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AbstractWe have built a 48-tap, mixed-signal adaptive 

FIR filter with 8-bit digital input and an analog output with 
10 bits of resolution. The filter stores its tap weights in 
nonvolatile analog memory cells using synapse transistors, 
and adapts using the Least-Mean-Square (LMS) algorithm. 
We run the input through a digital tapped delay line, 
multiply the digital words with the analog tap weights using 
mixed-signal multipliers, and adapt the tap coefficients 
using pulse-based feedback. The accuracy of the weight 
updates exceeds 13 bits. The total die area is 2.6mm2 in a 
0.35µµµµm CMOS process. The filter delivers a performance of 
19.2GOPS at 200MHz, and consumes 20mW providing a 
6mA differential output current. 

Index TermsAdaptive signal processing, FIR filter, 
mixed-signal VLSI, floating-gate MOSFET. 

I. INTRODUCTION 

ORTABLE electronic systems normally operate 
under unknown or changing environmental conditions 

such as noise levels, interference, and varying input 
statistics. To combat these problems, they frequently 
employ adaptive signal-processing techniques to optimize 
their performance. Adaptive filtering is the most popular 
of these techniques: it is widely used in applications such 
as noise canceling, adaptive modeling, system 
identification, equalization, and linear predictive coding. 

In application domains such as mobile communications 
or ubiquitous computing, adaptive systems also face 
severe constraints in power dissipation and circuit die 
area. In such cases, software implementations using 
programmable digital signal-processing (DSP) chips 
become infeasible. Even custom digital circuits can be 
prohibitively large and power-hungry, mainly due to the 
need for fast adders and multipliers. Although analog 
circuits can implement moderate-resolution arithmetic at 
low power and area, these circuits are limited by other 
problems such as charge leakage, signal offsets, circuit 
mismatch, error accumulation, and noise sensitivity. 

We have built a mixed-signal, adaptive finite impulse-
response (FIR) filter that combines the power and area 
benefits of analog circuits with the scalability of digital 
technology. The filter features digital inputs, analog 
weights with linear updates, and implements a pulse-

based version of the ubiquitous Least-Mean-Square 
(LMS) adaptation algorithm [1]. Each of the 48 taps 
computes a multiplication and an addition at every clock 
cycle, for an aggregated throughput of 19.2 Giga-
Operations Per Second (GOPS) at 200MHz. The filter 
uses 2.6mm2 of die area, consumes 20mW, and provides 
a 6mA differential output current. The input resolution is 
8 bits, the output resolution is 10 bits, and the LMS 
circuits update the weights with more than 13 bits of 
accuracy. Our design improves on other mixed-signal 
adaptive filters [2] by two orders of magnitude in 
power/performance ratio and one order of magnitude in 
die area. Our own previous 16-tap FIR filter [3] was 
small and low-power, but it was incapable of on-chip 
adaptation and provided only 7 bits of output resolution. 
The current design uses a nonvolatile weight-storage 
cell [4] based on synapse transistors [5], provides 
accurate weight-updates, and introduces a novel on-chip 
implementation of the LMS algorithm, thereby enabling 
closed-loop operation. Our design also features new 
mixed-signal multipliers, achieves an output resolution of 
10 bits, and extends the length of the filter to 48 taps. 

The remainder of this paper is organized as follows: 
first, we introduce synapse transistors as an enabling 
technology for compact and accurate weight-storage in 
adaptive hardware systems. Then, we describe our filter 
and the implementation of its fundamental building 
blocks. Finally, we discuss our experimental results and 
conclude. 

II. SYNAPSE TRANSISTORS 

A synapse transistor is a conventional MOSFET with 
three additional properties: nonvolatile analog weight 
storage, local weight update mechanisms, and 
simultaneous read/write operations. We build synapse 
transistors using floating-gate pFETs [5], where the 
charge stored on the floating gate represents the analog 
weight. Researchers have used synapse transistors to 
compute and store correlations [6, 7], perform 
unsupervised vector quantization [8], trim digital-to-
analog converters [9] and null input offsets in a 
capacitive-feedback operational amplifier [10].  

Fig. 1 shows a layout view of a synapse transistor in a 
double-poly process. The gate and field oxides isolate the 
poly 1 gate and provide nonvolatile charge-storage. The 
control gate capacitively couples to the floating gate, and 
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can be built from poly 2 as in the figure, or using a MOS 
capacitor in a digital process. We increase the amount of 
charge stored on the floating gate using Fowler-Nordheim 
tunneling [11], with a small pFET as a tunneling junction. 
We decrease the amount of charge via impact-ionized 
hot-electron injection (IHEI) [12] by lowering the voltage 
at the drain terminal of the device. Synapse transistors 
and their charge-update dynamics are discussed in [5, 13]. 
In our filter, synapse transistors provide accurate and 
compact analog weight storage without the charge-
injection and leakage problems commonly associated 
with VLSI capacitors. 

III. THE FILTER 

Fig. 2(a) shows the architecture of our filter and 
Fig. 2(b) shows a microphotograph of the chip core. We 
use a digital delay line to shift the 8-bit input signal 
across the filter taps, because offsets and error 
accumulation make long analog delay lines difficult to 
implement in VLSI. The delay line runs at 200MHz and 
uses standard master-slave flip-flops. Each tap contains a 
nonvolatile memory cell that stores an analog weight, and 
a mixed-signal multiplier that computes the product 
between the digital tap input x and the local tap weight 
voltage Vw, generating an analog differential current 
output Io. These currents are summed across the filter on 
common wires to create the filter output. 

We encode the output target It as an analog differential 
current and use it to generate a differential error signal Ie. 
Current-driven pulse generators [14] (off-chip in the 

present implementation) generate a differential digital 
pulse-train Se of fixed pulse-width, which encodes the 
instantaneous value of the error as the difference between 
the pulse frequencies of the differential components Se

+ 
and Se

–. At each tap, LMS circuits adapt the weight values 
by correlating this error signal with the tap inputs. The 
following subsections describe the implementations of 
our memory cells, LMS-update circuits and mixed-signal 
multipliers. 

A. Analog Memory Cell 

The charge-update dynamics of synapse transistors 
naturally lead to exponential adaptation rules and weight-
dependent updates. While it is possible to design adaptive 
systems using these update dynamics [13], they are not 
suitable for adaptation using the LMS algorithm because, 
as shown in Eqn. (1) in subsection C, the LMS rule 
updates each tap weight by the (linear) product between 
the error and each tap input. Nonlinearities are acceptable 
if they are mild and the adaptation rule is a smooth, odd, 
and monotonic function. In general, nonlinearities and 
weight dependences affect the stability of the adaptation 
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Fig. 1. (a) Top and (b) side layout view of a synapse transistor in a 
double-poly process, using an exaggerated vertical scale. The device 
stores a nonvolatile analog weight as charge on the floating gate. We 
increase the amount of charge by tunneling electrons off the floating-
gate through the small pFET on the left. We decrease the charge by 
injecting electrons at the drain terminal. 

(a) Filter architecture

(b) Chip microphotograph
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Fig. 2. (a) Adaptive 48-tap filter architecture. Each tap comprises a 
digital tap register, a mixed-signal multiplier, and a memory cell that 
stores an analog tap weight and implements LMS adaptation. A pulse 
generator produces a differential frequency-modulated digital pulse 
train (Se), representing the filter error. (b) Microphotograph of the 
chip core in a 0.35µm CMOS process. The total die area is 2.6mm2. 
The mixed-signal multipliers use almost 50% of the area. The 
memory cells and update circuitry account for 25%. The delay line 
registers use the other 25%. 



and constrain the maximal adaptation rate. In addition, 
our system-level simulations showed that the resolution 
of the weight-updates directly affect the error 
performance of the filter. Therefore, our filter requires a 
memory cell that supports weight updates that are 
accurate, quasi-linear, and weight-independent. 

Fig. 3(a) shows our analog weight cell, based on the 
design we presented in [4]. We store the weight as charge 
on the floating gate of a synapse pFET. Because the 
dynamics of tunneling and injection depend on the 
floating-gate voltage, we use negative feedback in an 
amplifier-like circuit (transistors M1-M2 and capacitor C) 
to keep this voltage at a constant value. M3 acts as an 
injection device: voltage pulses applied to its drain (Vinj) 
activate injection and add electrons to the floating gate. 
We remove electrons from the floating gate by applying 
pulses (Vtun) to the tunneling junction M4. The voltage at 
Vbias adjusts the relative strengths of tunneling and 
injection, and is tuned to yield symmetric weight updates 
at each tap in the presence of device mismatch. 

The feedback capacitor C integrates the charge 
updates, modifying the output voltage Vw by 
∆Vw = ∆Q/C. Because the floating-gate voltage is 
constant, update voltage-pulses of fixed width and 
amplitude change the output by a fixed amount. 
Therefore, the magnitude of the updates depends linearly 

on the frequency of the pulses Vinj and Vtun. Additionally, 
frequency-modulated digital updates are immune to jitter 
noise and signal degradation because the update pulses 
are restored and integrated at each tap. The experimental 
data in Fig. 3(b) shows the linear relationship between the 
weight updates and the number of pulses in Vinj over one 
adaptation period. Sweeping the frequency of Vtun yields 
similar results. 

A single-ended to differential voltage converter 
transforms Vw into a differential signal (Vw

+ and Vw
-) with 

a fixed common mode. This differential output drives the 
mixed-signal multiplier that scales the weight by the tap 
input, as described in Section C.  

B. LMS Block 

The least-mean-square (LMS) algorithm [1] uses a 
gradient-descent method to update the weights of a linear 
filter or neural network. At each iteration, the algorithm 
updates the weights according to its adaptation rule: 
 )()()()1( nenxnwnw iii λ+=+  (1) 

where wi is the weight at tap i, λ is the adaptation rate, xi 
is the value of the input at tap i, and e is the error. The 
LMS block in our filter computes this update by 
integrating pulses of frequency proportional to the error e, 
during a time window of length proportional to xi. 

Fig. 4(a) shows the implementation of the LMS-update 
block at each tap. We preload a digital downcounter with 
the magnitude of the tap input x (the lower 7 bits or their 
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Fig. 3. (a) Memory-cell architecture. We update the floating-gate 
charge with pulses on Vtun and Vinj. M2 forces a constant current 
through M1, thereby pinning the floating-gate voltage. Capacitor C 
integrates the charge updates, causing Vw to change by ∆Vw = ∆Q/C. 
Because the floating-gate voltage is constant, feedback pulses of 
fixed width and amplitude change the floating-gate charge by 
constant amounts, causing fixed updates in Vw. (b) Measured 
linearity of the memory updates with respect to the frequency of Vinj. 
We obtain similar results for Vtun. 
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Fig. 4. (a) LMS-update architecture. The filter preloads a 
downcounter with the magnitude of the digital tap-input x. While the 
counter counts down, the error pulses (Se+ and Se–) drive tunneling 
and injection in the memory cell. The sign of x determines the 
polarity of the weight update. Therefore, the polarity and number of 
pulses updating the weight value during one adaptation period is the 
4-quadrant product between the present input x and the present error 
Se. (b) Measured updates versus error pulse frequency e. 



complement, because x uses an offset-binary code), 
which defines the time window during which we let the 
error pulses (Se

+ and Se
–) update the value of the weight 

memory cell (Vinj and Vtun). The number of update pulses 
received by the memory cell is proportional to the 
product between the duration of the time window (the 
magnitude of the tap input x), and the frequency of the 
error pulses (the value of the error e). Finally, the 
crossbar Xbar optionally inverts the sign of the updates 
based on the MSB of x, completing the full four-quadrant 
multiply of Eqn. (1). An external clock signal (CLK-
LMS), independent of the delay-line clock (CLK), drives 
the downcounter and thereby modulates the adaptation 
rate. We can also adjust the gain of the pulse generators 
to control the adaptation rate. 

Fig. 4(b) shows the weight update as a function of the 
error e (represented as a pulse count) for several values of 
the input x. We represent Se

+ as a positive count and Se
– as 

a negative count. Fig. 4(b) demonstrates that the memory-
update magnitude is an approximately linear function of 
the product of x and e, as required by Eqn. (1). The mild 
nonlinearity of the large updates is due to limitations of 
the amplifier used in the memory cell (transistors M1-M2 
in Fig. 3), and can be corrected at a modest area cost by 
replacing it with a small operational amplifier. However, 
our system simulations and the theoretical analysis 
presented in [15] show that the error-performance of the 
filter is not affected by these mild nonlinearities, and 
therefore we kept the more compact design presented 
here. 

C. Mixed-Signal Multiplier 

The mixed-signal multiplier outputs a differential 
analog current that represents the product between the 
digital tap input and the analog tap weight. This current is 
summed across the taps to produce the filter output. 
Unlike the LMS block, this multiplier runs at the full 
speed of the tapped delay-line (200MHz) and ultimately 
determines the bandwidth of the filter. 

Fig. 5(a) shows the 4-quadrant multiplier cell. We use a 
circuit that resembles a current-steered digital-to-analog 
converter (DAC), with an array of scaled current sources. 
The scaled currents pass through differential pairs that 
implement a saturating multiply. The differential input 
voltage to each pair (Vw

+ and Vw
–) represents the analog 

weight. The digital input x sets the polarity of the weight 
voltage at each pair. The circuit computes the expression: 

( ) [ ] ( )�

=

+ ××−×=
7

0

1 21
i

x
w

x
o

ii VkI  (2) 

where Vw = (Vw
+ - Vw

-) is the differential weight voltage, 
xi are the bits of the digital tap input x, Io = (Io

+ - Io
-) is the 

output current, the operator [x] represents the saturating 
multiply transfer function of the differential pair, and k is 
a scaling and unit-adjustment constant. Eqn. (2) is the 
offset-binary representation of the tap input, where the 
contribution of each bit is additionally multiplied by the 
analog weight. 

We use standard current-source sizing techniques [16] 
to achieve 8-bit intrinsic resolution in the digital-to-
analog conversion. We also use a thermometer decoder 
for the upper 3 bits to reduce glitch energy and achieve 
higher bandwidth. Fig. 5(b) shows the measured integral 
nonlinearity (INL) of a typical multiplier as a function of 
the digital input x. Both the INL and the differential 
nonlinearity (DNL, not shown) are less than 0.5LSB. The 
current sources and differential pairs occupy 80% of the 
multiplier area. We can drastically reduce this area and 
increase the multiplier resolution in future 
implementations using the on-chip trimming techniques 
that we demonstrated in [9]. 
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Fig. 5. (a) Mixed-signal multiplier cell, which comprises a segmented 
8-bit DAC-like circuit with 5 binary and 3 thermometer bits, and an 
array of differential pairs that multiply the digital input word (x) by 
the differential output of the weight cell (Vw+ and Vw–). 
(b) Measured integral nonlinearity of the digital input in a typical 
multiplier. The INL and DNL are 0.35 and 0.4 LSBs, respectively. 
(c) Measured linearity of the weight in a typical multiplier. We do 
not have access to the differential weight, so we measured the single-
ended representation Vw centered at 3V. 



Fig. 5(c) shows the multiplier output as a function of 
the weight value, for several digital input codes. The 
analysis in [15] and our own system simulations show 
that this multiplier provides adequate linearity for LMS 
adaptation for a weight range of up to 1V differential. 
This is corroborated by our experimental results in 
Section IV. 

IV. EXPERIMENTAL RESULTS 

A. Single-Tap Performance 

In our first experiment, we seek to evaluate the impact 
on the error performance of the filter due to the resolution 
of the memory cell and LMS adaptation circuits versus 
the impact of the mixed-signal multipliers. First, we 
enable a single tap in the filter, set a DC-valued digital 
input and target, and let the filter adapt. In this setup, the 
current-source mismatch in the mixed-signal multiplier 
has no influence on the output error because the inputs to 
the differential pairs do not switch. Next, we use a 
triangle-wave input and target and again let the filter 
adapt. In this case, because the digital input switches at 
200MHz, the current-source mismatch in the multiplier 
introduces a high-frequency error that the adaptation is 
unable to cancel. Fig. 6(a) shows the evolution output and 
reference for both setups, and Fig. 6(b) shows the RMS 
value of the error. After a few adaptation periods, the 
error settles to 10nA RMS for the first case (this 
measured accuracy is limited by our experimental setup). 

For a 128µA single-tap output range, this error 
corresponds to an output resolution better than 13 bits. 
This resolution is ultimately limited by the tradeoff 
between the dynamic range of the weights and the 
magnitude of the update performed by a single pulse. In 
the second case, the error settles to 0.5µA, corresponding 
to a resolution of 8 bits. This is consistent with the 8-bit 
matching of the current sources in the mixed-signal 
multiplier, and demonstrates that the error-performance 
of our current implementation is limited by the 
multipliers and not by the linearity of the memory cell 
and weight updates. As stated in Section III.C, we can 
improve the error-performance of the filter at negligible 
additional cost in power and area, using the on-chip 
trimming techniques that we demonstrated in [9]. 

B. Adapting with Multiple Taps 

In our second experiment, we enable 24 taps and train 
the filter to output a triangle wave given a square-wave 
input. Fig. 7(a) shows the target and output during the 
first 80 and the last 80 iterations. Fig. 7(b) shows the 
RMS error during adaptation. After 480 iterations, the 
error is about 5µA (full output range is 24×128µA). As 
stated before, the error performance is limited by the 
resolution of the mixed-signal multipliers. Because the 
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Fig. 6. Single-tap error performance for a constant and triangle-wave 
target and input. (a) Target and filter output for both experiments. 
(b) RMS value of the filter error. With a constant target, the error 
settles to 10nA (13-bit output resolution). With the triangular target, 
the error settles to 0.5µA (8-bit output resolution). As discussed in 
the text, the experiment shows that the error performance of the filter 
is limited by the resolution of the mixed-signal multipliers. 
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Fig. 7. LMS performance with 24 taps. (a) Target and output during 
the first 80 and last 80 iterations. (b) RMS error. After 480 iterations, 
the error is 5µA, settling at 2µA (equivalent to 10-bit output 
resolution) after 300 additional iterations. (c) Outputs of two memory 
cells learning the same theoretical weight value. The LMS algorithm 
compensates for mismatch across cells, so that each cell converges to 
a voltage that represents the same nominal weight. 



effects of device mismatch in the multipliers are largely 
uncorrelated across the filter, the output picks up two 
more bits of resolution, settling at slightly more than 10 
bits (2µA RMS error) after an additional 300 iterations. 
The convergence speed is limited by the properties of the 
LMS algorithm, and can be accelerated using an adaptive 
input decorrelating stage as shown in [17]. We can easily 
build this input stage using the same adaptation and 
computational primitives that we developed for the LMS 
filter. Fig. 7(c) illustrates an attractive benefit of 
adaptation. Device mismatch causes variations in 
memory-cell offsets and multiplier gains, therefore two 
weights of identical nominal value have different single-
ended voltage representations in their memory cell. This 
would normally impact the resolution of an open-loop 
system, but the LMS adaptation naturally compensates 
for the mismatch so that the memory cells converge to the 
different voltage outputs that represent the correct 
nominal value. 

C. Adaptive-DS-CDMA Despreading 

As a final experiment, we enable all 48 taps and use the 
adaptive filter in a direct-sequence code-division 
multiple-access (DS-CDMA) adaptive despreading 
application [18]. Fig. 8(a) shows the experiment, where 
four users share a CDMA channel. We encode each 
user’s bit stream Ui with orthogonal 16-chip Walsh 
spreading codes Wi (signatures), and add the chip streams 
to form a composite signal. Traditionally, a receiver 
recovers the user’s bit stream by correlating the 

composed chip stream with the user’s signature. 
However, in the presence of multipath fading and 
multiple-user interference, the optimal signature to 
recover the original bit stream deviates from the original 
user’s spreading code, consists of non-binary values and 
is unknown to the receiver [19]. An effective approach to 
solve this problem is to learn the optimal signature using 
an adaptive filter to recover the bit stream. The target can 
be externally provided via a training sequence, or it can 
be estimated using a decision-feedback approach. We 
input the composite signal (oversampled by a factor of 3) 
to the 48-tap adaptive filter, and provide user U1’s bit 
stream as a reference. The task of the filter is to learn the 
optimal spreading code 1

~
W  and produce U1’s original bit 

stream. 
Fig. 8(b) shows the reference bit stream and the filter’s 

output, sampled after each complete bit frame. Because 
the reference is a binary sequence, a simple comparator 
can generate the user’s bitstream from the filter’s analog 
output and feed it back as the reference. The figure shows 
that the filter learns to discriminate the bit stream after 
only a few iterations. Furthermore, as the adaptation 
progresses, the amplitude of the output becomes larger, 
improving the receiver’s interference- and noise-rejection 
characteristics to the maximal filter resolution of 10 bits. 
Other hardware implementations of CDMA 
despreading [20, 21] use less power and area than our 
filter, but they rely fundamentally on non-adaptive, 
strictly binary user signatures. Thus, these 
implementations can only operate in open loop and are 
not suitable for the blind adaptive detection application 
that we have illustrated here. 

V. CONCLUSION 

We built a 48-tap, 19.2GOPS, 20mW, 2.6mm2 filter 
that adapts its weights using the LMS algorithm with an 
output resolution of 10 bits. Synapse transistors enable 
compact, low-power analog memory cells without charge 
leakage. This is particularly important in supervised-
learning applications, where the filter operates in open 
loop after a training period. Moreover, because the 
mechanisms that we use to update the weights are 
immune to charge injection, we can use digital pulse-
based adaptation, which results in accurate weight 
updates. As a result, our filter can adapt with more than 
13 bits of accuracy. In fact, the error-performance of the 
filter is limited by the current-source mismatch in our 
mixed-signal multipliers, which we can improve at low 
cost using proven on-chip trimming techniques. 
Combining analog and digital technology in the 
implementation of this filter enables high performance, 
low power consumption, good scalability and 
compatibility with standard digital CMOS processes. 
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Fig. 8. LMS performance on an adaptive CDMA despreading 
application. (a) The experiment. We generated bit streams for 4 
simultaneous CMDA users (U1–U4) and encoded them using 16-
chip orthogonal Walsh codes (W1–W4). We combined the user chip 
streams, oversampled the combined signal by a factor of 3, and fed 
the resulting signal to the 48-tap filter. We provided U1’ s bit stream 
as the target and let the filter learn the appropriate despreading code 
W1. (b) Evolution of the output normalized to the amplitude of the 
reference. The filter learns to correctly discriminate the user’s bit 
stream after only a few iterations. 
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