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Abstract

This paper examines recon�gurable pipelined datapaths (RaPiDs), a new architecture style

for computation-intensive applications that bridges the cost/performance gap between gen-

eral purpose and application speci�c architectures. RaPiDs can provide signi�cantly higher

performance than general purpose processors on a wide range of applications from the ar-

eas of video and signal processing, scienti�c computing, and communications. Moreover,

RaPiDs provide the exibility that doesn't come with application-speci�c architectures.

A RaPiD architecture is optimized for highly repetitive, computationally-intensive tasks.

Very deep application-speci�c computation pipelines can be con�gured that deliver very high

performance for a wide range of applications. RaPiDs achieve this using a coarse-grained

recon�gurable architecture that mixes the appropriate amount of static con�guration with

dynamic control.

We describe the fundamental features of a RaPiD architecture, including the linear

array of functional units, a programmable segmented bus structure, and a programmable

control architecture. In addition, we outline the oorplan of the architecture and provide

timing data for the most critical paths. We conclude with performance numbers for several
applications on an instance of a RaPiD architecture.

1: Introduction

Many applications from a variety of �elds including signal processing, scienti�c computing,
graphics, and communications represent great challenges for today's compiler and architec-
ture designers. Enormous data sets and large computational requirements push compiler
and architecture capabilities to the limit. The importance of e�cient execution is seen in
algorithms such as motion estimation for real-time video encoding and accurate low-power
�ltering for wireless communications. Such computation-intensive applications have been
targeted to a variety of di�erent architectures including general purpose processors, appli-
cation speci�c integrated circuits, and �eld programmable compute engines. Each of these
approaches makes tradeo�s between the range supported applications and performance.

The most exible architectures are general purpose processors, including the large
class of digital signal processors (DSPs). To achieve performance for a wide range of
applications, general purpose processors dedicate a substantial amount of die area to data
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and instruction caches, a crossbar interconnect of the functional units, and complex on-line
analyses such as speculative execution and branch prediction. These complex mechanisms
can extract a moderate amount of instruction-level parallelism from ordinary programs but
are not meant to extract the large amount of �ne-grained parallelism available in many
compute-intensive applications.

At the other end of the exibility spectrum lie application speci�c integrated circuits
(ASICs) which have long been used to achieve higher performance at a lower cost than
general purpose processors. High performance can be achieved since the architecture can
be tailored for a speci�c application to extract the available �ne-grained parallelism, while
optimizing for power and/or die area. However, the drawbacks of ASICs are their lack
of exibility and their high non-recurring engineering costs. By de�nition, an application
speci�c architecture speeds up only one application. This inexibility combined with a
high design cost make them unattractive except for very well-de�ned and wide-spread
applications. Compounding this problem is the fabrication expense that can reach $100k,
a cost that makes the use of ASICs reasonable only in high volumes.

Field programmable computing has attracted a lot of attention recently because of its
promise to bridge the exibility and performance gaps between general purpose processors
and ASICs. A �eld programmable architecture is like an electronic lego construction set.
The user puts legos (called logic blocks) together to form a circuit that best suits his current
application. At any time, the user can construct a new circuit by taking apart the old one
and building from scratch. As a result, con�gurable computing machines can deliver, in
theory, the high performance provided by application speci�c hardware along with the
exibility of general purpose processors. Unfortunately, this promise has yet to be realized
in spite of some successful examples [1, 11]. There are two main reasons for this.

First, con�gurable computing platforms are currently implemented using commercial
�eld programmable gate arrays (FPGAs). FPGAs are necessarily very �ne-grained (i.e.
all of the logic blocks are small and regular) so they can be used to implement arbitrary
circuits, but the overhead of this generality is expensive in both area and performance.
While general purpose processors use highly optimized functional units that operate in
bit-parallel fashion on long data words, FPGAs are very ine�cient for ordinary arith-
metic and only somewhat better for logical operations. FPGA-based computing has an
area/performance advantage only on complex bit-oriented computations or complicated
bit-level masking and �ltering.

Second, programming an FPGA-based con�gurable computer is akin to designing an
ASIC. The programmer either uses synthesis tools that deliver poor density and perfor-
mance or designs the circuit manually, which requires both intimate knowledge of the
FPGA architecture and substantial design time. Neither alternative is attractive, particu-
larly for simple computations that can be described in a few lines of C code.

Our response to these problems is a new architecture style { recon�gurable pipelined
datapaths (RaPiDs). RaPiDs are coarse-grained �eld programmable architectures for con-
structing deep computational pipelines. As compared to a general purpose processor, a
RaPiD can be thought of as a superscalar architecture with hundreds of functional units
but with no cache, register �le, or crossbar interconnect. Instead of a data cache, data
is streamed in directly from external memory or sensors. Instead of an instruction cache,
programmed controllers generate a small instruction stream which is decoded as it ows in
parallel with the datapath. Instead of a global register �le, data and intermediate results
are stored locally in registers and small RAMs, close to their destination functional units.
Instead of a crossbar, a programmable interconnect is con�gured to forward data between
speci�c functional units on a per application basis.
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Removing caches, crossbars, and register �les frees up a tremendous amount of area
that can be dedicated to compute resources, and reduces the communication delay by
shortening wires. Unfortunately, these removals also reduce the types of applications that
can be computed on RaPiDs. Highly irregular computations, with complex addressing
patterns, little reuse of data, and an absence of �ne-grained parallelism will not map well
to a RaPiD architecture. However, regular computation-intensive tasks like those found
in digital signal processing, scienti�c computing, graphics, and communications will reap
great performance gains on RaPiDs over general purpose processors. In addition, a RaPiD
provides the exibility that doesn't come with an ASIC.

The fundamental architectural features of RaPiDs have been developed in parallel with
a programming language and compiler since a strong synergy exists between architecture,
speci�cation, and compilation. The user must be able to easily take advantage of the full
capabilities of the architecture. In addition, the architecture must have facilities for easing
the compilation of a given speci�cation. To this end, specialized hardware is added to the
architecture and special constructs are added to the language with the ultimate goal of
making speci�cation simple, compilation feasible, and hardware utilization high. Details
of speci�cation and compilation can be found in [3].

This paper describes the RaPiD architecture in detail. The block diagram in Figure 1
breaks down RaPiD into a datapath, a control path, an instruction generator, and a stream
manager. This paper discusses the fundamental features of each of these components. In
particular, Section 2 introduces the datapath architecture, including how functional units
and buses are used to form an application's datapath. Section 3 presents a novel architec-
ture for the generation of control for the datapath, including details on the programmed
controller architecture for instruction generation. Section 4 discusses how RaPiD inter-
faces with external memory through the stream manager. Finally, Section 5 introduces a
benchmark architecture, and Section 6 analyses area, clock rate, and power requirements
of this architecture in a speci�c technology.
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Figure 1: RaPiD Architecture Block Diagram. The RaPiD datapath is a linear pipeline con-

�gured from a linear array of functional units by means of a con�gurable interconnect. The instruction

generator produces a stream which is decoded by the control path. The resulting decoded instructions

provide time-varying control for the datapath. The stream manager communicates with external memory

(or memory-mapped external sensors) to stream data in and out of the RaPiD datapath.
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2: RaPiD datapath architecture

A typical RaPiD datapath contains hundreds of functional units, ranging in complexity
from a simple general purpose register to a multi-output booth-encoded multiplier with
a con�gurable shifter. The ability of the architecture to forward results between these
functional units determines, in part, the range of applications that can be targeted. The
interconnection method employed by many of today's superscalar processors is a crossbar
{ a completely exible interconnect (any functional unit can forward results to any other)
which greatly simpli�es instruction scheduling ([7]). Unfortunately, the chip area of the
crossbar scales with the square of the number of functional units. To avoid this area
expense, RaPiD borrows from FPGA architectures by interconnecting its functional units
via a con�gurable, segmented bus structure.

Since RaPiDs consist of coarse-grained, word-based functional units, the interconnect
di�ers from that of FPGAs. The buses are word-based instead of bit based and are ar-
ranged linearly as opposed to two-dimensionally. A linear structure is easily manageable;
it simpli�es the layout and reduces the control requirements. Functional units can be more
tightly spaced, and there is no need for corner turning switches. Moreover, a wealth of
research exists showing how multidimensional algorithms can be mapped to linear arrays
[6, 10, 8], especially if some memories are embedded in the datapath since local memory
can act like an extra dimension for deeply nested speci�cations. The linear structure of
the RaPiD datapath was shown in Figure 1.

RaPiDs are targeted at word-based computations. The data-width, as well as the
choice of �xed-point or oating-point, are architectural design parameters. In most cases,
the �xed-point data width is between 8 and 32 bits, and both signed and unsigned data are
supported. Multiple �xed-point representations (within the same width) can be provided
by con�gurable shifters in the datapath. For example, it is often necessary to have a
shifter follow a multiplier to allow the correct �xed-point representation to be chosen for
the multiplier output.

Operation errors like overow cannot be handled as in normal processors. Instead, an
extra tag bit is associated with each data value. The functional units can be con�gured
to set the tag when an overow occurs. The tag could be used to represent an error state
which would be propagated through all future computations. Alternatively, the tag could
indicate a saturated value, allowing for further computation.

2.1: Functional units

Each functional unit inputs a set of words from the con�gurable interconnect, performs a
computation based on a set of control bits, and outputs results in the form of data words
and status bits. The status outputs allow for data-dependent control to be generated. A
generic functional unit is shown in Figure 2a. All functional unit outputs pass through a
Con�gDelay unit which can be con�gured as 0 to 3 register delays, as shown in Figure 2b.
These optional registers allow for the creation of very deep pipelines.

A variety of functional units can be included in a RaPiD architecture. General-purpose
functional units like ALUs, multipliers, shifters, and memories are the most common, but
for speci�c domains, a special-purpose functional unit which performs a single function
(i.e. has no control inputs) might make the most e�cient use of silicon. An example is a
Viterbi decoder for communication applications. For other domains, a highly con�gurable
functional unit might be the right choice. For example, a functional unit could be con-
structed of FPGA-like logic blocks to support a range of bit manipulations like �nd �rst
one, count ones, and normalize.
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Figure 2: A Generic Functional Unit and a Con�gurable Delay. (a) Each functional unit

has inputs and outputs for both data and control. Each output passes through a Con�gDelay unit. (b)

A Con�gDelay unit's N -bit output is equivalent to its input delayed by up to 3 registers, as determined

by the two multiplexer control bits.

Memories within the datapath provide space for temporary variables, constant tables,
and con�gurable-length delay lines. The size of memory is an implementation parameter.
Our experience has shown that for applications we have programmed, a local memory with
3N entries is su�cient for pipelines with N stages. Section 5 examines several functional
units that are used in the benchmark architecture.

2.2: Con�gurable interconnect

The con�gurable interconnect consists of a set of T segmented tracks that run the entire
length of the datapath. Each track contains a set of bus segments, some of which are
connected by bus connectors { con�gurable connections that can be open or up to three
register delays. All buses have the same width, which matches the data width operated
on by the functional units. Some functional units may require or produce double-width
data values, which are communicated via two buses. These values can be treated as two
independent single-width values and routed independently, for example, to two di�erent
ALUs for double-precision accumulation.

An input to a functional unit can be zero (GND) or any one of the T tracks from the
interconnect. To accomplish this, each data input is driven by a (T + 1) : 1 multiplexer,
whose dlg(T + 1)e select lines are driven by control signals as shown in Figure 3. The zero
input can be used, for example, to clear registers.

RaPiD allows each functional unit output to drive an arbitrary number of buses via
T tristate drivers which are con�gured using T control bits. Since each tristate driver
is con�gured independently, an output can fan out to several buses or none at all if the
functional unit is unused.

A RaPiD datapath is usually divided into identical units, called cells, which are repli-
cated to form a complete datapath. For example, the simple cell shown in Figure 4 consists
of three 1-input functional units with no control inputs (FU1s), three 2-input functional
units with two control inputs and one control output (FU2s), seven tracks, and six bus
connectors. The number of cell replications performed to complete the datapath is an
architectural design decision which depends on the target technology and the application
domain's performance requirements. This division of the datapath into cells is invisible
when it comes to mapping applications.

The �rst several tracks of the interconnect have bus segments of di�ering lengths to
allow for many types of data forwarding. However, having �xed-length bus segments in all
tracks is too restrictive for many situations. For example, a pipelined bus carrying data
across the entire array is very common. Moreover, the mapping problem simpli�es when
the lengths of the bus segments can be varied from application to application. To support
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Figure 3: Interconnect Between Functional Units and Buses. (a) Each data input uses a

(T + 1) : 1 multiplexer to select a bus. Each data output uses T tristate drivers to select the buses to

drive. (b) This equivalent but simpli�ed representation uses a single line to represent a multiplexer for

inputs and tristate drivers for outputs.

con�gurable length segments, several of the tracks are populated with bus connectors
(Figure 4b). A bus connector can drive left, drive right, or be disconnected. The connection
is bu�ered to reduce delay in high fanout signals and can also be con�gured to provide up
to three register delays.

3: RaPiD control architecture

The previous section focused on the architectural requirements for interconnecting a RaPiD
architecture's functional units. A speci�c interconnect is determined by the many control
bits found in the multiplexers, tristate drivers, Con�gDelay units, bus connectors, and
functional units. Table 1a examines the control requirements for the cell of Figure 4a. Since
there are seven tracks, each multiplexer requires three control bits, and each functional unit
data output requires seven tristate drivers. Each bus connector and every functional unit
output (data and control) have a Con�gDelay unit which requires two control bits. The
total number of control bits required for this example is 117. Table 1b shows that a single
RaPiD-Benchmark cell requires 396 control bits, and hence a 16-cell datapath for would
require 6336 bits.

There are several approaches for generating the control for this architecture. The most
straightforward method is to treat all control as �eld programmable con�guration bits like
in an FPGA. Unfortunately, this approach is too inexible and only applies to algorithms
that can be mapped to a purely static dataow network. Any application that requires,
for example, a register to be cleared, a RAM address to be incremented, or an ALU
operation to be changed on a speci�c cycle needs control that can change on each cycle.
Another approach for control generation is a programmed control architecture with a 6Kb
wide instruction stream. Unfortunately, generating such a wide instruction on every cycle
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Figure 4: RaPiD Datapath Cell. (a) This example cell has seven tracks, six functional units, and

six bus connectors. Replicas of this cell are cascaded horizontally to form the entire datapath. (b) A
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Table 1: Control Requirements. (a) The example cell in Figure 4 requires 117 control bits. (b)

The RaPiD-Benchmark cell from Section 5 requires 396 control bits.

(a) (b)

Bits Units Bits

Unit Unit Cell Cell Soft Hard

Multiplexer 3 9 27 27 0

Tristate Driver 1 42 42 0 42
Con�gDelay 2 15 30 0 30

Bus Connector 2 6 12 0 12

FU1 0 3 0 0 0

FU2 2 3 6 6 0

Total 117 33 84

Bits Units Bits

Unit Unit Cell Cell Soft Hard

Multiplexer 4 20 80 80 0

Tristate Driver 1 196 196 0 196

Con�gDelay 2 26 52 0 52
Bus Connector 2 15 30 0 30

GP Register 0 6 0 0 0

ALU 7 3 21 18 3

RAM 3 3 9 6 3

Multiplier 8 1 8 0 8

Total 396 104 292

would be prohibitively expensive.
Our solution is to divide the control into hard control, which is �xed for the duration

of an application, and soft control, which can change on every cycle. A small percentage
of the control bits in a RaPiD architecture need the exibility of soft control. By making
the multiplexer control bits soft, the tristate driver control can be made hard. This retains
the ability to perform dynamic data forwarding and avoids the extra delay introduced by
dynamically controlled tristate drivers. In addition, the Con�gDelay unit's control is hard
since the amount of pipelining in the datapath tends to be �xed over the course of an
application. Functional units divide their control between hard and soft depending on the
required exibility. The �nal two columns of Table 1 divide the control into soft and hard
bits for both the example cell and the RaPiD-Benchmark cell.

As seen in Table 1, approximately 25% of the a RaPiD's control is soft and the remaining
75% are �eld programmable via SRAM bits as in an FPGA. However, only if the soft control
can be generated e�ciently, in terms of area and speed, will applications be able to reap
the performance bene�ts of a RaPiD architecture.

A RaPiD's application domain consists of pipelined computations which are very repet-
itive. Apart from initialization, �nalization, and boundary processing, algorithms spend
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most of their time in deeply nested computation kernels. Such applications are naturally
represented by the composition of deeply nested loops (see [3]). Soft control is statically
compiled from the nested loop speci�cation. The challenging requirements of soft control
are low instruction bandwidth and fast instruction generation.

Figure 5 examines possible control architectures. The �rst method is to convert the
required soft control into a set of state machines, which could then be mapped to an FPGA.
This approach, shown in Figure 5a, can take advantage of traditional synthesis techniques
for optimizing control. However, this is a more ine�cient approach than using dedicated
counters and comparators, as found in the programmed controller approach of Figure 5b
since much of the control state comes from a nested loop speci�cation. Unfortunately, a
controller with a very long instruction is also expensive in terms of area and would most
likely be the performance bottleneck due to overheads in synchronization and instruction
bandwidth.

To control path
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Figure 5: Soft Control Implementation Options. (a) State machines are mapped to an FPGA.

(b) A programmed controller generates a VLIW. (c) A programmed controller generates a short instruc-

tion which is decoded by a con�gurable path. (d) The controller is broken down into multiple, parallel

programmed controllers which provide better support for parallel loop speci�cations.

The length of the instruction can be greatly reduced by making two key observations.
First, most of the soft control is actually constant for a particular application. Second,
because of the regularity of computations, much of the dynamic soft control can be used
to control more than one operation in more than one pipeline stage. As a result, our
approach for soft control generation is to use a smaller programmed controller with a short
instruction along with a con�gurable path containing a limited number of buses and logic
gates, as shown in Figure 5c. The controller generates instruction bits by executing code
derived from the application's loop structure. The con�gurable path uses these instruction
bits, along with status bits from the functional units, to form the soft control.

The con�gurable control path looks like a scaled down version of the RaPiD datapath.
A set of con�gurable logic blocks are interconnected via a segmented bus structure which
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runs parallel to the datapath. The �rst bus segment in each track can be driven by any
bit of the instruction word. These bits then ow parallel to the datapath and potentially
through logic blocks in order to produce the required soft control signals. The complexity
of the logic blocks depends on the architecture's application domain and is typically some
sort of look-up table.

In addition to logic blocks, each soft control signal can be optionally inverted. The
optional inverter requires a hard control bit to select the true or inverted signal and has
optional registers on its output. If a soft control signal is constant for the duration of an
application, GND is selected as the input, and the optional inverter is con�gured to output
a 0 or 1.

As in the datapath, a set of segmented tracks run the extent of the array. The number
of tracks required in the control path varies by application but is not large because control
signals tend to be reused extensively. Interconnecting con�gurable logic blocks and optional
inverters is done with multiplexers and tristate drivers, as was shown in Figure 3.

Figure 6 extends the example of Figure 4a for control. A cell of control is shown that
generates the 33 soft control bits. Each cell has one logic block, implemented as a 3-input
look-up-table (3-LUT). A total of seven tracks are used. The optional inverter structure
is shown in Figure 6b.
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Figure 6: RaPiD Control Path Cell. (a) This example cell produces the control signals required

for Figure 4. There are seven tracks, one logic block, and six bus connectors. Replicas of this cell

are cascaded horizontally to form the entire control path. (b) An optional inverter drives each soft

control signal. It takes a signal from the control path, optionally inverts it, and registers the result. The

Con�gDelay unit allows for up to 3 additional register delays.

3.1: Instruction generator

The instruction word of Figure 5c consists of bits derived from the application's nested
loop speci�cation. These instruction bits are generated by a programmed controller which
is optimized to execute nested loop structures. The algorithm is �rst statically compiled to
yield a program for this controller. For example, consider the nested loop code of Figure 7a.
Each of the four conditions generates one bit of the instruction. Static compilation removes
the conditionals on the loop variables, expanding this loop to generate static instructions
as shown in Figure 7b. Hence, \1100" represents \k==0 && j<= 3 && !(k>5) && !(k==0
&& j>3)."
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for i=0 to 9

for j = 0 to 19

for k = 0 to 29
bit #1 if (k==0)

load reg;

bit #2 if (j<=3)
inc ram addr;

bit #3 if (k>5)

w += w*y;
bit #4 if (k==0 && j>3)

w = 0;

i = 0 to 9

j = 0 to 3

k = 0 to 0

1100

k = 1 to 5

0100

k = 6 to 29

0110

j = 4 to 19

k = 0 to 0

1001

k = 1 to 5

0000

k = 6 to 29

0010
(a) (b)

Figure 7: InstructionGeneration. (a) Each instruction bit corresponds to a condition in the source

code. (b) The loop nest is statically compiled producing a loop nest with instruction words.

To execute such loop structures, RaPiD uses a programmed controller designed to
produce, on average, at least one instruction per cycle. To avoid stall cycles when dealing
with the boundary cases of loop nests, the controller packs innermost loops into a single
instruction with a count and provides a repeater to issue instructions the appropriate
number of times.

Instructions executed by the programmed controller are called C-instructions. The
C-instruction \inst CNT I" is used to output the instruction word \I" to the control
path \CNT" consecutive times. The C-instruction \loop CNT LAST" executes a loop \CNT"
times, starting at the next program counter and ending at \LAST". For example, Figure 8a
shows a set of C-instructions equivalent to the loop structure in Figure 7b.

1 loop 10 end1

2 loop 4 end2

3 inst 1 1100

4 inst 5 0100

5 end2: inst 24 0110
6 loop 16 end1

7 inst 1 1001

8 inst 5 0000

9 end1: inst 24 0010

10 halt

Programmed Controller

Loop
Stack

BeginPC EndPC
 Loop
 Count dec

C-Instruction
Store

inc

==?

 PC

Count

Instruction

Program
Counter

(a) (b)

Figure 8: Programming a Controller. (a) A set of C-instructions. (b) A programmed controller

optimized for the execution of nested loops.
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The programmed controller design is shown in Figure 8b. A loop stack is used to opti-
mize handling of nested loops. Each time the controller encounters a \loop" C-instruction,
it �lls the LoopCount, BeginPC, and EndPC registers and pushes any prior loop data onto
the loop stack. The controller then executes the loop body until EndPC==PC. Then, PC is
replaced with BeginPC and LoopCount is decremented. When LoopCount equals one, the
loop stack is popped, forcing the controller to fall through after the last iteration of the
loop body. This specialized implementation requires only one cycle for loop initialization;
the remainder of the loop processing is isolated in the loop stack and program counter and
is overlapped with executing the loop body. This compares favorably to more typical loop
approaches where looping instructions appear in the loop body itself.

Even though a single programmed controller is su�cient, it is not the best match for
a speci�cation consisting of parallel loop nests. For example, to implement the loop nest
of Figure 7a running in parallel with another loop nest, a single controller would have to
take, in the worst case, the cross-product of the two loops nests to generate all instructions
words and would require a very large instruction store. A more e�cient approach is to
have multiple controllers { with small instruction stores { running in parallel, one per
parallel loop nest, as shown in Figure 5d. Synchronization between parallel loops is done
via signal/wait primitives. A synchronization unit watches the ow of C-instructions
from all controllers and aligns the streams according to the signal/wait pairs. The
C-instruction \signal NUM" is a non-blocking operation tells controller number \NUM" to
stop waiting or to skip its next wait if not currently waiting. The C-instruction \wait I"
simply repeats instruction word \I" until a signal arrives.

Unfortunately, instruction bits that depend on variables across controllers may require
the use of additional logic gates in the con�gurable path. To reduce this gate requirement,
the outputs of all controllers are merged to form a single instruction stream, as shown
in Figure 5d. The merge unit could be a con�gurable PLA-type structure or a simple
bitwise-OR if less complexity is needed.

4: RaPiD memory architecture

Within a RaPiD architecture, memory accesses are decoupled from the instruction stream.
The sequences of memory references from the nested loop speci�cation are mapped to
address generators, as shown in Figure 9. Each address generator is associated with a FIFO,
forming an input or an output stream. Using the addresses from the address generators,
input stream FIFOs are �lled from memory and output stream FIFOs are emptied to
memory. These reads and writes are handled by a memory interface which routes addresses
and data between the streams and external memory modules. The memory must provide
high bandwidth either through fast SRAM memory technology, aggressive interleaving,
and/or batching and out-of-order handling of addresses. Applications typically execute
between one and three operations per cycle so that the memory must sustain a data
transfer of up to three words/cycle. The memory interface also provides a memory-mapped
mechanism to stream data from external sensors instead of external memory.

The address generators closely resemble the programmed controller in Figure 8b but
produce addresses instead of instructions. In order to output more than one address per
cycle on average, addresses are packaged with a count and a stride. The repeater in Figure 9
di�ers from the repeater in Figure 5d since it must increment the address by the stride on
each repeat.

The addressing pattern for each stream is statically determined at compile time. The
timing of reads and writes to the stream FIFOs is determined by instruction bits in the
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Figure 9: A RaPiD Stream Manager. Each stream FIFO is associated with an address generator.

The address generator produces a stream of addresses which are serviced by the memory interface. The

corresponding data is then put into or taken from the appropriate FIFO.

control path, as illustrated in Figure 9. Synchronization between the data and instruction
streams is achieved by halting the RaPiD array when a data FIFO is empty on a read or
full on a write.

5: RaPiD benchmark architecture

The previous sections discussed architectural features that apply to all RaPiDs. This
section develops a speci�c RaPiD architecture, called RaPiD-Benchmark, as an illustrative
example. We will present cost, performance, and power results using this benchmark
architecture.

RaPiD-Benchmark's application domain consists primarily of signal processing appli-
cations. Such a domain often requires high precision multiply-accumulates operations, and
hence RaPiD-Benchmark has a 16-bit �xed-point datapath with 16 � 16 bit multipliers
and support for 32 bit accumulates. A RaPiD-Benchmark cell comprises three ALUs,
three 64-word RAMs, six general purpose registers, and one multiplier. There are 14 data
tracks and 32 control tracks. This cell is replicated 16 times to form the complete RaPiD-
Benchmark datapath. This mix of functional units was chosen based on the requirements
of a range of signal processing applications.

RaPiDs contain an abundance of registers, most of which are used to pipeline the
computation. Often a more exible register is required to store constants and/or temporary
values and to forward values from a bus segment in one track to a segment in another track.
A functional unit consisting solely of a con�gurable delay provides this exibility. We call
such a functional unit a general purpose register (GP register).

The most commonly used functional unit is the general-purpose arithmetic logic unit
(ALU). Multiple ALUs can be combined in a pipelined way to compute a multiple-width
operation, most typically as a 32-bit add for multiply-accumulate computations. The
output register of the ALU can also be used as the accumulator for multiply-accumulate
operations.
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RaPiD-Benchmark includes three local memories per cell. The RAM address is supplied
either by the datapath or by a local address generator that supports simple sequential
memory access. If values are read and written sequentially, as is the most common case,
then no datapath resources need to be used for address generation. Some applications use
the RAMs as a con�gurable-length shift register that delays the values by a �xed number
of clock cycles. This is implemented by allowing a read followed by a write to the same
address in one clock cycle.

The multiplier unit is a two stage booth encoded multiplier which takes two 16-bit
inputs and produces a 32-bit result. The result can be shifted by a statically programmed
amount to maintain the appropriate �xed-point representation. Both halves of the result
are available as output via separate sets of bus drivers.

The instruction generator is comprised of four programmed controllers, a synchronizer,
and a bitwise OR merge unit. There are three input and three output streams, each
containing an address generator.

Con�guration memory (to store hard control) is implemented as a static RAM orga-
nized into words of 16 bits each. Words in this RAM can be written in any order so that
recon�guration can be streamlined. To avoid driving buses with two di�erent bus drivers
during recon�guration, each bus has an associated daisy-chained priority signal that en-
sures at most one driver is enabled at any time. This low-overhead mechanism simpli�es
and speeds up the recon�guration process.

6: Performance

This section analyzes the performance, area cost, and power consumption of the RaPiD-
Benchmark architecture presented in the previous section. This analysis is based on the
layout of the components of the RaPiD-Benchmark cell. This layout uses a vintage-1995
3.3v 0:5� CMOS process using MOSIS scalable submicron design rules. These components
were fabricated through MOSIS using two test chips. Tests of those chips substantiated
the performance results presented here.

We �rst present the delays for the components of the RaPiD-Benchmark cell and show
that a 100 MHz clock is feasible for a scalable pipeline in this technology. The performance
results we present later for various applications are based on this 100 MHz clock. We next
present the area of these components and the entire RaPiD-Benchmark cell to show the
relative sizes of the computing structures and the con�guration hardware. Finally, we
present estimates of the power consumption of the RaPiD-Benchmark cell.

6.1: Speed

In order to achieve a 100 MHz clock rate, the longest combinational delay in the datapath
must not exceed 10ns, including the register setup time. The delay of various components
is given in Table 2a as measured by HSpice on the layout. (Multiply1 and Multiply2
refer to the �rst and second pipeline stages of the multiplier.) The In!Clk delay is
the combinational delay of the component from the input bus segment to the register,
including the input multiplexer and the setup time of the register. The Clk!Out delay
is the combinational delay of the component from the register to the output bus segment,
including the register propagation delay and delay driving the bus. The combinational
bypass column gives the delay from the input bus segment to the output bus segment
when no register is used.

Table 2b gives a number of register-to-register paths whose delays are less than 9ns.
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Table 2: Timing Data. (a) Component Delays (ns). (b) Critical Path Delays (ns).

(a) (b)
Pipelined Comb.

Unit In!Clk Clk!Out Bypass

Multiply1 6.9 0.6 -

Multiply2 5.9 1.9 6.7
ALU 4.9 1.9 5.7

Ram 2.6 3.6 -

Bus Connector 1.0 1.5 1.4

GP Register 1.7 1.9 2.5

Optional Inv. 2.2 1.5 -

3-LUT 2.6 1.9 3.4

Path Delay

Register!four busses!Register 7.8
Register!bus!Multiply1 8.8

Multiply1!Multiply2 6.5

Register!two busses!ALU 8.2
Ram!one bus!ALU 8.5

Multiply2!two busses!Ram 5.9
Bus Connector!one bus!

3LUT!two busses!

Optional Inv. 8.5

This shows that the RaPiD-Benchmark architecture will run at 100MHz, with a timing
margin of 10%, as long as applications can be pipelined, placed, and routed within this
path delay constraint. Because of the generous number of con�gurable delay elements in
the datapath, it is straightforward to pipeline the computation to meet this path delay
constraint. The multiplier is generally on the critical path, but the delay is well-balanced
with that needed by other communication paths. In cases where feedback loops are present,
the circuit will necessarily be C-slowed[9], that is, run at the 100 MHz clock rate, but with
su�cient additional registers so that results are produced every N cycles, where N>1.

6.2: Layout area

Table 3 presents the area of each the RaPiD-Benchmark components and the percentage of
the cell area devoted to each part of the datapath. This area is given in units of mega-�2.
The total cell area of 56.35M�2 converts to 5.07 mm2 for � = :3� (0.5� process) and 2.25
mm2 for � = :2� (0.35� process), assuming the same design rules.

Table 3: Area of a RaPiD-Benchmark cell.

Component Area (M�2) Number Total Area (M�2) % of Cell Area

data memories 2.81 3 8.43 15.0%

multipliers 5.16 1 5.16 9.2%

ALUs 0.92 3 2.76 4.9%

general purpose registers 0.39 6 2.32 4.1%

Functional Unit Subtotal 18.67 33.1%

Multiplier/RAM I/O routing 2.87 5.1%

Input multiplexers 0.22 20 4.44 7.9%

Output drivers 0.22 14 3.10 5.5%
Bus connectors 0.39 15 5.90 10.5%

Con�gurable delays (ALU,Mult) 0.39 5 1.94 3.4%

Con�gurable Interconnect Subtotal 14.87 32.4%

Datapath hard control (SRAM cell) 0.0025 312 0.79 1.4%

Soft control 0.066 104 6.89 12.2%
3-LUT 0.35 3 1.05 1.9%

Control bus connector 0.014 104 1.44 2.6%

Con�guration memory overhead 2.72 4.8%

Control Subtotal 12.89 22.9%

Unused space 6.54 11.6%

Total cell area 56.35 100%
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Figure 10: Floorplan of a RaPiD-Benchmark cell.

The area �gures are divided into three categories: functional units, con�gurable inter-
connect and control. Approximately one third of the area is allocated to each. Figure 10
shows the oorplan of a RaPiD-Benchmark cell. The top part of the array is devoted to
multipliers and data memories. The middle part is the segmented interconnection struc-
ture overlaid on ALUs, registers, and bus connectors. The bottom part is the control path
and also contains the static con�guration cells.

Each of the 104 soft control bits in Table 3 includes an optional inverter, a con�gurable
delay, a 32:1 multiplexer, and the SRAM con�guration cells required for these elements.
The datapath's 292 hard control bits are implemented with 312 SRAM cells (20 unused)
since a very regular layout is produced by distributing 3 hard control bits around each soft
control bit.

The straightforward interpretation of the results in Table 3 is that the con�guration
overhead approximately triples the area of the layout. But this analysis ignores many
factors. On one hand, a hardwired circuit needs both interconnect and some form of
control, typically provided by FSMs, both of which are called overhead here. On the other
hand, a hardwired circuit would typically not use all the functional units or the full data
width. Even more perplexing is how to evaluate the ability of a con�gurable datapath to
execute a variety of di�erent computations while a �xed circuit executes only one. The
approximately 67% overhead for RaPiD datapaths compares well with the approximately
95-98% overhead for FPGAs.

Table 4 estimates the area of the components needed outside the datapath itself. This
area represents about 15% of the total area of a 16-cell array.

Table 4: Area of RaPiD Controller and Data Streams.

Component Area (M�2) Number Total Area (M�2)

Instruction generator 30 1 30

Address generators 6 6 36

16 entry data FIFOs 1.5 6 9
Inter-row bus connectors 15 4 60

Total auxiliary area 135
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6.3: Power consumption

The RaPiD architecture has features that make it attractive for low power applications.
Communication in the linear array is done using relatively short buses, and only units
that are used by an application consume power. This is done by turning o� the clock to
registers that are con�gured out of the computation and tying inputs of unused functional
units and buses to ground. Thus power is used only to drive the clock backbone and to
clock the units actually performing computation and data communication.

Table 5a gives an estimate of the power consumption for various components in the
datapath. These �gures were derived using HSpice and PowerMill to analyze the layout.
Each entry gives the average operating current used by the RaPiD component. Bus trans-
fer refers to driving a value from the output of one functional unit, or bus connector, to
the input of another via a long bus. These �gures do not give a true indication of possi-
ble low-power performance since our layout of the RaPiD components was optimized for
performance rather than power (e.g. the local memories dissipate static power).

Table 5: Power Consumption. (a) Average operating current. (b) Application performance.

(a) (b)
Component Current

Multiplier 23ma

ALU 2ma

Memory

read/write 13ma

Register 0.5ma

Bus transfer 0.7ma

Application Computational Memory Power

bandwidth Accesses
cycle

16 tap FIR �lter 100M samples/s 2 1.9W
1024 tap FIR �lter 1.56M samples/s 0.03 3.4W

2D convolution, 4x4 kernel 100M pixels/s 3 1.9W

Matrix multiply 763 128x128
matrices/s 1.5 4.1W

8x8 DCT/IDCT 1.56M blocks/s 2 4.0W

Full motion estimation
8x8 blocks, 24x24 window 865K blocks/s <0.1 2.2W

Peak power 6.1W

Table 5b shows the power consumed by the RaPiD datapath for a set of applications.
If all components and buses were clocked, peak power would be 6.1W. These power �gures
illustrate the improvement that can be obtained by using con�guration information to
reduce power consumption. We emphasize that these numbers are only estimates.

6.4: Application performance results

This section presents the overall performance results for several applications that have
been mapped to the RaPiD-Benchmark architecture. References [5] and [3] contain the
details on how these applications are mapped to a RaPiD pipeline.

Matrix multiply can be performed on arbitrarily sized matrices. Once the pipeline is
full (and assuming no memory stalls) RaPiD performs at a sustained rate of approximately
1:6 billion MACs (multiply-accumulates) per second. The precise performance depends on
memory stalls, frequency of recon�guration, matrix dimensions, and tiling granularity. An
average of 1.5 memory accesses are performed per cycle. A relatively pedestrian memory
system can keep up the pace for the mostly linear addressing performed by matrix multiply.

A 16-cell RaPiD array can e�ciently compute an 8 � 8 2D-DCT by performing two
matrix multiplies in the datapath, passing the transposed output of the �rst multiply to
the input of the second. For images larger than 256x256 pixels, RaPiD achieves a sustained
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rate of almost 1:6 billion MACs, including recon�guration overhead between images, with
an average of 2 memory accesses per cycle.

Motion estimation is a very compute-intensive application that is performed in conjunc-
tion with data compression of moving images. As with matrix multiply and DCT, RaPiD
performs at a sustained rate of 1:6 billion di�erence/absolute value/accumulate operations
per second but with an average of 0.1 memory accesses per cycle. This performance is
achievable even for relatively small images.

Motion picture compression requires motion estimation and DCT on each frame. Given
a recon�guration time of 2000 cycles (� 20 �sec.), little performance is lost to recon�gu-
ration and pipeline �lling. For a standard 720� 576 frame, RaPiD-Benchmark processes
about 12 frames/sec when executing both full motion estimation and DCT (including 4000
recon�guration cycles per frame and pipeline �lling).

6.5: Comparison to other architectures

RaPiD is most similar to systolic array architectures, which have been used for the past 20
years to solve computationally intensive problems. Most systolic arrays appear as ASICs,
although some programmable systolic arrays have been de�ned, notably the Intel iWarp.
Programmable systolic arrays use a very di�erent control model based on the standard
microprogrammed control of a general datapath. iWarp in particular closely resembled a
microprocessor with hardware support for systolic communication. In contrast, RaPiD is
much more �ne-grained with small memories, con�gurable interconnect and a very e�cient
con�gurable control mechanism. RaPiD is clearly able to execute linear systolic algorithms,
and in fact most RaPiD algorithms are systolic. But RaPiD can also be con�gured to
implement algorithms that are not systolic, for example a Viterbi decoder and a spline
generator pipeline.

RaPiD is somewhat similar to SIMD and vector architectures, which also use very
short instructions relative to the number of operations being performed. RaPiD is similar
to SIMD in that a single instruction is used to control all stages of the pipeline. But RaPiD
is not restricted in the same way because of its con�gurable control path. For example,
the RaPiD pipeline can be con�gured to perform two di�erent computations in two dif-
ferent parts of the pipeline. RaPiD is also similar is some ways to vector architectures,
where the data memories are viewed as distributed vector registers. However, these RaPiD
memories do not have the high bandwidth to memory that vector registers do, and vector
architectures do not take advantage of the local reuse of data and the �ne-grained chaining
inherent in systolic algorithms.

Quantitative comparisons to other architectures are di�cult because of di�erences in
technology, application details, data format, and memory systems. For comparison, we
cite here performance results for a high-performance digital signal processor and one of
the highest performance FPGA-based recon�gurable computing machines.

De Greef et al. derive a motion estimation algorithm highly optimized for DSP-style
architectures [4]. In a case study of the 50MHz Texas Instruments TMS320C80 digital
signal processor (containing four 32-bit DSPs and one 64-bit RISC processor), they show
that 23 TMS320C80 chips can implement motion estimation of 720� 576 pixel frames at
25 frames/second. (A 60MHz version would reduce this requirement to 12 chips).

The PAM P1 is an FPGA-based recon�gurable computing machine consisting of 23
Xilinx XC3090 FPGAs, a 4MB local RAM, and a 100MB/s host bus. The PAM project
has reported some of the best performance for con�gurable machines. A single PAM P1
board can perform 2D-DCT at a rate of 1.4 GOPS (an OP is a multiply, add, subtract or
shift)[2]. This section showed that RaPiD achieves 1.6 GOPS.
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7: Conclusion

RaPiD represents an e�cient con�gurable computing solution for regular computationally-
intensive applications. By combining the appropriate amount of static and dynamic con-
trol, it achieves substantially reduced control overhead relative to FPGA-based and general-
purpose processor architectures. Processors must devote resources to be able to perform
irregular and unpredictable computations, while FPGAs must devote resources to con-
struct unpredictable circuit structures. RaPiD is optimized for highly predictable and
regular computations which reduces the control overhead. The assumption is that RaPiD
datapaths will be integrated closely with a RISC engine on the same chip. The RISC
would control the overall computational ow, performing the unstructured computations
which it does best, while farming out the heavy-duty, brute-force computation to RaPiD.

One open question then is how to best incorporate RaPiD into a larger system com-
prising a general-purpose processor and a more general memory system. One approach
is to treat it as a co-processor. However, we believe that RaPiD should be bound much
more closely to a general-purpose processor. In this model, it would be viewed as a special
functional unit of the processor with its own special path to memory that could include the
processor cache where appropriate. In such a model, the granularity of the computation
passed to RaPiD could be relatively small, and the con�guration information could be
contained in the instruction stream and decoded to con�gure the RaPiD datapath. Such
a tight interaction would greatly increase the application domain of RaPiD. Processors
incorporating a RaPiD array could be used for both general-purpose computing as well as
compute-intensive applications like digital signal processing.
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