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Abstract
Device mismatch in VLSI degrades the accuracy of analog arithmetic
circuits and lowers the learning performance of large-scale neural net-
works implemented in this technology. We show compact, low-power
on-chip calibration techniques that compensate for device mismatch. Our
techniques enable large-scale analog VLSI neural networks with learn-
ing performance on the order of 10 bits. We demonstrate our techniques
on a 64-synapse linear perceptron learning with the Least-Mean-Squares
(LMS) algorithm, and fabricated in a 0.35µm CMOS process.

1 Introduction

Modern embedded and portable electronic systems operate in unknown and mutating envi-
ronments, and use adaptive filtering and machine learning techniques to discover the statis-
tics of the data and continuously optimize their performance. Artificial neural networks
are an attractive substrate for implementing these techniques, because their regular com-
putation and communication structures makes them a good match for custom VLSI imple-
mentations. Portable systems operate under severe power dissipation and space constraints,
and VLSI implementations provide a good tradeoff between computational throughput and
power/area cost. More specifically, analog VLSI neural networks use the physical proper-
ties of transistors to compute using orders of magnitude less power and die area than their
digital counterparts. Therefore, they could enable large-scale real-time adaptive signal pro-
cessing systems on a single die with minimal power dissipation.

Despite the promises delivered by analog VLSI, an important factor has prevented the suc-
cess of large-scale neural networks using this technology: device mismatch. Gradients in
the parameters of the fabrication process create variations in the physical properties of sili-
con devices across a single chip. These variations translate into gain and offset mismatches
in the arithmetic blocks, which severely limit the overall performance of the system. As
a result, the accuracy of analog implementations rarely exceeds 5-6 bits, even for small-
scale networks. This limitation renders these implementations useless for many important
applications. Although it is possible to combat some of these effects using careful design
techniques, they come at the cost of increased power and area, making an analog solution
less attractive.



(a) Single-layer LMS perceptron. (b) Block diagram for the synapse.

Figure 1: A single-layer perceptron and synapse. (a) The outputz of the perceptron is the inner
product between the input and weight vectors. The LMS algorithm updates the weights based on the
inputs and an error signale. (b) The synapse stores the weight in an analog memory cell. A Gilbert
multiplier computes the product between the input and the weight and outputs a differential current.
The LMS block updates the weight.

We have built a 64-synapse analog neural network with an output resolution of 10 bits, rep-
resenting an improvement of more than one order of magnitude over that of traditional ana-
log designs, with a modest increase in power and die area. We fabricated our network using
a double-poly, 4-metal 0.35µm CMOS process available from MOSIS. We achieve this per-
formance by locally calibrating the critical analog blocks after circuit fabrication using a
combination of one-time (or periodic) and continuous calibration using the same feedback
as the network’s learning algorithm. We chose the Least Mean Squares (LMS) algorithm
because of its simplicity and wide applicability in supervised learning techniques such as
adaptive filtering, adaptive inverse control, and noise canceling. Moreover, several use-
ful unsupervised-learning techniques, such as adaptive orthogonalization, principal com-
ponents analysis (PCA), independent components analysis (ICA) and decision-feedback
learning, use simple generalizations of LMS.

2 A linear LMS perceptron

Fig. 1(a) shows our system architecture, a linear perceptron with scalar output that performs
the function:

z(i) = b× w0(i) +
N∑

j=1

xj(i) wj(i) (1)

wherei represents time,z(i) is the output,xj(i) are the inputs,wj(i) are the synaptic
weights, andb is a constant bias input. We clarify the role ofb in Section 3.1. After each
presentation of the input, the LMS algorithm updates the weights using the learning rule:

wj(i + 1) = wj(i) + η xj(i) e(i) i = 0 . . . N, x0(i) = b (2)

whereη is a constant learning rate, ande(i) is the error between the output and a reference
signalr(i) such thate(i) = r(i)− z(i).

3 The synapse

Fig. 1(b) shows a block diagram of our synapse. We store the synaptic weights in a mem-
ory cell that implements nonvolatile analog storage with linear updates. A simple circuit
transforms the single-ended voltage output of the memory cell (Vw) into a differential volt-
age signal (V +

w , V −w ), with a constant common mode. A Gilbert multiplier computes the
4-quadrant product between this signal and the input (also represented as a differential
voltageV +

x , V −x ). The output is a differential analog current pair (I+
o , I−o ), which we sum

across all synapses by connecting them to common wires.



(a) Measured output vs. input value. (b) Measured output vs. weight value.

Figure 2: Gilbert multiplier response for 8 synapses.(a) Our multiplier maximizes the linearity of
xi, achieving a linear range of 600mV differential. Gain mismatch is 2:1 and offset mismatch is up to
200mV. (b) Our multiplier maximizes weight range at the cost of weight linearity (1V single-ended,
2V differential). The gain variation is lower, but the offset mismatch exceeds 60% of the range.

Because we represent the perceptron’s output and the reference with differential currents,
we can easily compute the error using simple current addition. We then transform (off-chip
in our current implementation) the resulting analog error signal using a pulse-density mod-
ulation (PDM) representation [1]. In this scheme, the value of the error is represented as
the difference between the density (frequency) of two fixed-width, fixed-amplitude digital
pulse trains (P+

e andP−e in Fig. 1(b)). These properties make the PDM representation
largely immune to amplitude and jitter noise. The performance of the perceptron is highly
sensitive to the resolution of the error signal, therefore the PDM representation is a good
match for it. The LMS block in the synapse takes the error and input values and computes
update pulses (also using PDM) according to Eqn. 2.

In the next subsections, we analyze the effects of device mismatch in the performance
of the major blocks, discuss their impact in overall system performance, and present the
techniques that we developed to deal with them. We illustrate with experimental results
taken from silicon implementation of the perceptron in a 0.35µm CMOS process. All
data presented in the following sections, unless otherwise stated, comes from this silicon
implementation.

3.1 Multiplier

A Gilbert multiplier implements a nonlinear function of the product between two differ-
ential voltages. Device mismatch in the multiplier has two main effects: First, it creates
offsets in the inputs. Second, mismatch across the entire perceptron creates variations in
the offsets, gain, and linearity of the product. Thus, Eqn. 1 becomes:

z(i) =
N∑

j=0

aj

[
fx

j

(
xj(i)− dx

j

)
fw

j

(
wj(i)− dw

j

)]
x0(i) = b (3)

whereaj represents the gain mismatch between multipliers,fx
j andfw

j are the nonlineari-
ties applied to the inputs and weights (also mismatched across the perceptron), anddx

j and
dw

j are the mismatched offsets of the inputs and weights.

Our analysis and simulations of the LMS algorithm determine that the performance of the
algorithm is much more sensitive to the linearity offx

j than to the linearity offw
j , because

the inputs vary over their dynamic range with a large bandwidth, while the bandwidth of
the weights is much lower than the adaptation time-constant. Therefore, the adaptation
compensates for mild nonlinearities in the weights as long asfw

j remains a monotonic odd
function. Consequently, we sized the transistors in the Gilbert multiplier to maximize the



(a) Memory cell circuit. (b) Measured weight updates

Figure 3:A simple PDM analog memory cell. (a) We store each weight as nonvolatile analog charge
on the floating gate FG. The weight increments and decrements are proportional to the density of the
pulses on Pinc and Pdec. (b) Memory updates as a function of the increment and decrement pulse
densities for 8 synapses. The updates show excellent linearity (10 bits), but also poor matching both
within a synapse and between synapses.

linearity offx
j , but paid less attention (in order to minimize size and power) tofw

j . Fig. 2(a)
shows the output of 8 synapses in the system as a function of the input value. The response
is highly linear. The gain mismatch is about 2:1, but the LMS algorithm naturally absorbs
it into the learned weight value. Fig. 2(b) shows the multiplier output as a function of the
single-ended weight valueVw. The linearity is visibly worse in this case, but the LMS
algorithm compensates for it.

The graphs in the Fig. 2 also show the input and weight offsets. Because of the added
mismatch in the single-ended to differential converter, the weights present an offset of up
to±300mV, or 30% of the weight range. The LMS algorithm will also compensate for this
offset by absorbing it into the weight, as shown in the analysis of [2] for backprogagation
neural networks. However, this will only occur if the weight range is large enough acco-
modate for the offset mismatch. Consequently, we sacrifice weight linearity to increase
the weight range. Input offsets pose a harder problem, though. The offsets are small (up
100mV), but because of the restricted input range (to maximize linearity), they are large
enough to dramatically affect the learning performance of the perceptron. Our solution was
to use the bias synapsew0 to compensate for the accumulated input offset. Assuming that
the multiplier is linear, offsets translate into nonzero-mean inputs, which a bias synapse
trained with LMS can remove as demonstrated in [3]. To guarantee sufficient gain, we
provide a stronger bias current to the multiplier in the bias synapse.

3.2 Memory cell

A synapse transistor[4] is a silicon device that provides compact, accurate, nonvolatile
analog storage as charge on its floating gate. Fowler-Nordheim tunneling adds charge to
the floating gate and hot-electron injection removes charge. Both mechanisms can be used
to accurately update the stored value during normal device operation. Because of these
properties, synapse transistors have been a popular choice for weight storage in recent
silicon learning systems [5, 6].

Despite the advantages listed above, it is hard to implement linear learning rules such as
LMS using tunneling and injection. This is because their dynamics are exponential with re-
spect to their control variables (floating-gate voltage, tunneling voltage and injection drain
current), which naturally lead to weight-dependent nonlinear update rules. This is an im-
portant problem because the learning performance of the perceptron is strongly dependent
on the accuracy of the weight updates, therefore distortions in the learning rule will degrade
performance. The initial design of our memory cell, shown in Fig. 3(a) and based on the



(a) Calibrated memory cell circuit. (b) Measured calibrated weight updates.

Figure 4:PDM memory cell with local calibration. (a) We first match the tunneling rate across all
synapses by locally changing the voltage at the floating gateFGdec. Then, we modify the injection
rate to match the local tunneling rate using the floating gateFGinc. (b) The calibrated updates are
symmetric and uniform within 9-10 bits.

work presented in [7], solves this problem: We store the analog weight as charge on the
floating gate FG of synapse transistor M1. Pulses on Pdec and Pinc activate tunneling and
injection and add or remove charge from the floating gate, respectively. The operational
amplifier sets the floating-gate voltage at the global voltage Vbias. Capacitor Cw integrates
the charge updates, changing the output Vout by ∆Vout = ∆Q/C. Because the floating-
gate voltage is constant and so are the pulse widths and amplitudes, the magnitude of the
updates depends on the density of the pulses Pinc and Pdec. Fig. 3(b) shows the magnitude
of the weight updates as a function of the density of pulses in Pinc (positive slopes) and
Pdec (negative slopes) for 8 synapses. The linearity of the updates, measured as the integral
nonlinearity (INL) of the transfer functions depicted in Fig. 3(b) , exceeds 10 bits.

Fig. 3(b) highlights an important problem caused by device mismatch: the strengths of
tunneling and injection are poorly balanced within a synapse (the slopes show up to a 4:1
mismatch). Moreover, they show a variation of more than 3:1 across different synapses
in the perceptron. This translates into asymmetric update rules that are also nonuniform
across synapses. The local asymmetry of the learning rate translates into an offset between
the learned and target weights, degrading the learning performance of the perceptron. The
nonuniformity between learning rates across the perceptron changes Eqn. 2 into:

wj(i + 1) = wj(i) + ηj xj(i) e(i) i = 0 . . . N, x0(i) = b (4)

whereηj are the different learning rates for each synapse. Generalizing the conventional
stability analysis of LMS [8], we can show that the condition for the stability of the weight
vector is: 0 < ηmax < 1/λmax, whereλmax is the maximal eigenvalue of the input’s
correlation matrix andηmax = maxj(ηj). Therefore, learning rate mismatch does not
affect the accuracy of the learned weights, but it does slow down convergence because we
need to scale all learning rates globally to limit the value of the maximal rate.

To maintain good learning performance and convergence speed, we need to make learning
rates symmetric and uniform across the perceptron. We modified the design of the memory
cell to incorporate local calibration mechanisms that achieve this goal. Fig. 4(a) shows our
new design. The first step is to equalize tunneling rates: The voltage at the new floating gate
FGdec sets the voltage at the floating-gate FG and controls the ratio between the strength
of tunneling and injection onto FG: Raising the voltage at FGdec increases the drain-to-
channel voltage and reduces the gate-to-tunneling-junction voltage at M1, thus increasing
injection efficiency and reducing tunneling strength [4]. We set the voltage at FGdec by first
tunneling using the global lineerasedec, and then injecting on transistor M3 by lowering
the local linesetdec to equalize the tunneling rates across all synapses. To compare the



(a) LMS block. (b) Measured RMS error.

Figure 5: LMS block at each synapse. (a) The difference between the densities of Pinc and Pdec

is proportional to the product between the input and the error, and thus constitutes an LMS update
rule. (b) RMS error for a single-synapse with a constant input and reference, including a calibrated
memory cell with symmetric updates, a simple synapse with asymmetric updates, and a simulated
ideal synapse.

tunneling rates, we issue a fixed number of pulses at Pdec and compare the memory cell
outputs using a double-sampling comparator (off-chip in the current implementation). To
control the injection rate, we add transistor M2, which limits the current through M1 and
thus the injection strength of the pulse at Pinc. We control the current limit with the voltage
at the new floating gate FGinc: we first remove electrons from the floating gate using the
global lineeraseinc. Then we inject on transistor M4 by lowering the local lineset inc to
match the injection rates across all synapses. The entire process is controlled by a simple
state machine (also currently off-chip). Fig. 4(b) shows the tunneling and injection rates
after calibration as a function of the density of pulses Pinc and Pdec. Comparing the graph
to Fig. 4(b), it is clear that the update rates are now symmetric and uniform across all
synapses (they match within 9-10 bits). Note that we could also choose to calibrate just for
learning rate symmetry and not uniformity across synapses, thus eliminating the floating
gate FGinc and its associated circuitry. This optimization would result in approximately a
25% reduction in memory cell area (6% reduction in total synapse area), but would also
cause an increase of more than 200% in convergence time, as illustrated in Section 4.

3.3 The LMS block

Fig. 5(a) shows a block diagram of the LMS-update circuit at each synapse. A pulse-
density modulator [9] transforms the synaptic input into a pair of digital pulse-trains of
fixed width (P+x , P−x ). The value of the input is represented as the difference between the
density (frequency) of the pulse trains. We implement the memory updates of Eqn. 2 by
digitally combining the input and error pulses (P+

e , P−e ) such that:

Pinc = (P+
x AND P+

e ) OR (P−x AND P−e ) (5)

Pdec = (P+
x AND P−e ) OR (P−x AND P+

e ) (6)

This technique was used previously in a synapse-transistor based circuit that learns corre-
lations between signals [10], and to multiply and add signals [1]. If the pulse trains are
asynchronous and sparse, then using Eqn. 5 and Eqn. 6 to increment and decrement the
synaptic weight implements the LMS learning rule of Eqn. 2.

To validate our design, we first trained a single synapse with a DC input to learn a constant
reference. Because the input is constant, the linearity and offsets in the input signal do not
affect the learning performance, therefore this experiment tests the resolution of the feed-
back path (LMS circuit and memory cell) isolated from the analog multipliers. Fig. 5(b)
shows the evolution of the RMS value of the error for a synapse using the original and
calibrated memory cells. The resolution of the pulse-density modulators is about 8 bits,



(a) Measured RMS error. (b) Measured weight evolution.

Figure 6:Results for 64-synapse experiment. (a) Asymmetric learning rates and multiplier offsets
limit the output resolution to around 3 bits. Symmetric learning rates and a bias synapse brings
the resolution up to more 10 bits, and uniform updates reduce convergence time. (b) Synapse 4
shows a larger mismatch than synapse 1 and therefore it deviates from its theoretical target value
to compensate. The bias synapse in the VLSI perceptron converges to a value that compensates for
offsets in the inputsxi to the multipliers.

which limits the resolution of the error signal. We also show the RMS error for a sim-
ulated (ideal) synapse learning from the same error. We plot the results in a logarithmic
scale to highlight the differences between the three curves. The RMS error of the cali-
brated synapse converges to about 0.1nA. Computing the equivalent resolution in bits as
rb = −log2

(
0.5 RMS error

output range

)
, we find that for a 2µA output range, this error represents an

output resolution of about 13 bits. The difference with the simulated synapse is due to the
discrete weight updates in the PDM memory cell. Without calibration, the RMS error con-
verges to 0.4nA (or about 11 bits), due to the offset in the learned weights introduced by the
asymmetry in the learning rate. As discussed in Section 4, the degradation of the learning
performance in a larger-scale system due to asymmetric learning rates is drastically larger.

4 A 64-synapse perceptron

To test our techniques in a larger-scale system, we fabricated a 64-synapse linear percep-
tron in a 0.35µm CMOS process. The circuit uses 0.25mm2 of die area and dissipates
200µW. Fig. 6(a) shows the RMS error of the output in a logarithmic scale as we introduce
different compensation techniques. We used random zero-mean inputs selected from a uni-
form distribution over the entire input range, and trained the network using the response
from a simulated perceptron with ideal multipliers and fixed weights as a reference. In
our first experiments, we trained the network without using any compensation. The error
settles to 10µA RMS, which corresponds to an output resolution of about 3 bits for a full
range of 128µA differential. Calibrating the synapses for symmetric learning rates only
improves the RMS error to 5µA (4 bits), but the error introduced by the multiplier offsets
still dominates error performance. Introducing the bias synapse and keeping the learning
rates symmetric (but nonuniform across the perceptron) compensates for the offsets and
brings the error down to 60nA RMS, corresponding to an output resolution better than 10
bits. Further calibrating the synapses to achieve uniform, symmetric learning rates main-
tains the same learning performance, but reduces convergence time to less than one half, as
predicted by the analysis in Section 3.2. A simulated software perceptron with ideal multi-
pliers and LMS updates that uses an error signal of the same resolution as our experiments
gives an upper bound of just under 12 bits for the learning performance.

Fig. 6(b) depicts the evolution of selected weights in the silicon perceptron with on-chip
compensation and the software version. The graph shows that synapse 1 in our VLSI im-
plementation suffers from little mismatch, and therefore its weight virtually converges to



the theoretical value given by the software implementation. Because the PDM updates are
discrete, the weight shows a larger oscillation around its target value than the software ver-
sion. Synapse 4 shows a larger mismatch, therefore it converges to a visibly different value
from the theoretical in order to compensate for it. The bias weight in the software percep-
tron converges to zero because the inputs have zero mean. In the VLSI perceptron, input
offsets in the multipliers create nonzero-mean inputs, therefore the bias synapse converges
to a value that compensates for the aggregated effect of the offsets. The normalized value
of -1.2 reflects the gain boost given to this multiplier to increase its dynamic range.

5 Conclusions

Device mismatch prevents analog VLSI neural networks from delivering good learning
performance for large-scale applications. We identified the key effects of mismatch and
presented on-chip compensation techniques. Our techniques rely both on one-time (or pe-
riodic) calibration, and on the adaptive operation of the system to achieve continuous cal-
ibration. Combining these techniques with careful circuit design enables an improvement
of more than one order of magnitude in output resolution compared to traditional analog
designs, at the cost of an off-line calibration phase and a modest increase in die area and
power. We illustrated our techniques with a 64-synapse analog-VLSI linear perceptron that
adapts using the LMS algorithm. Future work includes extending these techniques to un-
supervised learning algorithms such as adaptive orthogonalization, principal components
analysis (PCA) and independent components analysis (ICA).
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