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INTRODUCTION

The aim of these notes is to introduce the subject of tropical geometry and subsequently
describe the correspondence between algebraic varieties and tropical varieties.

The tropical algebra is introduced in section 1. This allows one to define polynomials and
to prove a fundamental theorem of algebra in the tropical context. Tropical lines are the
argument of section 2.

1. TROPICAL ALGEBRA

Let us consider the set of real numbers R endowed with two operations:

x� y = x + y, x⊕ y = min{x, y}
for any x, y ∈ R. The new operations are commutative, associative and � is distributive
with respect to ⊕:

x� y = y � x x⊕ y = y ⊕ x,
x� (y � z) = (x� y)� z x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
x� (y ⊕ z) = (x� y)⊕ (x� z).

The� unity of the semiring is 0, while there is no⊕ unity. For this reason we will consider
the extension

Rmin = R ∪ {+∞},
and for any x ∈ Rmin we have x⊕+∞ = x.

1.1. Definition. — The triple (Rmin,�,⊕) is called the tropical semiring.

Observe that x ⊕ x = x for any x ∈ Rmin, i.e. the sum is idempotent. We will write
xn = x� . . .� x for the n-times product of x with itself.

1.2. An univariate polynomial is an object of the form:

P (x) = an � xn ⊕ · · · ⊕ a1 � x⊕ a0.

Of course as soon as we have polynomials, it is possible to ask for solutions of algebraic
equations. Consider for example the equation

a� x⊕ b = 0.
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Observe that there are many differences with respect to the classical case. One is that the
right hand side of the equation is no longer the additive unity. Another is that there is no
additive inverse of b. The preceding equation is equivalent to

min{a + x, b} = 0,

so that the solution is given by:  x = −a if b > 0
x ≥ −a if b = 0
∅ if b < 0

The fact that there are infinitely many or no solutions for an univariate polynomial sug-
gests the idea that probably we are not looking at the right definition of equation.

Looking at the general case, let

P (x) =
n⊕

i=0

ai � xi,

then the equation P (x) = 0 is equivalent to

min{an + nx, an−1 + (n− 1)x, . . . , a1 + x, a0} = 0.

This last equation can be solved graphically by considering the set of lines y = ai + ix for
i = 0, . . . , n and looking at their minimum values.

1.3. Example. — Consider the polynomial P (x) = 3 � x4 ⊕ 2 � x2 ⊕ −1 � x ⊕ 1 and look
at the corresponding lines:

In this case the “solution” of the equation seems to be given by x = 1. Observe that the
term 2� x2, which corresponds to the line 2 + 2x is always bigger than the corresponding
minimum. This means that the values attained by the two functions

P (x) = 3� x4 ⊕ 2� x2 ⊕−1� x⊕ 1, Q(x) = 3� x4 ⊕−1� x⊕ 1
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are the same for any value of x. In particular two different polynomials (like P and Q)
can be identical as functions.

The graph of y = P (x) is a piecewise linear function with two vertices at x = −4/3 and
x = 2. What we want to prove here is that

P (x) = 3� (x⊕−4/3)3 � (x⊕ 2).

First of all observe that
(x⊕ a)n = xn ⊕ an,

this can be proved by induction on n. The case n = 1 is obviously true, moreover

(x⊕ a)n = (x⊕ a)� (x⊕ a)n−1 = (x⊕ a)� (xn−1 ⊕ an−1)

= xn ⊕ a� xn−1 ⊕ x� an−1 ⊕ an

= xn ⊕ an

where the last equality comes from the fact that

min{nx, a + (n− 1)x, x + (n− 1)a, na} = min{nx, na}.

The analysis carried out for P (x) suggests to define the roots of a polynomial as the set of
vertices appearing in the graph of the polynomial itself. It remains to explain where does
the exponent of the first linear form comes from. Let p := (−4/3,−7/3), q := (2, 1) and let

Mp :=

(
1 1
1 4

)
Mq :=

(
1 1
0 1

)
be the matrices whose columns are the directions of the two lines coming out from p
and q respectively. Observe that the determinants of these two matrices are exactly the
exponents of the two linear forms used in the decomposition of P (x) as a product of linear
terms.

1.4. Proposition. — Any tropical polynomial of degree n factorizes as the product of n
linear polynomials.
Proof. Let P (x) =

⊕n
i=0 ai � xi and observe that its graph is generated by half lines and

segments. Let y = aj + jx be the consecutive line to y = ai + ix in the graph of y = P (x),
then the matrix of the directions at the corresponding root pij is

Mpij
=

(
1 1
i j

)
and its determinant is j− i. To any such pij we associate the power (x⊕ ai−aj

j−i
)j−i. Now let

i1 < · · · < ir be the indices of the roots of P (x). It is a straightforward calculation (done
comparing with the graph of P (x)) to see that

P (x) = an �
(

x⊕
air − air−1

ir − ir−1

)ir−ir−1

� · · · �
(

x⊕ ai2 − ai1

i2 − i1

)i2−i1

.

�
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1.5. Exercises.

(1) Verify the associativity, commutativity and distributive properties of (�,⊕).

(2) Decide if the right hand sides of the following identities can be simplified or not.
(x⊕ y)� (x⊕ y) = x2 ⊕ x� y ⊕ x� y ⊕ y2

(x⊕ y)� (x⊕−y) = x2 ⊕ x� y ⊕ x�−y ⊕ 0

(3) Prove the following properties of the exponential function:

exp(x⊕ y) = exp(x)⊕ exp(y) exp(x� y) = exp(x) exp(y).

(4) Find all the continuous functions f : R× R → R such that

exp(f(x, y)) = f(exp(x), exp(y)).

(5) Prove that

3� x4 ⊕ 2� x2 ⊕−1� x⊕ 1 = 3� x4 ⊕−1� x⊕ 1

without making use of the graph.

(6) Prove that 3� x4 ⊕ 2� x2 ⊕−1� x⊕ 1 = 3� (x⊕−4/3)3 � (x⊕ 2).

(7) Factorize the expression xn ⊕ xn−1 ⊕ · · · ⊕ x⊕ 1.

2. TROPICAL LINES IN R2

We explore the idea of defining the “zero locus” of a tropical polynomial to be the set of
points where the minimum of its linear forms is attained twice. This allows us to define
tropical lines and study their main properties.

2.1. Definition. — A tropical line a� x⊕ b� y ⊕ c is the set of points where the minimum
of the linear forms

min{a + x, b + y, c}

is attained twice. For example consider the tropical line given 2� x⊕ 3� y ⊕ 1, its graph
is given below.
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2.2. Exercise. — Prove that the graph of any tropical line a � x ⊕ b � y ⊕ c, with a � b �
c 6= +∞, is the union of three half lines departing from a common point with directions:
(1, 0), (0, 1), (−1,−1).

As for the intersection of two tropical lines we can distinguish two situations which are
shown in the picture:

The first picture shows something already expected, i.e. two tropical lines which intersect
at one point. This is no longer the case for the second picture. The equations of the lines
contained in this picture are:

{
1� x⊕ 2� y ⊕ 0
0� x⊕ 1� y ⊕ 1

Observe that the second column is a multiple of the first:(
2
1

)
= 1�

(
1
0

)
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This means that the two tropical lines are the equivalent of two classical parallel lines.
The tropical matrix (

1 2
0 1

)
has rank one. It is natural to ask if there is a way of detecting this by using determinants.
The solution is offered by the following.

2.3. Definition. — The tropical determinant of a 2× 2 matrix is defined as∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ = a11 � a22 ⊕ a12 � a21.

Moreover, we say the matrix is T-singular if the minimum is attained twice, i.e. a11+a22 =
a12 + a21.

The matrix of the preceding example is T-singular. This is a general phenomenon which
can can be summarized by the following:

2.4. Proposition. — Two tropical lines a11 � x ⊕ a12 � y ⊕ a13 and a21 � x ⊕ a22 � y ⊕ a23

intersect in one point if and only if all the minors of the matrix(
a11 a12 a13

a21 a22 a23

)
are non T-singular.

2.5. Exercises.
(1) Prove Proposition 2.4.

(2) Determine the family of tropical lines through the point (1, 2).

(3) Prove that through any two general distinct points there is one and only one trop-
ical line.

(4) Compute the tropical product(
1 2
2 0

) (
5 6
3 4

)
(5) Evaluate the tropical determinant of the following matrices and decide which ones

are singular. 2 3 5
7 11 13
17 19 23

  −1 1 0
0 1 0
1 1 0

  2 3 0
1 0 1
0 −1 1
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