
A 19.2GOPS Mixed-Signal Filter with Floating-Gate
Adaptation

Miguel Figueroa, Seth Bridges, David Hsu and Chris Diorio, Member, IEEE

AbstractWe have built a 48-tap, mixed-signal adaptive

FIR filter with 8-bit digital input and an analog output with
10 bits of resolution. The filter stores its tap weights in
nonvolatile analog memory cells using synapse transistors,
and adapts using the Least-Mean-Square (LMS) algorithm.
We run the input through a digital tapped delay line,
multiply the digital words with the analog tap weights using
mixed-signal multipliers, and adapt the tap coefficients
using pulse-based feedback. The accuracy of the weight
updates exceeds 13 bits. The total die area is 2.6mm2 in a
0.35µµµµm CMOS process. The filter delivers a performance of
19.2GOPS at 200MHz, and consumes 20mW providing a
6mA differential output current.

Index TermsAdaptive signal processing, FIR filter,
mixed-signal VLSI, floating-gate MOSFET.

I. INTRODUCTION

ORTABLE electronic systems normally operate
under unknown or changing environmental conditions

such as noise levels, interference, and varying input
statistics. To combat these problems, they frequently
employ adaptive signal-processing techniques to optimize
their performance. Adaptive filtering is the most popular
of these techniques: it is widely used in applications such
as noise canceling, adaptive modeling, system
identification, equalization, and linear predictive coding.

In application domains such as mobile communications
or ubiquitous computing, adaptive systems also face
severe constraints in power dissipation and circuit die
area. In such cases, software implementations using
programmable digital signal-processing (DSP) chips
become infeasible. Even custom digital circuits can be
prohibitively large and power-hungry, mainly due to the
need for fast adders and multipliers. Although analog
circuits can implement moderate-resolution arithmetic at
low power and area, these circuits are limited by other
problems such as charge leakage, signal offsets, circuit
mismatch, error accumulation, and noise sensitivity.

We have built a mixed-signal, adaptive finite impulse-
response (FIR) filter that combines the power and area
benefits of analog circuits with the scalability of digital
technology. The filter features digital inputs, analog
weights with linear updates, and implements a pulse-

based version of the ubiquitous Least-Mean-Square
(LMS) adaptation algorithm [1]. Each of the 48 taps
computes a multiplication and an addition at every clock
cycle, for an aggregated throughput of 19.2 Giga-
Operations Per Second (GOPS) at 200MHz. The filter
uses 2.6mm2 of die area, consumes 20mW, and provides
a 6mA differential output current. The input resolution is
8 bits, the output resolution is 10 bits, and the LMS
circuits update the weights with more than 13 bits of
accuracy. Our design improves on other mixed-signal
adaptive filters [2] by two orders of magnitude in
power/performance ratio and one order of magnitude in
die area. Our own previous 16-tap FIR filter [3] was
small and low-power, but it was incapable of on-chip
adaptation and provided only 7 bits of output resolution.
The current design uses a nonvolatile weight-storage
cell [4] based on synapse transistors [5], provides
accurate weight-updates, and introduces a novel on-chip
implementation of the LMS algorithm, thereby enabling
closed-loop operation. Our design also features new
mixed-signal multipliers, achieves an output resolution of
10 bits, and extends the length of the filter to 48 taps.

The remainder of this paper is organized as follows:
first, we introduce synapse transistors as an enabling
technology for compact and accurate weight-storage in
adaptive hardware systems. Then, we describe our filter
and the implementation of its fundamental building
blocks. Finally, we discuss our experimental results and
conclude.

II. SYNAPSE TRANSISTORS

A synapse transistor is a conventional MOSFET with
three additional properties: nonvolatile analog weight
storage, local weight update mechanisms, and
simultaneous read/write operations. We build synapse
transistors using floating-gate pFETs [5], where the
charge stored on the floating gate represents the analog
weight. Researchers have used synapse transistors to
compute and store correlations [6, 7], perform
unsupervised vector quantization [8], trim digital-to-
analog converters [9] and null input offsets in a
capacitive-feedback operational amplifier [10].

Fig. 1 shows a layout view of a synapse transistor in a
double-poly process. The gate and field oxides isolate the
poly 1 gate and provide nonvolatile charge-storage. The
control gate capacitively couples to the floating gate, and

P

Manuscript received Xxxx xx, xxxx; revised Xxxx xx, xxxx
The authors are with the Department of Computer Science and

Engineering, University of Washington, Box 352350, Seattle, WA
98105, USA (e-mail: miguel@cs.washington.edu)

Publisher Item Identifier X xxxx-xxxx(xx)xxxxx-x

can be built from poly 2 as in the figure, or using a MOS
capacitor in a digital process. We increase the amount of
charge stored on the floating gate using Fowler-Nordheim
tunneling [11], with a small pFET as a tunneling junction.
We decrease the amount of charge via impact-ionized
hot-electron injection (IHEI) [12] by lowering the voltage
at the drain terminal of the device. Synapse transistors
and their charge-update dynamics are discussed in [5, 13].
In our filter, synapse transistors provide accurate and
compact analog weight storage without the charge-
injection and leakage problems commonly associated
with VLSI capacitors.

III. THE FILTER

Fig. 2(a) shows the architecture of our filter and
Fig. 2(b) shows a microphotograph of the chip core. We
use a digital delay line to shift the 8-bit input signal
across the filter taps, because offsets and error
accumulation make long analog delay lines difficult to
implement in VLSI. The delay line runs at 200MHz and
uses standard master-slave flip-flops. Each tap contains a
nonvolatile memory cell that stores an analog weight, and
a mixed-signal multiplier that computes the product
between the digital tap input x and the local tap weight
voltage Vw, generating an analog differential current
output Io. These currents are summed across the filter on
common wires to create the filter output.

We encode the output target It as an analog differential
current and use it to generate a differential error signal Ie.
Current-driven pulse generators [14] (off-chip in the

present implementation) generate a differential digital
pulse-train Se of fixed pulse-width, which encodes the
instantaneous value of the error as the difference between
the pulse frequencies of the differential components Se

+
and Se

–. At each tap, LMS circuits adapt the weight values
by correlating this error signal with the tap inputs. The
following subsections describe the implementations of
our memory cells, LMS-update circuits and mixed-signal
multipliers.

A. Analog Memory Cell

The charge-update dynamics of synapse transistors
naturally lead to exponential adaptation rules and weight-
dependent updates. While it is possible to design adaptive
systems using these update dynamics [13], they are not
suitable for adaptation using the LMS algorithm because,
as shown in Eqn. (1) in subsection C, the LMS rule
updates each tap weight by the (linear) product between
the error and each tap input. Nonlinearities are acceptable
if they are mild and the adaptation rule is a smooth, odd,
and monotonic function. In general, nonlinearities and
weight dependences affect the stability of the adaptation

(a) Top view

(b) Side view

p– substrate

electron
tunneling

gate
 oxide

electron
injection

n–

LOCOS or STI

gate
 oxide

n–

p+ p+

contact
cut

n+ well
contact

 p+ diffusion
(shorted pFET)

source
metal

p+ source
diffusion

 p+ drain
diffusion

poly1
floating

gate

 n– well

n–

n–

poly2
control
gate

Interpoly dielectric

Fig. 1. (a) Top and (b) side layout view of a synapse transistor in a
double-poly process, using an exaggerated vertical scale. The device
stores a nonvolatile analog weight as charge on the floating gate. We
increase the amount of charge by tunneling electrons off the floating-
gate through the small pFET on the left. We decrease the charge by
injecting electrons at the drain terminal.

(a) Filter architecture

(b) Chip microphotograph

CLK-LMS

8x(n) 8x(n - 1)

CLK

X

8

Vw

Io

8
x(n - 47) x(n - 48)

X

8

Vw

Io

It

Ie Pulse
Generator

Se

x: input
Vw: weight
Io: filter output
It: target output
Ie: output error
Se: error pulses

R
E
G

1

LMS
Memory

Cell

1

R
E
G

48

LMS
Memory

Cell

48

2

2

2

Fig. 2. (a) Adaptive 48-tap filter architecture. Each tap comprises a
digital tap register, a mixed-signal multiplier, and a memory cell that
stores an analog tap weight and implements LMS adaptation. A pulse
generator produces a differential frequency-modulated digital pulse
train (Se), representing the filter error. (b) Microphotograph of the
chip core in a 0.35µm CMOS process. The total die area is 2.6mm2.
The mixed-signal multipliers use almost 50% of the area. The
memory cells and update circuitry account for 25%. The delay line
registers use the other 25%.

and constrain the maximal adaptation rate. In addition,
our system-level simulations showed that the resolution
of the weight-updates directly affect the error
performance of the filter. Therefore, our filter requires a
memory cell that supports weight updates that are
accurate, quasi-linear, and weight-independent.

Fig. 3(a) shows our analog weight cell, based on the
design we presented in [4]. We store the weight as charge
on the floating gate of a synapse pFET. Because the
dynamics of tunneling and injection depend on the
floating-gate voltage, we use negative feedback in an
amplifier-like circuit (transistors M1-M2 and capacitor C)
to keep this voltage at a constant value. M3 acts as an
injection device: voltage pulses applied to its drain (Vinj)
activate injection and add electrons to the floating gate.
We remove electrons from the floating gate by applying
pulses (Vtun) to the tunneling junction M4. The voltage at
Vbias adjusts the relative strengths of tunneling and
injection, and is tuned to yield symmetric weight updates
at each tap in the presence of device mismatch.

The feedback capacitor C integrates the charge
updates, modifying the output voltage Vw by
∆Vw = ∆Q/C. Because the floating-gate voltage is
constant, update voltage-pulses of fixed width and
amplitude change the output by a fixed amount.
Therefore, the magnitude of the updates depends linearly

on the frequency of the pulses Vinj and Vtun. Additionally,
frequency-modulated digital updates are immune to jitter
noise and signal degradation because the update pulses
are restored and integrated at each tap. The experimental
data in Fig. 3(b) shows the linear relationship between the
weight updates and the number of pulses in Vinj over one
adaptation period. Sweeping the frequency of Vtun yields
similar results.

A single-ended to differential voltage converter
transforms Vw into a differential signal (Vw

+ and Vw
-) with

a fixed common mode. This differential output drives the
mixed-signal multiplier that scales the weight by the tap
input, as described in Section C.

B. LMS Block

The least-mean-square (LMS) algorithm [1] uses a
gradient-descent method to update the weights of a linear
filter or neural network. At each iteration, the algorithm
updates the weights according to its adaptation rule:
)()()()1(nenxnwnw iii λ+=+ (1)

where wi is the weight at tap i, λ is the adaptation rate, xi
is the value of the input at tap i, and e is the error. The
LMS block in our filter computes this update by
integrating pulses of frequency proportional to the error e,
during a time window of length proportional to xi.

Fig. 4(a) shows the implementation of the LMS-update
block at each tap. We preload a digital downcounter with
the magnitude of the tap input x (the lower 7 bits or their

(a) Memory cell architecture

(b) Memory-update linearity

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

Vinj pulse count per adaptation period

U
pd

at
e

m
ag

ni
tu

de
 (

m
V

)

VbiasVinj

Vda Vda

Vtun

Vw Single-ended
to differential

Vw+ Vw-

charge
pump

M1

M2

M3

M4

C

floating gate

Fig. 3. (a) Memory-cell architecture. We update the floating-gate
charge with pulses on Vtun and Vinj. M2 forces a constant current
through M1, thereby pinning the floating-gate voltage. Capacitor C
integrates the charge updates, causing Vw to change by ∆Vw = ∆Q/C.
Because the floating-gate voltage is constant, feedback pulses of
fixed width and amplitude change the floating-gate charge by
constant amounts, causing fixed updates in Vw. (b) Measured
linearity of the memory updates with respect to the frequency of Vinj.
We obtain similar results for Vtun.

counting
Downcounter

7

Bitwise XNOR

7

x

x7

x6 - x08 Se+Se-

Vinj

Vtun

CLK-LMS

Xbar

from tap
 register

error feedback pulses

to weight
 cell

1

(a) LMS block architecture

(b) LMS update linearity

-100 -50 0 50 100

-60

-40

-20

0

20

40

60 x = -127.5
x = -63.5
x = 0.5
x = 64.5
x = 127.5

Differential error-pulse count per adaptation period

M
em

or
y

u
pd

at
e

 (
m

V
)

Fig. 4. (a) LMS-update architecture. The filter preloads a
downcounter with the magnitude of the digital tap-input x. While the
counter counts down, the error pulses (Se+ and Se–) drive tunneling
and injection in the memory cell. The sign of x determines the
polarity of the weight update. Therefore, the polarity and number of
pulses updating the weight value during one adaptation period is the
4-quadrant product between the present input x and the present error
Se. (b) Measured updates versus error pulse frequency e.

complement, because x uses an offset-binary code),
which defines the time window during which we let the
error pulses (Se

+ and Se
–) update the value of the weight

memory cell (Vinj and Vtun). The number of update pulses
received by the memory cell is proportional to the
product between the duration of the time window (the
magnitude of the tap input x), and the frequency of the
error pulses (the value of the error e). Finally, the
crossbar Xbar optionally inverts the sign of the updates
based on the MSB of x, completing the full four-quadrant
multiply of Eqn. (1). An external clock signal (CLK-
LMS), independent of the delay-line clock (CLK), drives
the downcounter and thereby modulates the adaptation
rate. We can also adjust the gain of the pulse generators
to control the adaptation rate.

Fig. 4(b) shows the weight update as a function of the
error e (represented as a pulse count) for several values of
the input x. We represent Se

+ as a positive count and Se
– as

a negative count. Fig. 4(b) demonstrates that the memory-
update magnitude is an approximately linear function of
the product of x and e, as required by Eqn. (1). The mild
nonlinearity of the large updates is due to limitations of
the amplifier used in the memory cell (transistors M1-M2
in Fig. 3), and can be corrected at a modest area cost by
replacing it with a small operational amplifier. However,
our system simulations and the theoretical analysis
presented in [15] show that the error-performance of the
filter is not affected by these mild nonlinearities, and
therefore we kept the more compact design presented
here.

C. Mixed-Signal Multiplier

The mixed-signal multiplier outputs a differential
analog current that represents the product between the
digital tap input and the analog tap weight. This current is
summed across the taps to produce the filter output.
Unlike the LMS block, this multiplier runs at the full
speed of the tapped delay-line (200MHz) and ultimately
determines the bandwidth of the filter.

Fig. 5(a) shows the 4-quadrant multiplier cell. We use a
circuit that resembles a current-steered digital-to-analog
converter (DAC), with an array of scaled current sources.
The scaled currents pass through differential pairs that
implement a saturating multiply. The differential input
voltage to each pair (Vw

+ and Vw
–) represents the analog

weight. The digital input x sets the polarity of the weight
voltage at each pair. The circuit computes the expression:

() [] ()�

=

+ ××−×=
7

0

1 21
i

x
w

x
o

ii VkI (2)

where Vw = (Vw
+ - Vw

-) is the differential weight voltage,
xi are the bits of the digital tap input x, Io = (Io

+ - Io
-) is the

output current, the operator [x] represents the saturating
multiply transfer function of the differential pair, and k is
a scaling and unit-adjustment constant. Eqn. (2) is the
offset-binary representation of the tap input, where the
contribution of each bit is additionally multiplied by the
analog weight.

We use standard current-source sizing techniques [16]
to achieve 8-bit intrinsic resolution in the digital-to-
analog conversion. We also use a thermometer decoder
for the upper 3 bits to reduce glitch energy and achieve
higher bandwidth. Fig. 5(b) shows the measured integral
nonlinearity (INL) of a typical multiplier as a function of
the digital input x. Both the INL and the differential
nonlinearity (DNL, not shown) are less than 0.5LSB. The
current sources and differential pairs occupy 80% of the
multiplier area. We can drastically reduce this area and
increase the multiplier resolution in future
implementations using the on-chip trimming techniques
that we demonstrated in [9].

Io+
Io-

XbarVw+
Vw-

X0

I

XbarVw+
Vw-

32 x I

(a) Multiplier architecture

(b) Integral nonlinearity (INL)

(c) Multiplier transfer function

-127.5 -63.5 0.5 63.5 127.5
-0.4
-0.3
-0.2
-0.1

0
0.1

0.2
0.3
0.4

IN
L

(ls
b)

Digital input x

0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 5.4 6
-80

-60

-40

-20

0

20

40

60

80

x = -127.5
x = -63.5
x = 0.5
x = 64.5
x = 127.5

M
ul

tip
lie

r
ou

tp
ut

 (
µA

)

Weight value Vw (V)

X5X7 X6

T1 T7

Thermometer decoder

From tap register

From weight cell

Fig. 5. (a) Mixed-signal multiplier cell, which comprises a segmented
8-bit DAC-like circuit with 5 binary and 3 thermometer bits, and an
array of differential pairs that multiply the digital input word (x) by
the differential output of the weight cell (Vw+ and Vw–).
(b) Measured integral nonlinearity of the digital input in a typical
multiplier. The INL and DNL are 0.35 and 0.4 LSBs, respectively.
(c) Measured linearity of the weight in a typical multiplier. We do
not have access to the differential weight, so we measured the single-
ended representation Vw centered at 3V.

Fig. 5(c) shows the multiplier output as a function of
the weight value, for several digital input codes. The
analysis in [15] and our own system simulations show
that this multiplier provides adequate linearity for LMS
adaptation for a weight range of up to 1V differential.
This is corroborated by our experimental results in
Section IV.

IV. EXPERIMENTAL RESULTS

A. Single-Tap Performance

In our first experiment, we seek to evaluate the impact
on the error performance of the filter due to the resolution
of the memory cell and LMS adaptation circuits versus
the impact of the mixed-signal multipliers. First, we
enable a single tap in the filter, set a DC-valued digital
input and target, and let the filter adapt. In this setup, the
current-source mismatch in the mixed-signal multiplier
has no influence on the output error because the inputs to
the differential pairs do not switch. Next, we use a
triangle-wave input and target and again let the filter
adapt. In this case, because the digital input switches at
200MHz, the current-source mismatch in the multiplier
introduces a high-frequency error that the adaptation is
unable to cancel. Fig. 6(a) shows the evolution output and
reference for both setups, and Fig. 6(b) shows the RMS
value of the error. After a few adaptation periods, the
error settles to 10nA RMS for the first case (this
measured accuracy is limited by our experimental setup).

For a 128µA single-tap output range, this error
corresponds to an output resolution better than 13 bits.
This resolution is ultimately limited by the tradeoff
between the dynamic range of the weights and the
magnitude of the update performed by a single pulse. In
the second case, the error settles to 0.5µA, corresponding
to a resolution of 8 bits. This is consistent with the 8-bit
matching of the current sources in the mixed-signal
multiplier, and demonstrates that the error-performance
of our current implementation is limited by the
multipliers and not by the linearity of the memory cell
and weight updates. As stated in Section III.C, we can
improve the error-performance of the filter at negligible
additional cost in power and area, using the on-chip
trimming techniques that we demonstrated in [9].

B. Adapting with Multiple Taps

In our second experiment, we enable 24 taps and train
the filter to output a triangle wave given a square-wave
input. Fig. 7(a) shows the target and output during the
first 80 and the last 80 iterations. Fig. 7(b) shows the
RMS error during adaptation. After 480 iterations, the
error is about 5µA (full output range is 24×128µA). As
stated before, the error performance is limited by the
resolution of the mixed-signal multipliers. Because the

0 5 1 0 1 5 2 0 25 30
-1 5

-1 0

-5

0

5

1 0

1 5

Iteration

(a) Single-tap output for constant and triangle target

0 5 1 0 1 5 2 0 2 5 3 0
0

1

2

3

4

5

Iteration

(b) Single-tap RMS error for constant and triangle target

constant
triangle

F
ilt

er
 o

u
tp

ut
 (

µ A
)

R
M

S
 e

rr
o

r
(µ

A
)

 constant - output
 constant - target

 triangle - output
 triangle - target

Fig. 6. Single-tap error performance for a constant and triangle-wave
target and input. (a) Target and filter output for both experiments.
(b) RMS value of the filter error. With a constant target, the error
settles to 10nA (13-bit output resolution). With the triangular target,
the error settles to 0.5µA (8-bit output resolution). As discussed in
the text, the experiment shows that the error performance of the filter
is limited by the resolution of the mixed-signal multipliers.

0 50 100 150 200 250 300 350 400 450 500
0

100

300

200

(a) LMS output for multiple taps

(b) RMS error for multiple taps

(c) Evolution of two weights

0 20 40 60

-300

-200

-100

0

100

200

300

420 440 460 480

output
target

Iteration

F
ilt

er
 o

ut
pu

t (
µA

)

Iteration

R
M

S
 e

rr
or

 (
µA

)

Weight 1
Weight 2

0 50 100 150 200 250 300 350 400 450 500

3

3.2

3.4

3.6

Iteration
W

ei
g

ht
 (

V
)

Fig. 7. LMS performance with 24 taps. (a) Target and output during
the first 80 and last 80 iterations. (b) RMS error. After 480 iterations,
the error is 5µA, settling at 2µA (equivalent to 10-bit output
resolution) after 300 additional iterations. (c) Outputs of two memory
cells learning the same theoretical weight value. The LMS algorithm
compensates for mismatch across cells, so that each cell converges to
a voltage that represents the same nominal weight.

effects of device mismatch in the multipliers are largely
uncorrelated across the filter, the output picks up two
more bits of resolution, settling at slightly more than 10
bits (2µA RMS error) after an additional 300 iterations.
The convergence speed is limited by the properties of the
LMS algorithm, and can be accelerated using an adaptive
input decorrelating stage as shown in [17]. We can easily
build this input stage using the same adaptation and
computational primitives that we developed for the LMS
filter. Fig. 7(c) illustrates an attractive benefit of
adaptation. Device mismatch causes variations in
memory-cell offsets and multiplier gains, therefore two
weights of identical nominal value have different single-
ended voltage representations in their memory cell. This
would normally impact the resolution of an open-loop
system, but the LMS adaptation naturally compensates
for the mismatch so that the memory cells converge to the
different voltage outputs that represent the correct
nominal value.

C. Adaptive-DS-CDMA Despreading

As a final experiment, we enable all 48 taps and use the
adaptive filter in a direct-sequence code-division
multiple-access (DS-CDMA) adaptive despreading
application [18]. Fig. 8(a) shows the experiment, where
four users share a CDMA channel. We encode each
user’s bit stream Ui with orthogonal 16-chip Walsh
spreading codes Wi (signatures), and add the chip streams
to form a composite signal. Traditionally, a receiver
recovers the user’s bit stream by correlating the

composed chip stream with the user’s signature.
However, in the presence of multipath fading and
multiple-user interference, the optimal signature to
recover the original bit stream deviates from the original
user’s spreading code, consists of non-binary values and
is unknown to the receiver [19]. An effective approach to
solve this problem is to learn the optimal signature using
an adaptive filter to recover the bit stream. The target can
be externally provided via a training sequence, or it can
be estimated using a decision-feedback approach. We
input the composite signal (oversampled by a factor of 3)
to the 48-tap adaptive filter, and provide user U1’s bit
stream as a reference. The task of the filter is to learn the
optimal spreading code 1

~
W and produce U1’s original bit

stream.
Fig. 8(b) shows the reference bit stream and the filter’s

output, sampled after each complete bit frame. Because
the reference is a binary sequence, a simple comparator
can generate the user’s bitstream from the filter’s analog
output and feed it back as the reference. The figure shows
that the filter learns to discriminate the bit stream after
only a few iterations. Furthermore, as the adaptation
progresses, the amplitude of the output becomes larger,
improving the receiver’s interference- and noise-rejection
characteristics to the maximal filter resolution of 10 bits.
Other hardware implementations of CDMA
despreading [20, 21] use less power and area than our
filter, but they rely fundamentally on non-adaptive,
strictly binary user signatures. Thus, these
implementations can only operate in open loop and are
not suitable for the blind adaptive detection application
that we have illustrated here.

V. CONCLUSION

We built a 48-tap, 19.2GOPS, 20mW, 2.6mm2 filter
that adapts its weights using the LMS algorithm with an
output resolution of 10 bits. Synapse transistors enable
compact, low-power analog memory cells without charge
leakage. This is particularly important in supervised-
learning applications, where the filter operates in open
loop after a training period. Moreover, because the
mechanisms that we use to update the weights are
immune to charge injection, we can use digital pulse-
based adaptation, which results in accurate weight
updates. As a result, our filter can adapt with more than
13 bits of accuracy. In fact, the error-performance of the
filter is limited by the current-source mismatch in our
mixed-signal multipliers, which we can improve at low
cost using proven on-chip trimming techniques.
Combining analog and digital technology in the
implementation of this filter enables high performance,
low power consumption, good scalability and
compatibility with standard digital CMOS processes.

(b) Filter output

-1

0

+1

Iteration

N
or

m
al

iz
ed

 o
ut

pu
t

output
target

0 150 300 450 600 750 900 1050 1200 1350 1500

U1

U2

U3

U4

W1

W2

W3

W4

Σ LMS Filter

U1

~
U1

target

output
~

W1
filter learns W1 tap coefficients

(a) Adaptive CDMA despreading

Fig. 8. LMS performance on an adaptive CDMA despreading
application. (a) The experiment. We generated bit streams for 4
simultaneous CMDA users (U1–U4) and encoded them using 16-
chip orthogonal Walsh codes (W1–W4). We combined the user chip
streams, oversampled the combined signal by a factor of 3, and fed
the resulting signal to the 48-tap filter. We provided U1’ s bit stream
as the target and let the filter learn the appropriate despreading code
W1. (b) Evolution of the output normalized to the amplitude of the
reference. The filter learns to correctly discriminate the user’s bit
stream after only a few iterations.

REFERENCES

[1] B. Widrow and S. D. Stearns, Adaptive Signal Processing.
Englewood Cliffs, NJ: Prentice-Hall, 1985.

[2] M. Q. Le, P. J. Hurst, and J. P. Keane, "An Adaptive Analog
Noise-Predictive Decision-Feedback Equalizer," presented at
Symposium on VLSI Circuits, Honolulu, Hawaii, 2000.

[3] M. Figueroa, D. Hsu, and C. Diorio, "A Mixed-Signal Approach
to High-Performance, Low-Power Linear Filters," IEEE Journal
of Solid-State Circuits, vol. 36, pp. 816-822, 2001.

[4] C. Diorio, S. Mahajan, P. Hasler, B. A. Minch, and C. Mead, "A
High-Resolution Nonvolatile Analog Memory Cell," presented at
IEEE Intl. Symp. on Circuits and Systems, 1995.

[5] C. Diorio, P. Hasler, B. Minch, and C. Mead, "A Complementary
Pair of Four-Terminal Silicon Synapses," Analog Integrated
Circuits and Signal Processing, vol. 13, pp. 153-166, 1997.

[6] P. Hasler and J. Dugger, "Correlation Learning Rule in Floating-
Gate pFET Synapses," IEEE Transactions on Circuits and
Systems II: Analog and Digital Signal Processing, vol. 48, pp.
65-73, 2001.

[7] A. Shon, D. Hsu, and C. Diorio, "Learning Spike-Based
Correlations and Conditional Probabilities in Silicon," presented
at Neural Information Processing Systems (NIPS), Vancouver,
BC, 2001.

[8] D. Hsu, M. Figueroa, and C. Diorio, "Competitive Learning with
Floating-Gate Circuits," IEEE Transactions on Neural Networks,
vol. 13, pp. 732-744, 2002.

[9] J. Hyde, T. Humes, C. Diorio, M. Thomas, and M. Figueroa, "A
Floating-Gate Trimmed, 14-bit, 250 MS/s Digital-to-Analog
Converter in Standard 0.25µm CMOS," presented at Symposium
on VLSI Circuits, 2002.

[10] P. Hasler, B. Minch, and C. Diorio, "An Autozeroing Floating-
Gate Amplifier," IEEE Transactions on Circuits and Systems II:
Analog and Digital Signal Processing, vol. 48, pp. 74-82, 2001.

[11] M. Lenzlinger and E. H. Snow, "Fowler-Nordheim Tunneling
into Thermally Grown SiO2," Journal of Applied Physics, vol. 40,
pp. 278-283, 1969.

[12] E. Takeda, C. Yang, and A. Miura-Hamada, Hot Carrier Effects
in MOS Devices. San Diego, CA: Academic Press, 1995.

[13] C. Diorio, D. Hsu, and M. Figueroa, "Adaptive CMOS: from
Biological Inspiration to Systems-on-a-Chip," Proceedings of the
IEEE, vol. 90, pp. 345-357, 2002.

[14] C. Mead, Analog VLSI and Neural Systems. Reading, MA:
Addison-Wesley, 1989.

[15] B. K. Dolenko and H. C. Card, "Tolerance to Analog Hardware
of On-Chip Learning in Backpropagation Networks," IEEE
Transactions on Neural Networks, vol. 6, pp. 1045-1052, 1995.

[16] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers,
"Matching Properties of MOS Transistors," IEEE Journal of
Solid-State Circuits, vol. 24, pp. 1433-1440, 1989.

[17] F. Palmieri, J. Zhu, and C. Chang, "Anti-Hebbian Learning in
Topologically Constrained Linear Networks: A Tutorial," IEEE
Transactions on Neural Networks, vol. 4, pp. 748-761, 1993.

[18] R. Lupas and S. Verdu, "Linear Multiuser Detectors for
Synchronous Code-Division Multiple Access Channels," IEEE
Transactions on Information Theory, vol. IT-35, 1989.

[19] M. Honig, U. Madhow, and S. Verdú, "Blind Adaptive Multiuser
Detection," IEEE Transactions on Information Theory, vol. 41,
pp. 944-960, 1995.

[20] D. Senderowicz, S. i. Azuma, H. Matsui, K. Hara, S. Kawama, Y.
Ohta, M. Miyamoto, and K. Iizuka, "A 23mW 256-Tap
8MSample/s QPSK Matched Filter for DS-CDMA Cellular
Telephony Using Recycling Integrator Correlators," presented at
International Solid-State Circuits Conference (ISSCC), San
Francisco, CA, 2000.

[21] T. Yamasaki, T. Fukuda, and T. Shibata, "A Floating-Gate-MOS-
Based Low-Power CDMA Matched Filter Employing

Capacitance Disconnection Technique," presented at IEEE
Symposium on VLSI Circuits, Kyoto, Japan, 2003.

