming. To ensure calibration, piquest We present an alternative continuous-time approach
we force the DAC to periodically self-trim during idle states  that uses a synapse transistor, rather than switches and capac-
or during powerup. itors, to set a direct current (dc) value on a floating node. We
The DAC architecture is segmented, comprising six show the concept in Fig. 12.
binary-decoded lower least significant bits (LLSBs), 4 bi-  Capacitors?; andC, set the op-amp’s closed-loop gain.
nary'dECOded upper least Significant bits (ULSBS) and four We app|y a fixed h|gh Vo|tage 17/ Causing a small elec-
thermometer-decoded most significant bits (MSBs). The tron current (typically femtoamps) to tunnel off the floating
six lower bits (LLSB segment) rely on intrinsic matching gate. The op-amp compensates by lowerifg;, causing
and are untrimmable; the eight upper bits (ULSB and transistorM, to inject electrons back onto the floating gate.
MSB segments) employ synapse transistors for calibration. y,, . stabilizes when the tunneling and injection currents are
The digital circuitry comprises a static register to latch

the 14-b|t' input word. The lower ten fl|p-ﬂops drive the ! ow-noise and wideband amplifiers that employ low-value resistors are
binary-weighted current-source arrays (six LLSB and four counterexamples to this general claim.
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Viun Va A. Competitive-Learning Circuit

Competitive learning comprises a class of algorithms that
(O} are useful for training classification and clustering networks
[32]. In a typical competitive-learning neural network, a
neuron’s synaptic weight vector represents a set of related
data points. Upon receiving an input, the neuron adapts,
decreasing the difference between its weight vector and the
— input based on the following rule:
V
Ve >——+ B Api = px o (N) x (x = ) ©)
where i, is the weight vector of théth neuron,p is the
(@) learning rateg(V;) is the activation of théth neuron, and
25 — : x is the input vector (boldface variables represent vectors
L RN or matrices). A given neuron’s activation depends on the
similarity between the input and that neuron’s synaptic
weights. A neuron’s activation can be inhibited by other
neurons; hence, neurons compete for inputs.

Different kinds of inhibition lead to different network
learning rules. One example of an activation function is a
hard winner-take-all (WTA) [33], where(N;) = 1 if p,
is the weight vector most similar to the input and is zero
otherwise. The hard WTA leads to the most basic form of
1 competitive learning in which the neuron most similar to the
frequency (Hz) input updates its weight vector according to the rule

(b)
. . . . Ap=px(x—p) )

Fig. 12._ (a) Autonulling amplifier. Frequency response is high
pass, with the low-frequency corner setBiy... (b) Output and the other neurons do not adapt. A soft WTA [34], [35]
amplitude versus frequency. Reasonable corner frequencies range leads to an online version of maximum-likelihood competi-
from about a microhertz to about a kilohertz. Data show a 1-Hz : - - y ) p g
corner. tive learning [36]. Imposing topological constrains on the in-
hibition leads to learning rules that are appropriate for self-
organizing feature maps [37].

Synapses in competitive-learning networks adapt to in-

floating
gate

gain (dB)

equal and opposite and the floating-gate voltage is equal (in

adc ser?se) Wt V““.‘ sets bOth. the qw.e_scent v_alue of the crease the similarity between their weight vegigrand the
op-amp’s output and its adaptation rate: if we rdisg,, we . . A
input x. In Fig. 13 we show a circuit, termed @utomax-

lower V.« and increase the adaptation rate. We describe the. .. - .
. M o imizing bump circuitfor reasons that will become clear

low-frequency response using the term “adaptation” rather . o . ) X

B . o shortly, which exhibits this behavior and can implement a
than “time constant” because tunneling and injectionare non-~_ . : s
. . . variety of clustering and classification networks based on
linear processes, so the adaptation does not follow typical ompetitive learnin
time-constant dynamics [29]. Other researchers have used©MP g

; . AL , The automaximizing bump circuit is an adaptive version
this autozeroing concept in circuits such as filters [30] and ST . .

. : of a classic circuit called the bump-antibump [see Fig. 13(a)]
silicon retinas [31].

[38]. The classic bump computes a similarity and dissimi-
larity between two input voltagels; and V> and generates
three output currents. The center currépty is a measure
of the similarity between the inputs; the outside currdits
Because synapse transistors adapt locally and in paralleland, are a measure of the dissimilarity. In the classic bump,
we believe they can provide huge performance gains in artifi- 1,,,;4 is large ifV; = V5, and approximates a Gaussian cen-
cial neural networks and machine learning. These gains arisetered atV; — V; = 0. The term “bump” comes fronf,;;4’s
from building systems in hardware rather than in software Gaussian-like responsg. or I, are large wherv; >> V, or
and from analog computation using innate features of the V, >> Vi, respectively.
silicon-oxide physics rather than digital computation using  We revise the classic bump by replacidd; /A3 and
transistors as switches. We dot claim that synapse tran- M- /M, with synapses and adding cross-coupled n-channel
sistors enable systems we could not build in software or in MOSFET (nFET) current mirrors [see Fig. 13(b)]. In
digital VLSI. Nonetheless, we envision extraordinary appli- the revised bump/iq is large if Viz; = Vi, where
cations of synapse transistors to silicon learning. We demon-V;,; = Vi + Q1/C1 andViee = Vo + Q2/Cs (Q1 and @
strate the approach using two example circuits, which imple- are the charge on floating gates 1 and 2, respectivély).
ment key neural-network and machine-learning algorithms: computes a similarity between the differential inpiyt— V5
1) competitive learning and 2) correlational learning. and a stored weight, wherey = Q2/Cs — Q1/C4. If

VI. I MPLICATIONS FORSILICON LEARNING
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(b)

0 04 -0.2 0 0.2 0.4
Ve ¥y (V)
()

Fig. 13. (a) Classic bump—antibump circuit. (b) Automaximizing
bump circuit. To enable adaptation, we ¥g{,, ~ 10 V and

Vin; ~ 0 V. To disable enable adaptation, we ¥&t, < 8 V
andVi,; > 2 V (these values are typical for a 0.85n process).

(c) Measured ;4 versusV; — V5 for three stored weightg,

12, andus. Stored weight changes the location of the bump peak,
but not its shape. Circuit allows a wide range of adaptation rates,
depending oV, andViy;.

the mean value of; — V; is a nonzero real number, the
circuit shifts/,,,;q’'s peak away fron¥; — V, = 0 and toward
Vi — Vo = u, centeringl;q’'s Gaussian-like response
aroundu. We interpret this shift as a weight stored by
the circuit and interpref,,,;q as a similarity between the
differential inputV; — V, and the stored weight. We say
that the circuit “learns’y..

Tunneling and IHEI together adjust,;;, to decrease the
difference betweepn and the mean value of the inpidt— V5.

A high V;,, causes symmetric tunneling from both floating
gates. A lowV;,; causes selective IHEI at eithéf; or M,
depending on the relative valuesifandls. If I; > I», the
NFET current mirrors pull nod& low and let nodeA rise,
causing IHEI atd, and thereby increasing. If 1o > I,

the nFET current mirrors pull nodd low and let nodeB
rise, causing IHEI ab/; and thereby increasing . The cir-
cuit adapts both}; and Q- to equalizel/; and I, thereby
equalizingVss1 and Vieo (for any inputVy — V). The cir-
cuit is automaximizingpecausé/ .., andViy; tell the circuit
when to adapt, but the circuit itself decides the direction and
magnitude of the adaptation. For more details on this circuit
see [39].

Although I,,,;4 does not tell us whethér; > V; or V5 >
V1, when we are computing the distance between the input
andgu, we are typically concerned with magnitude, not with
direction. Direction is important for computing weight up-
dates and we can use the antibump outputs to provide a di-
rection metric.

Fig. 14 illustrates onchip learning using the automaxi-
mizing bump. Fig. 14(a) shows a general architecture for
competitive learning. Each neuron is a cluster center in an
n-dimensional input space, with a bump circuit (a weight)
for each dimension of that space. Each bump computes the
similarity between the component of the input in that dimen-
sion and its stored weight. The inhibitory circuit decides the
extent to which each neuron adapts to the input. Fig. 14(b)
shows a one-dimensional (1-D) circuit implementation com-
prising two bump circuits with a common input. Each bump
representing a 1-D cluster and each computes a similarity to
the input. A WTA decides which bump is closest to the input
(i.e., which bump has the largéy,;q) and onchip feedback
generated’,, andViy; signals to update the selected bump.

Fig. 14(c) shows measured test data from the circuit in
Fig. 14(b). We applied as input a mixture of two Gaussians;
the circuit autonomously unmixed them by adapting a bump
to the mean of each of the Gaussians. For comparison, we
show the output of a software learning network in which the
neuron whose weight vector was closest to the input updated
its weight using the learning rule of (7). We applied identical
inputs to the simulated network and to the chip. The data
show clearly that the chip learns to cluster its inputs.

B. Correlational-Learning Circuit

Learning correlations or conditional probabilities be-
tween pairs of variables underlies a wide variety of
machine-learning algorithms. Outer-product rules (with
weight decay) learn correlations between synaptic inputs
and feedback signals. Maximum-likelihood classifiers base
their classification on conditional probabilities between
inputs and class labels. In sequence-learning models, such
as that proposed by Levy [40], synapses store the log-con-
ditional probability that a presynaptic spike occurred given
that the postsynaptic neuron spiked at a later time. Other
algorithms, such as temporal-difference learning [41] and
temporally asymmetric Hebbian learning [42], are based on
time-separated correlations. Consequently, a silicon circuit
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Fig. 14. (a) Architecture for competitive learning indimensions.

Each neuron represents a cluster, with a bump circuit for each input

and a single feedback block for the entire neuron (all bumps in a
neuron have commoW;.., andVi,;). (b) Competitive-learning
network comprising two bump circuits, a WTA and feedback that
derivesVi,; andV;,,, from the WTA output. (c) Comparison
between a chip that implements the network from (b) and an

equivalent software network that implements the learning rule from

(7). We drew the input data from a mixture of two Gaussians,
with 80% of the data drawn from the higher-mean Gaussian. We
plot the means learned by the circuit and the software simulation,

compared to the true means of the Gaussians. We set the learning

ratep in (7) to 0.01.

that learns correlations and conditional probabilities can

implement a wide variety of learning algorithms.

We have developed a 0.36n CMOS circuitthat can learn

Vaa A\ \&
Viun
|‘L| Vbias_"l M, M,
C
D Y TV
Sloating !
gate
Xcor_| MS
Xin_‘ M;
Y—{| M
L Lout
@
801
< 60
8 40
~ 20 o chip data
— fit

0 02 04 06 08 |
Pr (X, 1)

(b)

Fig. 15. (a) Correlational-learning circuit. (b) Equilibrium current
Ioui_eq Versus the conditional probabilitf (X ... |Y"), including a
fit from (10) with o = 0.7664.

to remove mismatch between the learning rates of individual
synapses.

We show the circuit in Fig. 15(a). The circuit stores an
analog currentl,,;, multiplies I, by a binary inputXj,,
and adaptsl/,,; to form either a conditional probability
P(X.,|Y) or a correlationP(X.,,Y). X;, is analogous
to a presynaptic inputX... is a presynaptic adaptation
signal that typically has some relationship wilf,,, Y is
analogous to a postsynaptic signal or error feedback, and
I,y is the circuit’'s weight. We can implement different
learning rules by altering the relationship betwe&g,,,
X, andY.

Transistori, sources the output curredt,;. Because
M,’s control gate is tied td/,,, I, depends solely on ca-
pacitorC}’s stored charge. We adjusf,’s drain voltage to
prevent IHEI. A second floating-gate transistaf;, whose
gate is connected t04, enables IHEI. Simultaneously high
input signalsX .., andY pull A3’s drain low, injecting elec-
trons onto the floating gate and increasiiyg;. A high Vi,
tunnels electrons off the floating gate, decreasing. We
switch I, on or off using transistai4{-; this switching cor-

either a correlation or a conditional probability between bi- responds to multiplying the outpdi,,; (the circuit’s weight)
nary-valued input and feedback signals. Our circuit builds by a binary input signakj,,.

upon previous work [15], [43], [44] and extends it in several

We describe qualitatively how our circuit learns correla-

ways. First, the circuit implements a general learning prin- tions or conditional probabilities using an approach similar
ciple rather than a particular learning rule. Second, it can im- to that in [43]. We begin by defining the circuit's equilib-
plement learning rules that correlate temporally separate pre-rium outputl,,; .q as that value of,,; for which the ex-

and postsynaptic activity. Third, it employs self-calibration
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pected values of the tunneling and IHEI currents are equal
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and opposite. We show th#,; ., comprises a correlation Versse  Yad

or a conditional probability over the statistics.®f,, andY’, C, J

the circuit learnd . o4, and, consequently, the circuit learns V. _| LT M

a correlation or conditional probability that depends’ag, bias 11 'L floating

andY. Van gate

We first describe IHEI and tunneling in terms &f,;, \ |—£—|

Xcor, andY'. Consider IHEI. A joint binary event{..;,Y") I LT M

closes nFET switched/; and Mg, pulling Ms’s drain CI v L floating
1 dd gate

to ground and injecting electrons onto the floating gate.
The IHEI probability is the probability of the joint event
(Xcor, Y). Looking now at tunneling, if we hold;,, high
during adaptation, the tunneling current will be approxi-
mately constant. If we instead u¥eto gate a high-voltage
signal onto the tunneling implant, then tunneling will depend
on the probability of the everit.

Consider the latter case in which tunneling depends
on P(Y). The injection and tunneling gate currents have
power-law relationships té,,; and are given by [45]

out

Ig_tun :77-[U P(Y) (9)

out

Ig_inj :)\I_qb P (Xc0r7 Y) (8)

where), 1, ¢, andy are constants that derive from the IHEI
and tunneling processes. We solve Igy; .4 by finding a
value for I, that equalized, i,; andly_iun

0 02 04 06 08 ]

A @
Iout_eq = IO <;P (Xcor|Y)> (10) Pr (XcorlY)
(b)

wherea = 1/(v + ¢) and I, is a preexponential current.
When tunneling depends af(Y"), the equilibrium output
approximates?( X ..|Y").

If we hold Vi, high rather than gating it wity", the
P(X.0r]Y) in (10) changes tdP(X.or, Y). The reason is
that tunneling becomes a quasiconstant leak off the floating
gate, but IHEI still depends 0R(Xcor, Y), SO Loyt _eq de-
pends only onP(X...,Y"). In this case, the circuit learns a
correlation.

M, forces a constant current through injecting transistor
M3, so adaptation naturally moves,; toward Ioy; _eq. If

0 0.2 0.4 0.6 0.8 1

Iouws > Ious_eq, the tunneling gate current will excedds’s Pr(X,_|7)

IHEI gate current, decreasinB,;. If Ioui < ITout_eq, the eor

IHEI current will exceed the tunneling current, increasing ©

I,u. Because adaptation naturally movés,, toward Fig. 16. (a) Schematic of calibrated correlational-learning circuit,
Iout_eq; the circuit learns the approximation Ichor|Y) with inputs that we use for calibration. (b) Equilibrium outputs for

an array of circuits identical to that in Fig. 15. (c) Postcalibration

given by (10)' Fig' 15 shows measurétqlt—eq versus the equilibrium outputs for an array of circuits from (a).

conditional P(X . |Y"), including a fit from (10). Although

(10) only approximates a conditional probability, simula- ) ] o ) o

tions show that the mild nonlinearity does not degrade the correlational-learning circuits, all exposed to identical in-

performance of typical learning networks appreciably. puts. The mismatch-induced variation in the outputs is of the
1) Calibrated Correlational-Learning Circuit: Fabrica- ~ Same order of magnitude as that due to the input data, ren-

tion-induced mismatch among nominally identical synapse dering the array all but useless. Other researchers have noted

transistors can prevent learning circuits from learning mean- this same problem in other floating-gate systems [31], [44].

ingful values. Matching data, from synapses fabricated in a In our correlational-learning circuit, mismatch jhand

0.354:m process, show that the oxide currents due to IHEI I, leads to mismatched/r in (10). We solve this problem

vary by roughly 2:1 across a chip and those due to tunnelingusing synapse transistors to matelin across multiple

by 1.5:1. We can model the effect as mismatch in the coef- circuits. Notice from (4) that IHEI varies linearly with

ficients I;,, and 3 of (3) and (4). To illustrate the problem, a synapse’s source currefif. By altering M3’s source

Fig. 16(b) shows equilibrium outputs from an array of six current, we can altek/r, thereby matching,.: .o across
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multiple circuits. We illustrate the approach using an array
of correlational-learning circuits and calibrate the circuits
using a variant of the self-convergent write mechanism from
Section IV-B.

We show the modified correlational-learning circuit in
Fig. 16(a) and postcalibration matching data in Fig. 16(c).
The primary change from the circuit in Fig. 15 is that we
converted M; into a synapse transistor, allowing us to
adjust Ms3's source current. We use self-convergence to
force I,y _eq t0 match a global calibration currefd,;, with
P(X.or|Y) = 1. If I is larger in magnitude thaf,y;_eq
(i.e., if 1., exceedsM,’s drain current), then switclidg
will be turned on and active-low calibration pulses will
cause IHEI at transistav/s. Whenl,y;_eq exceedd a1, Mo
will turn off, disabling IHEI.

In practice, we first erase the floating gates of all transis-
tors M, using tunneling toV,s.. We then turn offlV, .,
enablel ., andV;,,, apply a pulse traif¥,,;, and wait until
the gates of all transistofdy rise.V_,; comprises narrow ac-
tive-low pulses, givingl/; time to adapt to the statistics of
its inputs whenV,, is high and adapting4; quickly when
Va1 IS low. Fig. 16(c) demonstrates that we can reduce mis-
match to a small fraction of the circuit's output.

VII. TECHNOLOGY ISSUES

Synapse transistors have technological and reliability is-
sues similar to other NVM technologies, of which the most
critical are tunneling- and injection-induced damage to the
gate oxide, and charge leakage off the floating gate. Oxide
damage limits the number of read/write cycles in digital flash
memory and electrically erasable programmable read-only
memory (EEPROM) [46]. Although synapse transistors are
subject to the same damage mechanisms, their analog-value
weight updates are typically much slower and smaller than
digital memory writes, so their oxide currents are three to six
orders of magnitude smaller than in flash memories or EEP-

ROMs. Consequently, in our experience, oxide damage has

not been an issue, even for synapse-based circuits that us
continuous tunneling and injection. Oxide trapping does de-

crease a synapse’s weight-update rates, forcing us to regulate
the tunneling and injection voltages. Synapse-based regula-

tion circuits allow us to control these voltages precisely.
The scaling of gate oxides to less than abouh Zbick-

ness causes floating gates to leak. This problem is not unique

to synapse transistors—it affects all NVM devices that use
floating gates. If anything, synapse transistors are far more

tolerant of oxide leakage because, in most situations, we use [12]

them in circuits that adapt the stored charge on an ongoing
basis. If, however, we must store a memory for years without
updating, we use the 200xide available in most dual gate-
oxide CMOS processes.

VIIl. CONCLUSION

We and other researchers are developing neurally inspired
chips that compute and adapt using innate features of the sil-

icon-MOS and silicon-oxide physics. Our rationale for this
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research is that we believe local adaptation can be instru-
mental in modern IC design. We have demonstrated, by a
few simple circuits, how our synapse-based approach can ad-
vance SOC design and silicon learning. However, our discus-
sion only hints at the broad promise of this technology. As
digital circuits shrink to ever smaller feature sizes, the value
in the analog portion, which does not scale well, continues to
rise. Analog circuits that are simple to design because they
self-tune, are small because the transistors themselves com-
pensate for mismatch and degradations, and learn from their
inputs can bypass many of the bottlenecks in contemporary
IC design.

The circuits that we have built to date are small and simple,
primarily because they represent our baby steps in exploring
a new technology. As we and others learn how to use local
adaptation effectively, the circuits we build will mature. Our
confidence in this technology is rooted not in what we have
built to date, but rather in the existence proof provided by
neurobiology. Nature demonstrates good solutions to hard
engineering problems, using a neural substrate that continu-
ously adapts and learns and changes. We are merely copying
Nature.
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